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We describe a procedure for quantizing a classical field theory which is the field-theoretic analog of
Sudarshan's method for embedding a classical-mechanical system in a quantum-mechanical system. The
essence of the di6erence between our quantization procedure and Fock-space quantization lies in the choice
of vacuum states. The key to our choice of vacuum is the procedure we outline for constructing Lagrangians
which have gradient terms linear in the field variables from classical Lagrangians which have gradient terms
which are quadratic in field variables. We apply this procedure to model electrodynamic field theories, Yang-
Mills theories, and a vierbein model of gravity. In the case of electrodynamics models we find a formalism

with a close similarity to the coherent-soft-photon-state formalism of @ED. In addition, photons piopagate to
t = + ao via retarded propagators. We also show how to construct a quantum field for action-at-a-distance
electrodynamics. In the Yang-Mills case we show that a previously suggested model for quark confinement

necessarily has gluons with principal-value propagation which allows the model to be unitary despite the
presence of higher-order-derivative field equations. In the vierbein-gravity model we show that our
quantization procedure allows us to treat the classical and quantum parts of the metric field in a unified
manner. We find a new perturbation scheme for quantum gravity as a result.

I. INTRODUCTION

'The relation between classical and quantum
systems has been a subject of continuing interest
over the years: First, in the original develop-
ment of quantum mechanics, second, in the study
of the classical limit and infrared divergences
of quantum-electrodynamic processes, "and
third, in recent attempts to construct strong-in-
teraction models of quark confinement which are
for the most part either classical field theory
models in search of quantization' or quantized
gluon models wherein quark confinement is a
consequence of infrared behavior. "

We will describe a new quantization procedure
(called pseudotluantization) for field theory which
is the analog of Sudarshan's method for embedding
a classical-mechanical system in a quantum-mec-
hanical system. It can be used with advantage to
either embed a classical field theory in a quantum
field theory in such a way as to maintain the class-
ical character of the embedded fields (while study-
ing the interaction between the classical and quan-
tum sectors on essentially the same footing), or
to quantize a class of field theories, members of
which have been used as models for gravity and
as models for the strong interaction with quark
confinement. '~

We shall begin (Sec. II) by pseudoquantizing a
classical simple harmonic oscillator. This case
is of particular importance because of the ana-
logy between the mode amplitudes of a quantum
field and the coordinates of a set of simple har-
monic oscillators which we mill take advantage
of in later sections.

In Sec. EII we describe the pseudoquantization

i[x„H], -

where defining

8H xiyPi 8 BH xi)Pi 8

(2)

allows us to write Hamilton's equations in com-

procedure for field theory, We apply it to electro-
dynamic models and show that the propagation of
photons to t =+ ~ is necessarily retarded in this
formalism. Further, we display a close analogy
between the present formalism and the coherent-
soft-photon-state formalism" of QED.

In Sec. IV we apply the pseudoquantization pro-
cedure to a classical Yang-Mills field. The re-
sulting field theory (with a slight but important
modification) has been used as a model for the
strong interactions with quark confinement. ' '
We also apply the pseudoquantization procedure
to a vierbein model of gravity and obtain a new
perturbation theory for quantum gravity.

In Sec. V we show that principal-value propa-
gators naturally arise in certains sectors of
pseudoquantized theories thus verifying an ad hoc
procedure devised to unitarize a model of quark
confinement. ™We also show how to construct a
quantum version of action-at-a-distance electrody-
namics.

We shall now briefly outline the procedure for
embedding a classical-mechanical system in a
quantum system. ' Consider a classical Hamilton-
ian system with one degree of freedom, and com-
muting canonical variables, xi and p„which have
the equations of motion
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mutator form. With Sudarshan' we define

(4)

and

8
P ~ ~f

BX1

so that

[x„x,]=[p„p,] =0,

[x„p,]= [x„p,]=i,
and II can now be taken to be the operator

sff(x„p,) sff(x„p, )

(6)

(7)

(8)

It is now apparent that we can take the above quan-
tities and equations of motion to describe a quan-
tum mechanical system with two degrees of free-
dom in the "coordinate" representation where the
"coordinates" are (x„p,) and the canonical mo-
menta are II = (p„-x,). As we will see below the
linearity of H in the momenta is crucial for the
maintenance of the classical character of x, and

p 1 and for the observability of the phase- space
trajectory. Since we choose to identify the physi-
cal observables with the commutative algebra of
the coordinate operators, x, and p„we are led to
impose the superselection condition that the mo-
menta, 0, are unobservable. As a result the
Hamiltonian and other generators of canonical
transformations, which are all linear in the mo-
menta, are also unobservable. However, in
each case there is an associated dynamical quan-
tity which is observable.

The required unobservability of the momenta
restricts the form of the interaction between a
classical-made-quantum system and an inherently
quantum system to

system. %'e shall see that the space of states for
the indefinite-metric classical-made-quantum
system is far larger than the set of states of a
classical harmonic oscillator. However, there is
a subset of coherent states which may be placed
in one-to-one correspondence with the classical
harmonic-oscillator states. The classical-made-
quantum oscillator is necessarily an indefinite-
metrkc quantum theory for the simple physical
reason that the classical bound states cannot have

quantized energy levels. Indefinite-metric quan-
tum theories normally have severe problems of
physical interpretation. The present work raises
the possibility of a partial resolution of some of
these problems through a reinterpretation of an
indefinite-metric quantum system as a system
composed of a classical subsystem interacting
with an essentially quantum subsystem of positive
metric.

