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Numerical solutions of the Lorentz-Dirac equation are presented for the scattering of a spinless point

particle in the static Coulomb field of a fixed point of opposite charge. Within the framework of classical

electrodynamics, radiation reaction has thus been included exactly. For any initial energy, there is a

minimum impact parameter below which the particle is captured. The classical capture cross section is

readily found and is presented here as a function of incident energy. Scattering cross sections for a fixed initial

energy {~10mc ) are also presented and compared with those for relativistic Rutherford scattering. Loss of
energy and angular momentum to radiation is calculated, and the total energy (particle plus radiation) is found

to be accurately conserved in all cases not involving capture. Radiation reaction is seen frequently to cause the

projectile to accelerate a~ay from the attractive scattering center.

I. INTRODUCTION

The pursuit of a satisfactory equation of motion
which describes the trajectories of charged parti-
cles in classical electrodynamics when the effect
of radiation is included, and which may provide
basic insight into related problems in quantum
electrodynamics, is one of continuing importance
and interest. ' Such an equation can be tested by
seeing how its solutions behave for the simplest
problems, those involving two particles colliding
along a line or in a plane, interacting through
their own fields. In this way, we have been able
to show that some of the proposed equations which
reduce to the Lorentz equation for two like charges
moving directly toward each other give apparently
unphysical results. '~ In other recent papers, ""
we have presented numerical solutions to the
problem of two charges, like and unlike, colliding
head-on under their retarded fields, with radia-
tion-reaction effects included as prescribed by the
Lore ntz -Dirac equation. "'" For like charges
(repulsive case) thrown together from large dis-
tances even at highly relativistic speeds (up to

v& =0.99c), trajectories which are physically rea-
sonable are obtained. The colliding particles al-
ways lose a small fraction of their kinetic energy
during the collision to radiation, and compared
with computations without radiation, the maximum
accelerations are smaller and the distances of
closest approach larger. In particular, when one
of the particles is infinitely massive, the other
particle loses an amount of kinetic energy equal to
the energy radiated during collision. However,
when unlike charges (attractive case) are released
from rest, both of like mass or one of infinite
mass (say with a positive charge), we find that no

physical solutions exist with finite initial values of
position, energy, and acceleration. This result
may be ascribed to the nonlocality of the Lorentz-
Dirac equation" and the infinite field strength of a

point particle at its position.
It is of considerable interest to see what happens

for scattering with a finfte initial impact parame-
ter br from a fixed point charge, and to study the
results as the ratio of bl to the classical electron
radius approaches zero. In this paper then,
we present numerical solutions of the Lorentz-
Dirac equation for the scattering of a spinless
point particle in the static Coulomb field of a fixed
point of opposite charge. In Sec. II, we first pre-
sent the two-dimensional, third-order differ ential
equations which must be solved, along with a brief
description of the numerical approach. In Sec. III,
we present the results at capture threshold, i.e.,
trajectories for which the final particle energy is
its rest-mass energy. Comparisons of calculated
trajectories both with and without radiation reac-
tion are given. Then (Sec. IV) we present scatter-
ing cross sections for initial kinetic energies of
550 MeV and compare them with results of rela-
tivistic Rutherford scattering, in which radiation
reaction is neglected. Next (Sec. V) we mention
some unusual trajectory behavior especially for
small impact parameter br, wherein the projectile
early in its trajectory is seen to have an accelera-
tion component directed away from the attractive
center even at very large separations. Conclu-
sions and a brief discussion of the significance of
these results follow (Sec. VI). We have investi-
gated solutions of the Lorentz-Dirac equation with
emphasis on their behavior in the limits of large
and small impact parameter.

II. THE PROBLEM AND NUMERICAL METHOD

Numerical investigations of the scattering of two
unlike charges of equal mass with nonzero impact
parameter are formidable. Both acceleration and
velocity parts of retarded magnetic and retarded
electric fields must be considered. %hen the
Lorentz-Dirac equation is used to include the ef-
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fects of radiation, the additional problem of se-
lecting out a physical solution by imposing the
usual condition that the acceleration

~
a~ -0 as

t-+ ~ seems to make the problem even more in-
tractable. Fortunately, as we have seen in the
head-on collisions of like charges, essential fea-
tures of the collision can be obtained when one of
the particles is infinitely massive so that the light
particle moves in the static field of the other. '
The boundary condition is easily met by integrating
backwards in time, and besides, confidence in the
numerical solution can be obtained by comparing
the kinetic energy lost by the incident particle with
the computed (Larmor) energy radiated during the
collision.