The classical simple harmonic oscillator of
frequency (d has the Hamiltonian

K= (p '+m'&u'x ')1
2m 1

and the motion is described by

x, = ft sin(7f f + 5),

(10)

H= —P1P2+ m(d X1X2 (12)

We eliminate constants by defining (for i = 1,2)

p =(mar)"'P, , (14)

where A and 5 are constants. To embed this clas-
sical system in a quantum-mechanical system we
introduce the variables x, and p„and, using Eq.
(8), obtain the quantum Hamiltonian

8, ~=4,X2+4 p, +X, (9)
and

where 4„4„andX are functions of x1 p1 and
the quantum system variables. The commutation
relations of these functions are also constrained'
by the superselection rule and the commutativity
of the classical variables, x, and p„and their
time derivatives. In the next section we will study
the simple harmonic oscillator in order to exemp-
lify the quantum-mechanical ease described above
and also for direct use in the field-theoretic gen-
eralizations of subsequent sections.

so that

H =P1P2+ Q1Q (16)

and

(18)

The raising and lowering operators are defined by

1
af= ~ (Qf+iPf),

II. SIMPLE HARMONIC OSCILLATOR
for j= 1,2. They have the commutation relations

In this section we discuss the embedding of a
classical simple harmonic oscillator in a quantum

[a„a,]= [a,', a,'] = 0,
[a„a',]= 1 —5,.f

(19)

(20)
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for i,j= 1,2. As a result H is seen to have the
form

z= zn„n n„n
n+~n ~0

(32)

H = z(a, a, + a,a, + a,a,+ a,a, ) .
The number operators are defined by

and

(21)

(22)

and use

a,
~
n„nQ = —n

~
n„n —1),

a,
~
n„ng =n,

~
n. —I,ng

to evaluate the eigenvalue equations

(33)

(34)

(23)

and are not Hermitian. However, their sum is
Hermitian and we see that

H=Nx+N2

The number operators have the following commu-
tation relations with the raising and lowering op-
erators:

a~ z =iz* z

a~ z =-izz

we find

C (iz *)" (iz )"-
f(z ~n„n )=

where C is a constant. As a result

(35)

(36)

(37)

N, a~ = a,.(N, +5,q
—. 1). (25)

N, a& = a&(N, —5,&+ 1) (26)

fori,j =1,2.
Up to this point we have maintained a symmetry

of the dynamics under the exchange of the sub-
scripts, 1—2. Now we must break that symm-
etry by choosing a vacuum state which is an ei-
genstate of Q, and Py or alternately a, and a, .
The commutativity of Qy and Py permit this. The
observability of Q, and P, for all time requires it.
So we define

s,'] o& = s, )
o& = o . (27)

As a result a,
~
0) & 0 and ag 0}w 0. The eigenstates

of the number operators are

I ., 3=( l) (.)"-10,0&

and satisfy

N,
~
n„n ) = -n

~
n. , ng,

N~ n„ng =
n~ n„gn,

so that

H~n„ng=(n, -n }~n., ng.

(28)

(29)

(30)

(31)

The lack of a lower bound to the energy spectrum
is in a sense a problem but a necessary one in
that it leads to the possibility of bound states with
a continuous energy spectrum —a requirement
of a faithful representation of the classical oscil-
lator states. There is a subset of coherent states
which can be put in a one-to-one relation with the
set of classical oscillator states. The defining
property of that subset is that its elements are
eigenstates of the operators a, and a~. If weexpand
an element of that subset in terms of the number
eigenstates

[z& =c exp[i(za, +z *at)]]o, o&. (38}

We shall call the ~z) states coherent states be-
cause of their close formal resemblance to the
coherent states used in the study of the classical
limit of harmonic oscillators, and of quantum
electrodynamics" (which were eigenstates of the
lowering operator but not of the raising operator).

Since [H, a, ]= —a„and [H, at] = at„ it is clear
that the (x„P,) phase-space trajectory is sharp
on the set of coherent ~z& states. The classical
trajectory represented by the state ~z& is easily
seen to be

2 ~/
x R sin(~t+ 5)

PN &It}

and

P, = (2nt&u)' t'R cos(&et+ 5), (40)

where z = Re' . The linearity of H in the "momen-
ta", II=(p„-x,), is crucial for the observability
of the phase-space trajectory. In fact, the line-
arity of all generators of canonical transforma-
tions in the momenta is necessary if the canonical
transformations are not to take states out of the
subset of coherent states.

The superselection rule which follows from the
unobservability of the momenta, II, is best ap-
proached by a consideration of the momentum-and
coordinate-space representations of the coherent
states. In the coordinate-space representation
we find that Eqs. (35} and (36) give

1 /2 1 1/2
x, +i p, &xp, ~z) =iz $x,p, ~z)

(41)
and

yp$ (d
x, -i, P, &x,p, ~z&= tz&x,p, ~z&,2 I ~ I

~~2 ~ I
~

~

I I
~» ~ I

i I t

(42)
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so that

( 2 1/2

&xp, lz&= M~5l x,

with (0, 0l0, 0&= 1. The dual state corresponding
to the physical state, z, we define to be

(zl=& 0, Ol 5(ia, +z*) 5(ia,'- z)

x 5(p, —(2m(u)'12Rez).

We have normalized &xp, lz) so that

dx,dp, &z 'l xd, &&xd, l z&

(43) -=(0, 0l 2, exp[in (Imz —2 '~'Q, )
md+

+ iP(Rez —2 '~'P, )]
(53)

= 5(Rez —Rez ')5 {Imz —Imz') . (44)

In momentum space Eqs. (35) and (36) lead to the
differential equations

and

so that Eqs. (48) and (51) follow if we choose C = 1.
Sometimes the dynamical state of a classical

system is incompletely known and one only has a
set of probabilities that the system is at a particu-
lar phase-space point at t=0. If we let P(z) be
the probability that the system is at a phase-space
point corresponding to z (as defined above), then
using the properties

-m~&~& d
Z

2 dp &
2tgl Cd CfX 2

&x~, l.&
= —iz&x,p, l.&.

(46)

They are easily integrated to give

X/2

(xnp2 l
z) = ~ exp ~ -ip2' mv

Imz

P(z} ~0, dzz P(z) = I

one sees that a density operator

p5'(0) = d z lz)P(z)(z
l

may be defined which satisfies

(54)

(55)

+ ix,(2m '&)' ~ 'Rez

with the normalization condition

(47)

&"lpl"&=- »m &z "lpl"&=P(z'). (5V)

dxpp, &z lx,p, &&x,p, lz&
The mean value of an observable A =A(a„a~) is
given by

= 5(Rez —Rez ')5 (Imz —Imz ') . (48)
(A) = TrpA = d'z A(iz *,-iz }P(z), (58)

(xp, lx, pg =—exp(+.ip p, ip,x,), —1
(49)

so that

&x,p, lz&=f dxpp &x,p, lx, pg&x, p, lz&. (50)

Each coherent state, lz&, is a superselection sec-
tor in itself. There is no measurable dynamical
variable F =F(a„an't) which connects different
states:

(z'lF(a„a', )lz&=F(iz*, -iz)52(z -z'). (51)

This reflects the lack of a superposition principle
in classical. mechanics.