Thus, we consider here collisions of two unlike
charges: one of finite mass, an electron say, and
the other a very massive "proton, "where there is a
finite impact parameter. In Sec. III, our "starting"
conditions guarantee that the incident particle just
escapes to infinity so that capture cross sections
may be calculated. In Sec. IV, the starting condi-
tions are chosen so as to effectively vary the im-
pact parameter b, for a constant initial-particle
kinetic energy of 550 MeV (=102mc2).

The Lorentz-Dirac equation for a particle of
charge e and rest mass m is

ma" = eF""u„+—',e2(da "/dr +a"a„u ),
where F"" is the external (static) field of the mas-
sive particle and r, u" =—dx "/dr, and a" = du "/dr
are the proper time, the four-velocity, and the
four-acceleration, respectively (and c = 1). Taking
the x-y plane to be the plane of the collision (and
with e=m= 1, so that the unit of distance is
r, =e'/mc', the classical electron radius, and the
unit of time is r, /c) the equation of motion be-
comes

da'a'=I'~u +-' +a'g'
dv

(3)

where a2= a"a„=(a2)2 —(a)2, F2"u„=y E v, ad2y/dr
= y a 'v. Integrating with respect to & between &,
and ~„and using yd&=dt, we obtain

2 ~ 2

hy ~,
2= E 'vdt+ 2 da'

1

ferential equations of third order.
The calculations were made in double precision

on an IBM 360-65 computer using a Hamming
predictor-corrector integration method essentially
as previously described and found reliable. ""
The "starting" conditions were typically (at t= 0)

x/ = 1000, y/ b/ (——variable),

xf vf y $f 0

x/ = (y 'Eg/, y/ = (y 'E2)/ .
The vf was adjusted to achieve the objectives
treated in Secs. III and IV. The given if and yf are
the Lorentz (no radiation reaction) values. The
integration was carried backwards in time to t =t,
sufficiently early so that preacceleration effects
were then negligible (see Sec. V). To obtain the
total scattering angle, both ends (t =t/ -—0 to t=+~
and t = -~ to t = t &) were fitted to Lorentz scattering.
The corrected (initial) impact parameter b, (t = -~}
is obtained from b, (t= t,) by assuming constant
angular momentum and constant total particle en-
ergy between these times. See also the Appendix
for a treatment of relativistic inverse-square or-
bits and a derivation of the relativistic Rutherford
scattering formula.

The test of energy conservation, which served as
a check on the computational reliability, was as
follows. Letting p, =0 in Eq. (1), we obtain

x =--'y 'E,(1+y2y2)+-'y 2E„xy

-3y2(xx. +jy')x+ -,
2 y 'x,

y = --' y 'E (1+y'x') + —' y 'E @
-3y (xx+y'y')y'+ —y 'y,

where the electric field components are

(2a)

(2b)

2

+3 a dt.
1

Now the Larmor power is just P=--3a, and
f12 E vdt = f,' E 'dx = 4(1) —4(2), where 4(r) is the
electrostatic potential energy. Letting the limits
2 and 1 correspond to t, =+~ and t,.=t &0, respec-
tively, we have, after rearranging terms slightly,

xE=-— E=-—
X +3 & 3i +32

with

(x2 +y 2}I/ 2

(1 02) 1/2

(x2+y2)1/2

and dots over a variable indicate differentiation
with respect to ordinary time t. The equations are
obviously a set of two simultaneous ordinary dif-

y(t) -y( )=E,~+2(y a v), —4(r), (5)

where we have used 4(~) =0= —',(y'a v)„. E,~= f, —

Pdt represents the energy radiated from t(&0) to
t = ~, but in practice the upper limit is taken to be
t=tf =0, assuming justifiably that the energy radi-
ated between t =0 and t = ~ is negligible. The term
—,'y4(a v), is, of course, the Schott energy. Com-
puted values of the left-hand side, the particle en-
ergy lost, invariably agreed well with those of the
right-hand side whenever calculated. At times
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from 4.71 to 3.43 X 10', the final angular momen-

tum, I.„, ranges from 4.46 to 0.223, and the

change -4L=-LI -L~ ranges from 0.252 to 3.43
&& 10'. Figure 2 shows the dependence of L„L~,
and -~L on the loss in particle energy. There is
a minimum in L~ of =3.5 for -4@=0.11 at which

br=7.3 and r „=3.2. Both LI and -4L appear to
increase without bounds as br decreases to zero.
Quantum mechanically, the smallest value of the
(orbital) angular momentum is L, = 5, which in our
units is the reciprocal of the fine-structure con-
stant (n=e2/cK), i.e., =137.04. The Compton
wavelength for an electron is K/mac which has the

same numerical value.
Our computer calculations indicate that at cap-

ture threshold, as bI is jncreased steadily above
-1, the Lorentz-Dirac equation predicts physically
reasonable solutions: I ess and less energy is lost
to radiation, the initial angular momentum in-
creases (after a minimum of =3.5), the loss in

angular momentum decreases towards zero, and

the particle scatters through increasingly larger
angles. In short, the behavior of the Lorentz-
Dirac equation approaches that of the Lorentz
equation in this limit, as is expected. However,
when br is effectively decreased below -1, the
threshold scattering angle decreases, while the
necessary incident energy and the energy radiated,
as well as the initial angular momentum and its
change, all increase dramatically, apparently
without limit. These results are consistent with
and approach those found for head-on collisions
with b~=0, where there are no physical solutions
for finite initial values. "

Y

"4

-2

FIG. 3. Scattering curves for an incident-particle
energy, angular momentum, and impact parameter of
&1=1.558, LI=4.309, br=3.604, respectively; (a) with-
out radiation reaction, for which yz= y» Lz-—L» 1 mfa
=2.581, and 8=40.58 and (b) with radiation reaction,
for which yz=l, Lz=l.788, ~m&, =1.837 (&1), and 9
=120.83 . The y axis is chosen as the symmetry axis
for curve a.

4-

-4 -2 0

FIG. 4. Similar to Fig. 3, but pl=12.929 LI 16.844,

bi= 1.307; (a) without radiation reaction for which yz
=p» L&=L» rmin=1. 229 and 8= 7.16', and (b) with ra-
diation reaction, for which yz= 1, Lz ——0.894, em&,

=0.693 (&1) and g=76.39 .

The effects of radiation trajectories both without

radiation reaction (curve a) and with(curve b) a,re
shown in Figs. 3 and 4 for the typical case of
r „&1and r „&1, respectively. The y axis is
chosen as the axis of symmetry for curve a in
each figure. 'The effects of radiation as predicted
by the Lorentz-Dirac equation make physical
sense. Compared with computations without radi-
ation Teaction, the distances of closest approach
are smaller, the maximum accelerations and the
scattering angles are larger.

IV. SCATTERING CROSS SECTIONS AT FIXED ENERGY

'The scattering of a particle of fixed initial ener-
gy as a function of impact parameter bI is now

considered. We have chosen a value of yz= 1077.32,
which is equivalent to an initial particle kinetic en-
ergy of yi —1= 1076.32= 550 MeV for a particle
with the rest mass of an electron. In this case,
with a starting value of xz = 1000 (at f = 0) and with

gf bf an iterative p rocedure is used to vary
xf = v~ (y& = 0) until the desired initial energy is ob-
tained. At the lower values of b„ the computations
once again had to be extended to larger separa-
tions, but to a lesser extent than for high energies
at threshold (Sec. III, see also Sec. V). We have
computed results for which the impact parameter
ranged from 60 down to a minimum of 0.4255 at
capture threshold. The corresponding scattering
angle was found to range from 1.78 && 10 ' degrees
to a maximum of 48.82 degrees. Figure 5 shows
the relation between br and 8, with an insert cov-
ering the range in 8 from 25' to the maximum of
48.82'. A graph of do/dQ=(b/sin8)ldbld81 vs 8,
obtained by numerical differentiation of br(8), is
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FIG. 7. The particle energy lost, -Ay (or the energy
radiated during collision) and the distance of closest
approach, x &„ as a function of the impact parameter,
6„ for initial particle kinetic energies of 550 MeV.
For relatively large bI, rm fg is barely smaller than bI
corresponding to small scattering angles. For bz ——1.45,
x~&„-—1.00 and -Ay —"-790, while for bI-—.1.00, r~~ —-0.67

and -4y = 960. At capture threshold b&= 0.4255 with xm&n

= 0.2776. See also I ig. 8.