The operator formalism for coherent states is
incomplete in that we have not defined an inner
product. To remedy this deficiency we define the
vacuum dual to

l 0, 0& to satisfy

&0, 0la, =&0, 0lat=0 (52)

The transformation function between the two repre-
sentations is

b, = a, cos8+ a, sin8,

b, = —a, sin8+ a cos8.
(59)

(60)

and one can develop a formalism similar to the
density-matrix formalism of quantum mechanics.

We now turn to a closer investigation of the re-
lation of the pseudoquantum mechanics discussed
above and true quantum-mechanical systems. We
shall be particularly interested in the relation of
the coherent states described above and the co-
herent states of a quantum-mechanical harmonic
oscillator —to which they bear such a remarkable
resemblance. We shall see that the pseudoquan-
tum oscillator system is equivalent to an indefin-
ite-metric quantum system composed of a harmon-
ic oscillator (thus the connection to the coherent-
state quantum oscillator formalism) and an "in-
verted" oscillator to be described below.

Let us define the following rotated raising and
lowering operators in terms of the operators de-
fined in Eqs. (1V) and (18):
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Their commutation relations are

[b„b,']= sin(28),

[b„b~]= -sin(28),

[b„bt]= [b„bt] cos(28)

(61)

(62)

(63)

Consider a classical field, Q, (x), with canoni-
cally conjugate momentum, x,(x), and Hamiltonian
equations of motion

—0 (x)=
d 5H
dt ' 5v (x) ' (67)

with all other commutators equal to zero. The
Hamiltonian ef Eq. (21) becomes

(64)

H = 2 ((b„b~t) —(bm, b,}}sin(28}

+ -,'((a„at] + (a„at]}cos(28),

where (u, v] =uv+ vu.
Now 8 is an arbitrary angle and it is obvious

that choosing 8= 0 gives the commutation rela-
tions and Hamiltonian studied above. However,
the choice 8= w/4 results in a new form for 8
and the commutation relations, which can be in-
terpreted as a harmonic oscillator (the b, and b~

sector} and an "inverted" harmonic oscillator
(the b, and bt, sector} where the commutator and

5, terms in the Hamiltonian have the wrong sign.
The commutativity of the oscillator raising and
lowering operators with the inverted oscillator
raising and lowering operators leads to a simple
factorization of the coherent states which lays
bare the basic of the close similarity of form for
our coherent states and the coherent states of a
quantum oscillator":

(66)

d
«4, (x) = i[H, 4,(x)], (69)

—x,(x}= i[H, w, (x}].d
(70)

Equations (69) and (70) are satisfied if

6H 1
5v, (x) i 5$,(x)

6H 1

5&,(x) i5w, (x)

We now formally define

5
$2(x}=f5

( )

and

(71)

(72)

d -M
dt ' 5$(x) '

where II is the Hamiltonian. We wish to define a
"quantum" Hamiltonian, H, which allows us to
rewrite Eqs. (67}and (68) in commutator form:

l z) = ~ exp ~(z b, + z *bt) (73)

&& exp ~ (z b, + z *bt), l0, 0), (65)

while the coherent state of Ref. 11 has the form

n)=e~(nb' n*b)lo&,

where n is a complex numer and [b, bt] = 1. lt
should be remembered that our choice of vacuum
state such that a, l0, 0) = a~t l0, 0) = 0 obviates a sim-
ple direct relationship.

Since we have uncovered an interesting relation
between a classical-made-quantum system and a
"quantum" system of indefinite metric the possi-
bility of reinterpreting indefinite-metric quantum
systems as systems containing cia.ssical subsys-
tems naturally arises.

(66)

III. EMBEDDING OF CLASSICAL FIELDS

In this section we shall discuss the embedding
of a classical field theory in a quantum. field the-
ory. We shaB study the embedding in detail for a
scalar field and then describe the features of a
classical-made-quantum electrodynamics which
we shaB call pseudoquantum electrodynamics for
the sake of brevity.

so that

6Hd'x
)
v, (x)

5H
+5~ ( )4.(x) . (74)

The fields satisfy the equal-time commutation re-
lations

[4&(x),~,(y)] = t(1 —5„)5'(» —y),

[~,(.), ~,(y)]= 0,
[x;(x),vg(y)]= 0,

(75)

(76)

(77)

where 5,&
is the Kronecker 5.

We note that the linearity of H in Q, and Yt, is
necessary to maintain the classical character of
Q, and ~,. This is best seen by an examination of
Eqs. (69}and (70) and the corresponding Hamil-
tonian equations for Q, and v, . (Other generators
of canonical transformations are also linear in
x, and P,.)

Q,(x) and v,(x) will not be observables on the set
of physical states, so that Q,(x) and m, (x}will both
be sharp on the set of physical states and satisfy
supe rselection rules.



EMBEDDING CLASSICAL FIELDS IN QUANTUM FIELD. . . 999

If we wish to couple the classical field to s truly
quantum system and maintain the classical nature
of the field then certain restrictions exist on the
form of the total Hamiltonian H„, and on the com-
mutation relations of the various terms occurring
in it. First, the coup1. ing must satisfy the require-
ment that H„, is linear in (t),(x) and w', (x). If we
denote the quantum fields by P and write the gen-
eral form of the Hamiltonian as

relations

[A(x),A(y)] = [A(x), a(y)] [B(x),B(y)] 0, (88)

where A(x) =A(p, (x), w, (x), g(x)), etc. , so that (t),(x}
and w, (x) are independent of 4), and w, and hence
observable for all time. An examination of higher
time derivatives of @, and g, lead to further re-
strictions on the equal-time commutation relations
of A, B, and C. Examples are

H~, ~
=H+ Ho(g)+ H~, ~, (78)

where H is given by Eq. (74), Hq((1)) depends only
on the quantum fields, g, and

[A, [c,a]]=o,
[B,[C,B]]=0,
[A, Ic, I'c, [c,a]l]]= o,

(89)

(90)

(91)

H„,=fd'x[A((t)„w„g}$2(x)

+ B((t)„w„g}w2(x}

+ C(p„w„g)],
where

5H

5y, (x}

and

5H
6w, (x)

H„,=J d'x[A(g„w„g)(f), (x)

+ B((I)„w„(I))w,(x)

+ C((t)„w„g)],
then we can rearrange the Hamiltonian so that

(79}

(80}

(81)

(82}

etc. A sufficient condition for satisfying all rela-
tions of this class consists of having equal-time
commutation relations with the form

and

[A, C]=Z,(A, a, y„w, )

[a,C) =Z,(A, a, y„w, ).