For the ranges previously cited, the initial an-

gular momentum, LI, ranges from 6.47 & 10' to
458.4, the final angular momentum, L~, ranges
from 6.46 & 10' to 0.42, and the loss in angular

io0 (o(

FIG. 9. Plots of LI, Lz, and -+L —= Ls-Lz, the
initial, final, and loss in angular momentum, respec-
tively, vs the impact parameter, b&, for an initial
particle kinetic energy of 550 MeV. There is a maxi-
mum loss in angular momentum of -DL = 1.35 x 103

for bI —-1.85, for which rmin —-«.35, -+L
=0.11 .

Q2-

(0
e(de�)

F/G. 8. The final-particle energy, -}z, as a function of
the scattering angle, g, for an initial particle kinetic
ener~ of yi- « = «076.32 = 550 MeV. Approximately one
rest mg. ss is radiated away when bI=44, for which 0

=-2.4x10 deg. All of the incident kinetic energy is ra-
diated avray when bI=0.4255, for which 6=48.82 .

momentum, -~L -=L~ —L~, ranges from 55.92 to
457.9. In Fig. 9 we display graphs of Ll, L~, and
-4L vs the impact parameter, bI. There is a
maximum in the loss, -4L, of =1.35 && 10 for
which bI= 1.85, ~ „=1.35, -Ay= 620, and 8
= 0.11'.

The property that the I.orentz-Dirac equation
reverts to the Lorentz equation when the impact
parameter increases recurs here for the case of
constant initial energy of the incident particle.
That the initial angular momentum should increase
and its loss should decrease as b, increases also
makes physical sense. Physical solutions appar-
ently exist right down to the capture threshold
value of bI= 0.4255, but rather large amounts of
energy are lost due to radiation (for example,
energy & 100 rest masses is radiated for bz~ 4.7},
and trajectories often display unexpected behavior.
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V. UNEXPECTED TRAJECTORY BEHAVIOR

The first trajectories computed were those cor-
responding to the relatively large impact parame-
ter b, & 3 (bz& 35) for the case of y~= 1. These
trajectories behaved quite reasonably: Relatively
little energy was radiated, the computations could

be terminated when the scattered particle was as
far away (at I =t, &0) as .it was originally (at t=t&
= 0), namely approximately 1000 units. In addi-

tion, the sign of a v (which was monitored
throughout the collision, as well as its value)
changed from positive to negative shortly before
the collision indicating that the component of the
acceleration, a, was initially in the direction of
the velocity until shortly before the collision.
However, as the impact parameter was effectively
decreased, it was noted that a v changed sign at
increasingly earlier times. Furthermore, agree-
ment between the particle energy lost and the en-

ergy radiated could not be obtained until the inte-
gration was continued to include such times. Yet
another peculiar behavior was noted in the ratio
of ~p ~, the time rate of change of momentum

(p=yv), to the field
~
E~. When there is no radi-

ation reaction, the equation of motion is, of
course, the Lorent equation, which in our units is"

p=E. (7)

We can note the deviation from relativistic Ruther-
ford scattering (as predicted by the Lorentz equa-
tion) by observing the ratio R—:

~ p ~
/~ E

~

during the
course of the collision. What was noted is as fol-
lows.

We describe first the collisions at capture
threshold for which @~=1. 'The ratio R starts
close to 1 at tr, increases to a maximum, then
drops through 1 just before the point of closest
approach (r=r „at, say, t=f, „), reaches a mini-
mum shortly afterwards, and then gradually in-
creases to 1 again as f- ~. (It is notable that the
maximum rate of radiation occurs at or very near
to the point where R passes through 1 for all the
cases computed; the sign of a v always changes
before I „.) For values of bz as low as 0.2, the
minimum in R that occurs just after t „is R
= 0.12.

However, the behavior in 8 for t & t „is much
more dramatic. When bI has decreased to «3, two
peaks for R& 1 develop. The first, closest to t „
eventually increases apparently without limit as
br is decreased. The second peak in R «1.3 occurs
before a v changes sign and apparently decreases
as br is decreased. The intermediate minimum,
which eventually dips even below 1, apparently oc-
curs when a v changes sign. This sign change oc-
curs earlier and earlier as br is decreased. As

bI decreases from 50 to 0,2, the primary peak in

R increases from about 1 to about 2 x 10" and oc-
curs before t „with distances to r „increasing
from very small values to about 10' before col-
lision, with a v eventually changing sign at least
an order of magnitude farther away. The second-
ary peak becomes lost in the accuracy of the cal-
culation and in any event seems to play no impor-
tant role in the calculations. Meanwhile, the peak
rate of radiation emitted increases from «10 ' to
~ 10'. This peculiar behavior, which appears ever
less physical as br is made smaller, is consistent
with our recently published results for bl = 0,' for
which there are no physical solutions with finite
initial values. It seems to herald the breakdown
of the Lorentz-Dirac equation as br becomes less
than approximately one classical electron radius.

The behavior when the initial particle kinetic en-
ergy is 550 MeV is comparable, but less drama-
tic because there is a minimum in br=0. 4255 be-
low which there is capture. 'The largest value of

b~ was =60 units. Even for this value the mini-
mum value of R just after t „was =0.10. As

above, the ratio passed through 1 at or near the
time of peak rate of radiation. 'This minimum in
R dipped to a value &6 x 10 ' for b, = 2.5 and then
increased to =0.23 for the lowest value of b,
=0.4255. The primary peak in R ranged from
«4 x 10' for br = 60 to =2.5 x 10' for br «1.5 and

occurred at distances x & 1 && 10' before the col-
lision. The secondary peak in R ~ 1.1 was notice-
able only for the larger values of bI and occurred
beyond where a.v changes sign, which was typi-
cally an order of magnitude beyond the primary
peak in R. The peculiar behavior noted here
seems to be indicating a breaking down of the
Lorentz-Dirac equation even for values of br
somewhat larger than unity.

VI. DISCUSSION AND CONCLUSIONS

The numerical solutions of the Lorentz-Dirac
equation to treat the scattering of a spinless point
particle in the static electric field of an oppositely
charged massive point including radiation effects
that we have presented here exhibit some very at-
tractive yet perplexing features. We have given
solutions for a fixed final particle energy (yz = 1)
at capture threshold and for a fixed initial particle
kinetic energy of 550 MeV (yz= 1077.32). In the
first case, physical solutions exist apparently for
all br& 0, but in the second case there is a mini-
mum of b~= 0.4255 below which capture ensues. A
satisfying confirmation of numerical accuracy was
that the loss in particle energy and the integrated
Larmor energy radiated during the collision were
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in excellent agreement for all the computations.
Furthermore, in both instances, the solutions
approach those of the Lorentz equation (no radia-
tion reaction) in the limit of large impact param-
eters, and for the somewhat larger values of bI,
the solutions were physically very reasonable, as
evidenced by the amount of energy lost to radia-
tion, the behavior of the angular momentum, and
its loss to radiation and the angle scattered
through. Typical trajectories for particles having
the same initial conditions with radiation included
make physical sense when compared with those
without radiation.

However, difficulties arise when the impact pa-
rameter is decreased to its limit. For the second
case of a fixed initial-particle energy, we have
noted the marked disagreement between the cal-
culated differential scattering cross section with
those of the relativistic Rutherford results. We
have also seen the strange behavior in the increase
in the ratio

~ p ~
/~ E

~
before the collision preceded

by the sign change in a v at increasingly large
distances from the scattering center. This unusu-
al behavior is even more pronounced for the first
case of fixed final energy, where apparently br
can be decreased to zero. In this limit, the scat-
tering angles decrease, but the incident energy
and energy radiated, the initial angular momen-
tum and its change, the peak ratio ~p~/~E~, the
distance where it occurs, and the greater distance
where a v changes sign (with the undesirable im-
plication that the particle accelerates away from
the attractive center even at very large distances)
all increase with apparently no limit. If the cri-
terion for breakdown of the Lorentz-Dirac equation
is br for which about one electron mass is radiated
away, this occurs for bz= 2.9 in the first case and
for a somewhat large value of b~= 44 in the second
case. While the above-mentioned features are un-
desirable, they are consistent with our results
found previously that no physical solutions e.'ist
in the attractive case for finite initial conditions
in distance, energy, and acceleration when br=0.
The difficulty there occurs when a singularity
actually lies on the true trajectory. According to
these extended results for the Lorentz-Dirac equa-
tion, the particle "knows" well ahead of time of a
singularity directly on, or even nearly on the
track. Certainly, according to quantum mechanics,
it is impossible to prepare a path with an impact
parameter precisely zero. However, classically,
it would be considerably more satisfying if these
difficulties did not arise. One suspects that these
U~desirable aspects can be eliminated by effective-