(92}

(93)

Finally, we note that another obvious requirement
[cf. Eqs. (84) and (85)] for the observability of (I(),

and w, is that A and B depend only on an (equal-
time) commutative subset of the quantum field vari-
ables, (I).

The above restrictions on the equal-time com-
mutation relations have a direct interpretation in
terms of Feynman diagrams for quantum correc-
tions to the classical field behavior. For example,
consider the interaction of the classical field sec-
tor with a scalar quantum field, (t), expressed in
the inter action

C =C+Kq (83)

with Ho= fd'xÃo An ex.amination of the equations
of motion of P,(x), w„(x), and P,

d
df Ag=a(4, w, 0)

d
„—w, =A(p„w„(I)),

(84)

d—f y=i[H„„)1)], (86}

and the second time derivatives of Q, and m» such
as

d
„,, y, (x)=i[H, a]

H„,=g (t())xg'( )x (94)

If Ho((t)) is the conventional free Klein-Gordon Ham-
iltonian, then we find that Eq. (92) is not satisfied
so that the Green's function for the classical p,
field receives quantum corrections from vacuum
polarization loops of |I) particles and thus loses its
classical character.

We now define a Lagrangian appropriate to our
pseudoquantum fieM theory and then verify the rea-
sonableness of our definition, and the pseudoquan-
tization procedure described above, by studying
the equivalent path-integral formulation. The Lag-
rangian corresponding to the pseudoquantum Ham-
iltonian, H, is

d'y -A + B + i ((II))[yA, B]5B 5B
6w, y 5(t)~

() )I))()')))(*)I+.(I(: ~I ),
(87)

leads us to require the equal-time commutation

d' x(,w (f)+ wj, ) H,

where L = L( tp()„f„(f))(a)nd

5J
1 6$ )

(95)

(96)
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The vacuum-vacuum transition amplitude for the
field theory corresponding to the H„, of Eq. (|8)
will be shown to be

The canonical momenta are (note that ~2 is conju-
gate to Q„etc.)

H. = (f)] (105)

for i = 1,2 with the equal-time commutation rela. -
tions given by Eqs. ('15)-('7't). We expand the fields
in Fourier integrals:

dy, x dy, x dm, x dm2 x df x exp N,
x

(98}
y, (x, t) = jd'k[a, (k)f«(x)+ ai|f«(x)] (106)

where S= f dtf „,up to external source terms. We

begin by considering the vacuum-vacuum transition
amplitude corresponding to H,

$2(x, t) = d k[a, (k)f«(x)+at(k)f ~(x)], (10')

wo —— IIdg(x) exp(6'o), (99)
where

f,(x) = (2v) 'i'( 2~,)
't 'e + (108)

where Q, has the character of an external source.
We can now introduce the classical behavior of

the P, field through functional 6 functions

d4 x d, x d+, x 6 (It}~ "i $ —Pa

with &o«=(P+nc')' '. The Fourier component oper
ators satisfy the commutation relations

[a,.(k), a~(k') ]= (1 —6,~}6'(k—k')

"5&(4&~ &xi 0)+ &&}&"o (100)

which can be put in the form

IIdg, (x)dv, (x)dp, (x)dv2(x)

[a i(k), at (k')] = (at(k), a~i(k')) = 0

for i,j=1,2.
In terms of the Fourier coefficients

d & Q,$2+~/, V'(t} +»&2P, P

(110)

xeW; d'x[(j, -a)x, -(', +W)q,
]+a~I.

(101)
After performing a partial integration on the b, p2
term and discarding a. surface term we see that the
definition of L in Eq. (95) is correct and that the
vacuum-vacuum transition amplitude is indeed gi-
ven by Eq. (98).

The restrictions on the commutation relations of
the various terms in the H„, [expressed in Eqs.
(88)-(93)]translate into the requirement that the
"quantum completion"" of the p2 field does not take
place, i.e. , that all N-point functions of the p2
field are zero:

becomes

fi = d k &o«[iLa, (k),a, (k)].

+ [a,(k), a', (k)j] . (112)

The analogy between the mode amplitudes of the
fields and the raising and lowering operators of the
simple harmonic oscillator has been previously re-
marked. We can therefore use the considerations
of Sec. II to establish the spectrum of physical
states. The defining properties of a physical state
are that P, (x) and v, (x) are sharp on it for all time:

y, (x) i4, 11) =4 (x) ic, rr) (113)

5J,(x,)5d, (x,) ~ ~ 5J,(x„)
(102}

where J2 is an external source coupled to p2.
We now discuss the embedding of a free classical

Klein-Gordon field in a quantum field theory. The
Lagrangian density is

@(x)=J d'k[n(k) f,(x)+ n«(k) f«(x) j (115)

v, (x)ic, ll) =ll(x)ic, lo, (114)

where 4 (x) and ll(x) are c-number functions of x:

g 41 42
ex" Bx (103) ll(x}=- t d'», [n(k)f, (x) —n+(k)f,*(x)] (116)

(Cl+ m') y, (x) = 0. (104)

from which one obtains the Euler-Lagrange equa-
tions (for i=1, 2)

with n(k) a c-number function of k.
As a result we are led to define a set of physical

states, in), which are in one-to-one correspon-
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dence with the classical solutions of the Klein-Gor-
don equation and satisfy

5L
zo(4&&4»42&42) 6 ( )

a, (k) In& = n(k) In& (117)
(125)

a~(k) In) = n*(k) In). (118)

In analogy with the states of the simple harmonic
oscillator (Sec. II) we further define

[n) =c exp (fd'I'[a(k') teak'I

(a')o, (a )]) ~

0&,

where the vacuum state,
I
0), satisfies

a, (k) Io) =at(k) Io) =0.

(119)

(120)

(n '
I
6 In) = 8,6'(n —n '), (121)

where 6 is the operator corresponding to any ob-
servable, 8 is its eigenvalue for the state In),
and 6'(n —n') is a functional 6 function in the real
and imaginary parts of a —a'. The functional 5

functions have their origin in the definition of the
dual set of physical states. We define the dual vac-
uum state (OI by

The physical states, In), lie in a space which is
the infinite tensor product of single-mode spaces.
While P, and m, are sharp for all time on the sub-
set of physical states, we see that P, and m, are
not and, in fact, when applied to a physical state
map it into an unphysical state. The superselection
rules are embodied in

up to a divergence with

v, (x) = . d'xS~o.5

6j,(x)
(126)

eF' =0gV

9"F'„+eJ„=0,

(128)

(129)

(fy'- eg'- m)q =O. (130)

The canonical momentum which is conjugate to A'„
is

In the case of a classical electromagnetic field in-
teracting with a quantum electron field, one
pseudoquantum model, which describes some elec-
tromagnetic processes, has the Lagrangian

&= --,' F'„„F',„+P(fg eA, —-m, )g, (127}

where A'(x) is the classical electromagnetic field,
g is the electron field, A'„'(x) is the unobservable
auxiliary field, and F„'„=B„A,' —8„A' for i=1,2.
Although our interpretation of the free electrom~-
netic part of the Lagrangian, --,'F'„F'„„, is new,
the actual form of this term appeared some time
ago in a generalization of electrodynamics by
Mie, " and was recently used in an Abelian proto-
type model for quark confinement. ' The equations
of motion are

(0
I
a, (k) = 0 (122a)

O'=F

and that conjugate to A'„ is

(131)

(0
I
at(k} = 0 (122b)

for all k with (0
I 0) = 1. The dual state correspond-

ing to n(k) we define by

Ill Fl (132)

We take A„' and II„' to be classical fields which are
observable for all time. A'„and II'„are not observ-
able. Note that Z is invariant under the indepen-
dent gauge transformations

(o
I

H'(n(k) —a~(k))6(n*(k) —ai(k)) A,' -A„'+ B,A'(x) (133)

so that

—= (0 I6(n —a,)6(n* —a~), (123)
A', -A'„+ B„A'(x). (134)

(n '
I n) = 6'(n ' —n) (124)

if C=1.
We have now established a procedure for embed-

ding a classical field in a quantum field theory.
Given a Lagrangian, L, for a classical field theory
describing a field p, (x), the Lagrangian density for
the pseudoquantum field theory, Z~~ is

and for A''

V ~ A'=0 t (136)

then we can establish the equal-time commutation
relations

Since II,'= II,' =0, it is apparent that A,' and A,' are
c numbers. If we chose the Coulomb gauge for A„',

v A'=0, (135)
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[ll;(x, t),A,'(y, t)]= t(1 —~„)

~'k, a (-.--.) ~

= i(1 —5„)5',q(x —y) (137)

for a, b =1,2 and i,j=1,2, 3.
This pseudoquantum field theory describes the

dynamics of quantum electron fields interacting
with a free, classical electromagnetic field. A

typical perturbation theory matrix element would

have the form

(8', 0
i
T(T((x)Z'~(x, )A,' (x,)J'&(x,)A'„(x,) J"o(x„)A', (x„)())(y))i

8, 0&, (138)

(139)

where i8, 0) is the tensor product of an electron vacuum state and an electromagnetic state corresponding

to the classical field 8„(z). Because A„'(x) is sharp on this state, the matrix element becomes

(0
i
T(T()(x)J"~(x,) ~ ~ .4 n(x„)(r)(y)) i 0&8, (x,)6, (x,) ~ ~ ~ 8„(x„)

modulo a functional 5 function in 8'- 8. Thus this
model is equivalent to a quantized electron field in-
teracting with an external electromagnetic field.

Another possibility for a model electrodynamics
is realized by letting the interaction term in Eq.
(127) above be replaced with

f' &nt
—end((~(I'. (140)

Because the equivalent of the equal-time commu-
tation relation, E(l. (92), is not true in this model,
the A,' field loses its purely classical character
due to quantum corrections. However, this model
may be of value for the study of the modification of
the 4'„ fieM resulting from the emission of many
soft photons by a current.

Since vacuum polarization effects modify the
electromagnetic field in this case we define in-
field eigenstates (in the transverse gauge) by

(141)

where
2

~d),.=eep jd'e Q(e(e, e)e,'(k, e)
X= 1

a+(k, x)a, (k, X)) io)

(142)

for all k, X. The interacting field, A', is appar-
ently not sharp on

i
8&„but is sharp on

ie& = v-'(t, — ) in)„ (145)

where

t
U((— ) = T (e p, e—i d 'e (d„,(d '„,d „)

(146)
because

A'(x, t) = U '(t, -~)A'„(x, t)U(t, -~). (147)

Kith these preliminaries completed, the study of
physical processes within the framework of these
models is now possible, although we shall not pur-
sue it in this report.

Before turning to a discussion of non-Abelian
gauge field theories, it is worth noting that the
choice of vacuum state we have made necessitates
a redefinition of normal-ordering. By normal-or-
dering a Lagrangian term we sh311 mean that the
observable fields (to which we have consistently
appended the superscript or subscript one) are to
be placed to the right, and unobservable fields,
labeled by two, are to be placed to the left. Thus
Wick's theorem (with our definition of normal-or-
dering) becomes in the case of two fields

with

2

k E kyX nkyX ~x

+ a+(k, X)f*(x)] (143)

T(e„.(x,)d. ..(x.))=:y„.(x,)O„,(x.):
+ (Oi T(@„,(x,)@„.(x,)) iO&

42 (n( 2)41 tn(xl)

+ e(x„-x„)[y„.(x,),y„,(x,)].