&@, s."..gular field at the point source,
for example, by considering only effectively ex-
tended charges '""
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APPENDIX: RELATIVISTIC RUTHERFORD SCATTERING

AND DIFFERENTIAL SCATTERING CROSS-SECTION

FORMULA

The relativistic differential equation for the or-
bit of a spinless particle of charge (-e say) in the
fixed Coulomb static field due to a massive parti-
cle of opposite charge (+e) is" (with e = c = m = 1)

d s
+ A2g =D,

dp
(Al)

where s =—1/r, D= W/L', W=y —1/r=y, =yr is the
total particle energy (a constant of the motion),
L = yr'cj = ylvibl is the orbital angular momentum
of the particle (also a constant of the motion}, and
X'=1 —1/L', (L& 1). The solution of Eq. (Al),
when the line from which the polar angle p is
measured is such that p=0 at a perihelion, is

1 Ds =- —= A cos(Xy)+ —,, (A2)

where A= (W'- X')'~'/LX'. When L( 1, the solu-
tion is

s =——=A cosh(Xy) ——1 D
r X~ ' (A2}

where now X' = 1/L ' —1 and A = (W '+ X')' '/LX'.
Equation (A2) or (A3) gives the additional scatter-
ing at the ends of the computation as mentioned in
Sec. II. The asymptotic directions are given by

cos(A.n) = — or n = a —cos '
AX2 (A4)

To derive the relativistic Rutherford scattering
formula, we can greatly simplify matters when
I » 1 so that X= l. (Recall that for the case of
initial kinetic energies of 550 MeV, the initial
angular momentum ranged from a minimum of
458.4 to z 6.5 x 10'.} The scattering angle, 8, is
given by 8=2n-v or 8/2=n-v/2, where, to a
very good approximation,

L(W& 1)&~2 '

Then tan (8/2) = cotn = W/[-I. '(W —1) —W ] and
L = (W' —1)'~'br Defining dn.= 2vbzdbr with dA= 2v
sin 8d8, and proceeding as in the usual nonrelativ-
istic case, results in the relativistic Rutherford
scattering formula,
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dA 4(W —1)' sin'( —' e) (A6)
energy in electron rest mass units, If W» 1, Rs
is the case here, then

in units of (e'm 'c ')' per sr, and W is t&e total
der 1 1
dQ 4W' sin'(~ 8)

'

Tse Chin Mo and C. H. Papas, Phys. Rev. D 4, f566
(1971).

W. B. Bonnor, Proc. R. Soc. London A337, 591 (1974).
J. C. Herrera, Phys. Rev. D 15, 453 (1977).

4M. Sorg, Z. Naturforsch. 29A, 1671 (1974).
M. Sorg, Z. Naturforsch. 31A, 1133 (1976).
J. Huschilt, W. E. Baylis, D. Leiter, and G. Szamosi,
Phys. Rev. D 7, 2844 (1973).
J. Huschilt and W. E. Baylis, Phys. Rev. D 9, 2479
(1g74).

W. E. Baylis and J. Huschilt (unpublished).
~J. Huschilt and W. E. Baylis, Phys. Rev. D 13, 3256

(1976).
W. E. Baylis and J. HuschQt, Phys. Rev. D 13, 3262
(1976).

~~P. A. M. Dirac, Proc. R. Soc. London A167, 148
(1938).
F. Rohrlich, Classical Charged Particles (Addison-
Wesley, Reading, Mass. , 1965).

3F. Rohrlich, in Physical Reality and Mathematical
Description, edited by C. P. Enz and J. Mehra (Remodel,
Boston, Mass. , 1974), p. 387.
J. D. Jackson, Classical EEectrodynamics, second
edition (Wiley, New York, 1975), p. 660.

5R. D. Sard, Relativistic Mechanics (Benjamin, New
York, 1970), p. 189.

~6See for example J. Petzold and M. Sorg, Z. Phys.
A283, 207 (1/77).

~TSee also W. Heudorfer and M. Sorg, Z. Naturforsch.
32A, 685 (1977), and references therein.