A,', = d k Ek, X aqk, & I, x
%=1 Note that the Green's function

(148)

+ a', (k, X)f„*(x)]

for i=1,2. The vacuum state is defined by

a, (k, X) io) =a~~(k, X) i0) =0

(144) G(x„x,) = (0 i T($, „(x,)f, „(x )) i
0) (149)

is necessarily retarded. From this we can con-
clude that the models of electrodynamics, which
we have considered, naturaQy embody the observed
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IV. NON-ASELIAN GAUGE THEORIES

In this section we shall describe the procedure
for embedding a classical non-aphelian Yang-Mills
field in a quantum field theory. Then we will dis-
cuss a vierbein formulation of quantum gravity
which could have been interpreted as a pseudoquan-
tum field theory for a classical metric field if it
were not for one term in the Lagrangian which
makes it a truly quantum fieM theory. Neverthe-
less we suggest a new canonical quantization pro-
cedure based on our yseudoquantum approach.

Consider a classical Yang. Mills field, A„' =A„' T,
where the jth component of T is a matrix repre-
senting a generator of a non-Abelian group 6 in the
defining representation with commutation relations

~T„&aj=«ga, ~r ~ (150)

We can define a pseudoquantum field theory,
wherein the classical character of A, „' is main-
tained, which has the Lagrangian density

Z"" -'Z2"" (s„A' s„A'+gA'xA'}
ff

' I'"" (s A —s —A—'+gA' xA —gA'xA2)

+ q(i)f'+ g$' —m)y, (151)

where P is a fermion field. The theory is invariant
under the local gauge transformation, S e 6,

(152}

O'=S 'A'S+-S 'e S4 Q g (153)

(154)

(155)

retarded nature of classical electrodynamics. An-
other way of stating this result is: If classical
electrodynamics is to have a yseudoquantum form-
ulation, its Green's functions are necessarily re-
tarded. The origin of the asymmetry is the de-
finition of the vacuums (which is equivalent to a
specification of boundary conditions). Just as in
classical electrodynamics retarded propagation is
implemented by a choice of boundary conditions
which do not require a commitment to any specific
cosmological model.

Finally we would like to note that the Lagrangian
obtained from adding I.„,of Eq. (140) to the Lag-
rangian of Eq. (127) is equivalent to the usual Lag-
rangian of eIectrodynamics plus a term describing
a massless Abelian gauge field with the wrong sign.
(This is seen by defining new fields equal to
the sum and difference of A„' and A'„.) This field
theory may be quantized following the procedure
we have outlined. A„' loses its classical character
due to quantum corrections.

(156)

Except for One important term this Lagrangian
with its attendant gauge invariance properties has
been suggested as a possible model for the quark-
confining strong interaction. Since the omitted
term has a masslike character A2A„'.A'", where
A has the dimensions of a mass, it is clear that
the strong-interaction model's ultraviolet behavior
approaches that of the yresent pseudoquantum the-
ory if the same quantization procedure is followed
in both cases. We shall discuss this question fur-
ther in the next section and show that the ad hoc
procedure followed in Ref. 8 leads to the same re-
sult as the quantization procedure developed in this
report.

The Euler-Lagrange equations of motion which
are obtained from 2 in the canonical manner are

E' =8 Ax 8 Ax +g Ax xA„',

(s. +g A„'x)Z""=0,

(s„+gA„'x)F'""+gA'„x F'""+gJ"=0,
(iV +g 4' —m)P = 0,

with the conservation law

(157)

(158)

(159)

(160)

(161)

(s„+gA „'x)J"=0. (162}

The c3nonical momentum which is conjugate to A&
ls

(163}

and the canonical momentum conjugate to A& is

II~ =F,'~ (164)

where

2~- V .III~ —0f (167)

and a = 1,2. Then the nonzero equal-time commu-
tation relations are

[II',~(x),Aq, (y)j=i6 (1 —5, )6,'", (x —y), (168)

where P and q are internal-symmetry indices,
a, b =1,2, and i,j=1,2, 3.

for j= 1,2, 3. The canonical momentum corres-
ponding to the fields A,' is zero for i=1,2. The ex-
istence of equations of constraint among the Euler-
Lagrange equations implies that not all fieM com-
ponents are independent, so that we must isolate
the independent components prior to defining the
canonical equal-time commutation relations.

Following Ref. 8 we choose to work in the Cou-
lomb gauge, V,A', =0, and define the field variables

A2 A2T +A2L (165)

II'=II +II (166)
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ab (169)

where q, b is the constant metric tensor of special
relativity, where Roman indices transform as vec-
tors under the SL(2, C) group of local Lorentz
transformations, and where Greek indices trans-
form as vectors under general coordinate trans-
formations. It is useful to introduce the constant
Dirac matrices, y, and 4S,~= i[y„y~]. Under an
SL(2, C) transformation,

S = exp [iC"(x)S„],
a spinor, P(x), becomes

(170)

(171)

While the classical character of A„' can be main-
tained with our choice of 2, this theory has fea-
tures due to its non-Abelian nature which make it
less trivial and therefore more interesting than the
corresponding Abelian theory discussed in the last
section. If we follow a procedure similar to that
in the Abelian case [Eq. (127)] and introduce a set
of states appropriate to the quadratic part of the
Lagrangian, then the cubic and quartic Yang-Mills
terms in the interaction part of the Lagrangian will
act to transform A'„„eigenstates into eigenstates
of the interacting field A„'. This is, of course,
necessary for the classical Yang-Mills equations
of motion to be satisfied. Our formalism, thus,
offers a perturbative method for calculating solu-
tions of the classical Yang-Mills equations. In ad-
dition, it gives an interesting interpretation to the
short-distance behavior of the quark-confining field
theory of Ref. 8. At short distances the gluon field
A' effectively decouples from the quark sector and

becomes, in effect, a, free field. This type of
short-distance behavior is certainly not at odds
with the seemingly simple behavior observed in
hadron processes at high energy. Therefore, it is
possible that pseudoquantum field theory may be
relevant to the short-distance behavior of hadron
interaction. Certainly, it is interesting that ele-
mentary fermions fall into two similar groups:
those which appear to be individually observable
(leptons) and those which a.re not individually ob-
servable (quarks).

We now turn to a consideration of a vierbein mo-
del of gravity which has certain close similarities
to the pseudoquantum field theories we have been
studying. In Weyl's formulation" of the Einstein-
Cartan theory of gravity a vierbein field, f"(x), is
introduced which is the "square root" of the metric
tensor

which transforms inhomogeneously,

8„—SB„S'- —SB„S ',

so that a Lorentz transformation gauge-covariant
derivative can be defined

v„0 =(s. +igB.)4, (174)

where B, =8'„b S,b and g=12wG where G is Newton's

constant. Under a gauge transformation we have

Ei ay SP S-& (175)

so that the gauge-covariant derivative of l' is de-
fined to be

V„/' = (8„+igB„x)l",
where B„xl = [B„,l ]. The commutator

igB,„=[s, +igB„s„+igB„]

(176)

(177)

transforms homogeneously under a gauge trans-
formation

B „-SB „S (178)

and as a second-rank tensor under general coor-
dinate transformations. With these field quantities
we are able to construct a Lagrangian 2„,„, which
reduces to the Einstein Lagrangian for gravity
when no matter is present, "

where

Weyl matter y

(180)

and where, for example, we might let

l 2 „„,= g(if"V, + m)g (181)

with f =det(l").
We observe that the terms containing derivatives

in 2w,„,are linear in the field B,—a suggestive
feature in view of our previous discussion. How-
ever, the quadratic term in B, eliminates the
possibility of regarding weyl as a pseudoquantum
field theory for a classical field l"'. But, regard-
less of this consideration, the fact that l" is nec-
essarily classical in part leads us to consider
quantizing vierbein gravity in a manner which is
based on the pseudoquantization procedure de-
scribed above. Remembering that a successful
perturbation theory requires the perturbation to
be around known solutions we introduce a quadratic
Lagrangian term via

The local nature of the transformation requires the
introduction of a gauge field

B~b Bb~

2 = 2 + (2 —z ) = r, + z,.„,
where

Zo = -4 i Tr(B„',1'y'+ ig [B„Bb]y'y~)

(182)

(183)
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(184)

Our plan is to follow the pseudoquantization pro-
cedure for the "free" part of the Lagrangian Zp.
Therefore we will (i}choose a particular coordi-
nate system (harmonic coordinates) and a par-
ticular gauge, the "l,orentz" gauge, O'B„=O, (ii)
establish equal-time commutation relations, (iii)
define a set of eigenstates of l", and (iv} proceed
to calculate quantum corrections in perturbation
theory.

The equations of motion for the "free" Lagran-
gian Zp are

eugab
7

and choose harmonic coordinates

(187)

~ra 1 ga~ ~a T
2 0'T (188)

The Green's function associated with Eq. (185) is
4

(I ca~ac icaqac}+ 2g (qaaBca qacBca

-q"B"'+q"B" )a= 0. (186)

We work in the gravitational equivalent of the
Lorentz gauge of electrodynamics,

gcb 8 gcb 0
b b (185)

where
(189)

k k,q~, + k k,q~,a... (q) = q (qq, qq,..q,,..—q..,q
k k,q„+k k,q„

ky go pgeU+ g&0$8p goegptf k2 (190)

In order to relate the above Green's function to a
time-ordered product of the quantum fields it is
first necessary to introduce a set of coherent
states,

~
L&, which are eigenstates of l":

I"'(x)
~

L& = L "(x)
~
L&, (191)

where I."(x) is a c-number function of x. In par-
ticular, we define ~q& to satisfy

I-~q&=q" ~q&, (192)

where g"' is the constant I.orentz metric tensor
of special relativity. Given a state ~L& we define
the field

)WC )Qd L PQ
L (193)

This field corresponds to the quantum part of I"'
and when applied to the purely classical state

~
L)

has the eigenvalue zero.
We now make the identification

iG, (x, y) ={L
~
T(B,y(x), l (y)}

~

L&. (194)

If we desire to calculate quantum corrections to
l =q we choose ~L&=~q&. (It should be noted that
G,z is independent of the choice of ~L& as we
have defined it. ) Because l~ (y) is sharp on ~L)
we find that the right side of Eq. (194) becomes

iG,q (x, y) = e(y, —x,) [l ( y), B,q(x)] (195)

up to a functional 5 function. From the form of
p we see that the commutator is not zero. It is
fully determined by an equal-time commutation

relation of l„and B,~ (which by the way is the
only nonzero equal-time commutator if the canon-
ical procedure is followed), the equations of mo-
tion, and the requirement that it be zero at space-
like distances. The "retarded" form of G f pg

fixes the integration contour around poles in Eq.
(192). The other nonzero Green's function in the
free Lagrangian model specified by Zp is

iH'" (x, y) = (L
~

T(l~"(x), lf(y)}
~
L&. (196)

It is nonzero owing to the presence of the [B„,B„]
term in Sp We shall show in the next section that
it is a principal-value propagator rather than a
Feynrnan propagator. In coordinate space this re-
sults in H "'~ being the sum of the advanced and
retarded propagators. As a result our model is
equivalent to an action-at-a-distance theory in
some sectors.

The classical part of l„, is the solution of the
classical linearized field equations with appro-
priate rnatter sources. The linearized field equa-
tions are derived from a Lagrangian consisting of
Z, plus matter terms. (Note that the form of Zc is
obtained by substituting isa ~ua+ "ua n ~%eyly ex-
panding, and keeping quadratic terms. ) Thus the
class of possible background metrics is restric-
ted.

A simplification occurs in perturbation theory
when the classical part of /„ is g„. In this case
(2„„,—&,}

~

q&=0 when Zc and Z„„,are expressed
in terms of asymptotic fields.
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V. PRINCIPAL-VALUE PROPAGATORS AND ACTION

AT A DISTANCE

In this section we shall show that certain yro-
pagators, in field theories where the yseudoquan-
tization procedure has been followed, are princi-
pal-value propagators (i.e. , the sum of the ad-
vanced and retarded Qreen's functions in coordi-
nate space) rather than Feynman propagators.
%e also describe a quantum field theory for
action-at-a-distance electrodynamics which com-
pletes the program initiated by Schwarzschild,
Tetrode, and Fokker. '4

To illustrate the origin of the principal-value
propagator we return to the scalar field model of

Eq. (103}which described a classical field, Q, (»).
We introduce an interaction term

X.q, t= — d z ~ X fgI)2 z (19'i)

(where X is a constant), which destroys the purely
classical nature of P, . Suppose we consider the
Green's function

2G(» y) =&0
l f'(e2(»)e. (y}}l» (198)

which would be zero if I.„,were not present. In
terms of in-fields we have

where the vacuum states,
l
0) and (0 l, are defined

as in Eqs. (120) and (122). From the definition of
the vacuum we find (dropping "in" labels}

iA,
iG(», y) = 2" d'e(ol f'(e.(»)e2(y}4 '(')) lo&,

(200)

which becomes

—jA. 8
&G(» y)= e(»(&-y2) 2 &(»-y)

2 Bm
(201}

2e(». —y, )&(»- y}=
( ), I

we see that

- f44 (r-y)X g (203)

with

4
a(»- y)=-i, 8(k'- m2)e(u, )e "'"2'. --

2r'
(202}

Using

where

1
(12'- m')' 2 (u2 m'+2e)2 (y2 m2

(205)

The form of 6 is consistent with the equations of
motion:

(0+ m )$2+ X $2 = 0,
P+ m') &2 = 54(» —y) .

(208)

(207)

The appearance of the principal-value dipole

proyagator rather than the Feynman dipole propa-
gator in Eg. (204) is useful because it eliminates
certain unitarity problems associated with indefi-
nite-metric fields. However, depending on the
model under consideration, it could lead to diffi-
culties with causality. To illustrate the manner in
which unitarity problems are resolved, consider
the interaction of the P, dipole field with a scalar
quantum field f with

(208)

Suppose we consider the subset of in and out states
containing arbitrary numbers of g particles but no

or f2 particles. These states have positive
metric. If one could systematically exclude indefi-
nite-metric fIF}, and (t), particles from physical
states one would avoid negative yrobabilities and

other problems. But the sum over states in a
unitarity sum would normally include states with

particles if the Q, field had Feynman propaga-
tors. In the case of principal-value proyagators,
no intermediate states with Q, particles occur,
since the pole term is not present. The interaction
mediated by the Q, field is a form of action at a
distance and Q, is properly described hy the phrase
adjunct field, coined by Feynman and Wheeler. '
A more detailed discussion of the unitarity question
is given in Refs. 'l and 8. In those articles a. di-
pole gluon model for quark confinement was pro-
posed which introduced principal-value yropaga-
tors in an ad hoc manner to resolve unitarity
problems. It was yointed out that causality prob-
lems did not necessarily exist in those models
because the non-Abelian dipole gluons were con-
fined for the same reason as the quarks so that-
at the worst —there would be unobservable causa-
lity violations at distances of the order of hadron
dimensions.

The pseudoquantization procedure may be used
to construct a quantum field-theoretic version of
action-at-a-distance electrodynamics. Consider
the Lagrangian

G(X S g' p '~'~r )')

(2»)4 (y2 m2)2

(204)

, F""(S„A„--.s}A,' + F-F.„-
+ g(i 0 eA —m, )y-. (209)
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We define the momentum

M
0 it (210)

&'"'"(*,v)=(& T();l.(*))';,.(v) f& «';. (&)] I)
(218)

Going to the transverse gauge as in Sec. IV, we
define the equal-time commutation relation

[ll,(x, t), A, (y, t)]=i6';;(x-y). (211)

Suppose we neglect interaction terms in S for the
moment and choose F„„to be an observable classi-
cal field (as it is up to quantum corrections which
we neglect) and A, to be unobservable (as it is be-
cause it is not gauge invariant). Then we follow
our pseudoquantization procedure for

—,
' F'"(s„A, s„A„)+,' F""F,-„.

In particular, we define a vacuum such that

F.„)0&=0, A. ~o&~0,

(212)

(213)

&0~A. =0, &O~F.„~0.
Then

iG..(x, y) =&0~ T(A„(x)A.(y))~0&

(214)

(215)

would be zero were it not for F„„F""in No. In
terms of appropriate in-fields it becomes

2iG„„(x,y)= d'z(8(x, —y,)8(y, -z,)

+ 8 (y, x,)8(x, —z,})

x [A „(x},F „(z)][A,„(y),F„z(z)].

(216)

Note that we are treating F,„F""in o as an inter-
action term. The structure of G,„(x,y) is the same
as that of Eq. (200) so we can conclude that

d4k
G„„(x,y) = g,„),-P -r e "'* )') (217)

in the Feynman gauge. Thus the action-at-a-dis-
tance interaction follows from the pseudoquantiza-
tion of electrodynamics. The classical character
of F,„ is lost owing to quantum corrections re-
sulting from the presence of O'„A" in the I,agran-
glan.

The example we have just studied has a certain
parallel in the vierbein model of gravitation studied
in the last section. The forms of the Lagrangian
and commutation relations are similar. As a re-
sult it is clear that

with

&„,=-' g»[&„...ft„;,]r'r"
is a principal-value propagator. Therefore we
have constructed an action-at-a-distance version
of quantum gravity. Qur motivation was to take
account of the classical part of /"' in a way which
did not divorce it fram the quantum part to which
it is intimately related.

VI. CONCLUSION

We have seen that an alternative to Fock-space
quantization exists for a class of field theories
which have Lagrangian gradient terms which are
linear in field variables. A method was also pro-
posed for constructing Lagrangians of that type
from classical Lagrangians with gradient terms
which are quadratic in field variables. To some
extent this process has a parallel in the passage
from Klein-Gordon field Lagrangians which are
quadratic in derivatives to Dirac field Lagrangians
which are linear in derivatives.

The quantization procedure we have outlined is
canonical so far as the fields are concerned. We
do, however, make a choice of vacuum states
which differs from the usual choice. As a result
we have found free propagators which were either
retarded, or half-advanced and half-retarded.
The choice of vacuum state does not in itself pre-
clude the appearance of Feynman propagators. If
one has a good reason to modify the canonical
commutation relations then it is possible to obtain
Feynman propagators. " The procedure we have
outlined has, therefore, a greater generality than
the particular class of models studied in the pres-
ent work. It can enable one to embed a classical
field theory in a quantum field theory in such a
way as to maintain its classical character. It can
also be applied to study classical field theories
which obtain quantum corrections. Finally it can
be applied in order to obtain a fully second-quan-
tized field theory (cf. Ref. 15).
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