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In the gravitational three-body problem there are special configurations that allow exact solutions. They

are the equilateral-triangle and collinear configurations. In this paper I show that exact solutions for these

special configurations and others as well exist for forces other than gravitational. The interactions include

"scalar" forces or those derived from a world scalar potential as well as Coulomb or "vector" forces. In the

formalism used for this classical treatment the aspects emphasized are those which can be carried over to

quantum mechanics. An application to an atomic system yields a reasonable estimate of the energy levels for

helium-like atoms.

INl RODUCTION

The simplest known solutions to the three-body
problem are the Lagrange equilateral triangle and

the Euler collinear configurations. These solu-
tions require very special initial conditions.
Nevertheless, there is evidence in our solar sys-
tem for the Lagrange solution. This is the equil-
ateral triangle consisting of the sun, Jupiter, and

a cluster of asteroids sharing Jupiter's orbit
known as the Trojan asteroids. ' The aim of this
paper is to explore the possibility that such
special configurations may exist for types of for-
ces other than gravitational. This paper deals pri-
marily with the classical aspects of the problem. In
particular, I demonstrate exact equilateral-triangle
and general triangle solutions for forces that can
be derived from a world scalar potential. These
forces are like gravity except that they are mass
independent. For short, I call these "scalar"
forces. I also show that these forces as well as
Coulomb or "vector" forces allow exact collinear
solutions. The existence of these "classical"
solutions is demonstrated in this paper. Their
possible generalizations to special quantum mech-
anical configurations are also discussed.

This paper is to be regarded as providing the
classical starting point of a quantum-mechanical
generalization. To this end I express the char-
acteristics of these classical solutions in terms
of the energies of the fictitious particles of rela-
tive motion. This, together with separability of
the equations of motion, provides criteria on
which to restrict quantum solutions rather than
the nonapplicable one of a special orbital configu-
ration.

The coordinates used in this paper are the rela-
tive coordinates of the three particles. This al-
lows a symmetric reduction of the three-body
problem. There have been symmetrical reduc-

tions of the three-body problem in the past. ' As
a general rule the only interaction considered in
these reductions is the gravitational interaction.
A recent example is given in Ref. 3. The sym-
metric reduction of the equations of motion for an

arbitrary potential is given in Sec. I. Section II
discusses the Hamiltonian formulation of the
three-body problem in terms of these relative
variables. Part of the presentation given there is
based on unpublished notes on the subject by
Arenstorf. ' As with the treatment of the gravita-
tional potential in Refs. 2 and 3 the equations of
motion contain the center-of-mass (c.m. ) re-
striction R=0 =R =R and yet is symmetrical in
the three variables.

In Sec. III, it is shown how the use of the rela-
tive coordinates facilitates a derivation of the
equilateral-triangle solution for the gravitational
forces. ' An adaption of this technique allows a de r-
ivation of the conditions for the collinear solution for
the gravitational force. This is presented in Sec. IV.
Section V generalizes the results of Sec. III to "scal-
ar" forces other than gravitational and Sec.VI gen-
eralizes the adaptive techniques of Sec. IV to
these scalar forces as well as the Coulomb force.
The summary includes an adaptation of these sol-
utions to a quantum system.

I. EQUATIONS OF MOTION

The Hamiltonian for a system of three mutually
interacting point particles is

H=T+V

The forces arise from action at a distance and are
assumed to be velocity independent. Hamilton's
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equation leads to

m,. r, = —V,y,, ( P,. —r, ) ) —7; y; ( P &

—r [ )

This matrix also has a zero determinant. Com-
bining (5) and (8) leads to

u, m2 +m3 -m
1 Q 1

r, —r& M u2 m 3+ml m2 Q2

i k

(2)

m~ +m2 Q

where (t}
' is the derivative of ft) with respect to its

argument. As a first integral of these equations
of motion,

3

MR = mi ri =const,

The matrix is of course not a unit matrix. This
equation is simply a restatement of (6).

The equations of motion (2) can be rewritten using
the new variables by way of (8):

i, j, k in cyclic order,

ui =r, —r, , i j, k cyclic . (4)

This can be written as

0Q1

where M=m, +m, +m, . The constant can be chosen
to be zero and the position R of the center of mass
can be taken as the origin.

The constraint R=0 can be used to eliminate one
of the coordinates, but this leads to unsymmetri-
cal equations of motion. This constraint, or in
general the c.m. condition R = 0, can be imposed
in a symmetrical way be introducing"

(IO)

where V, = V„. and

&,p„(u, ) V,p„(u, ) 'V, g„(u,)

2 m3 m 3 m
$

mmmm

These equations of motion contain the c.m. restric-
tion R = 0 and are symmetrical in the three vari-
ables. They are also independent of the nature of
the potential.

II. SYMMETRIC REDUCTION OF THE THREE-BODY
PROBLEM IN THE HAMILTONIAN FORMULATION

1
lass

0 1 r2

-1 0 r3 w

(5) the Hamiltonian (1) is written in terms of the
variables u; and u, it has the form

The matrix relating the two sets of variables is
singular. This is because the variables ui are not
independent:

Q~+Q2+Q3 =0 (6)

PPS, Q„-mgu~ri= +R.

This identity serves as an inverse of (5). With R
=0, the "inverse" of (5) is therefore

0
1r =— m 0

M
m2 mg

PPl2 Q~

Q

(8)

(The r variables are not independent either but

this is not by definition. It follows from the equa-
tion of motion. )

Now (5) cannot be inverted directly because the
matrix is singular. However, one has the identity

2

H=T+V= — ' ' ' g ' +V.
2 M i-, mi

(12)

This form contains the c.m. restriction R=O [viz. ,
(8}]as well as the restriction Q', „u,=O. Although
the variables u, are not independent, they can be
treated as independent if a Lagrange multiplier of
the form A. (u, +u, +u, } is added to this Hamiltonian
(12). The equations of motion (10) then follow
from Hamilton's equation' in terms of the canon-
ically conjugate variables u; and (P, = m, m~ u;/M.

As an alternative to the Lagrange multiplier ap-
proach of incorporating the constraint u,+Q2+u, =0,
one can construct a Hamiltonian that has the fol-
lowing properties:

(i} It is symmetrical in the relative variables
[U), u2, ug].

(ii} It yields the constraint u, +u,+ u, =O as a con-
sequence of the equations of motion

(iii) It is the Hamiltonian in the c.m. frame.

An outline of how the Hamiltonian can be obtained
from the Hamiltonian (1) is given in the Appendix.
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There it is shown that

„(P,-P, }',(P, -P,),(P. -P, )'

~ V(u„u„u, ). (13)

The equations of motion (10) are

MKU)u.+ I- p
™T

Ug

with

(19)

{P„P,}-0 ={u„u~}, {(u;)»(P }t}i-5u5». (14}

The variables (P;, u, ) are independent canonically
conjugate variables. That is, they satisfy the fun-
damental Pois son-bracket relations'

UI u2

Tu, t+ lu, l' lu, l'

Now suppose I" I

= lu I

= Iu I

= IuI (hereafter
called the equilateral condition). Then

(20)

Vp H =Up

follows the vector equations

0 5, -P2

U2
m3 mg

mi

P2 -P3
1 P —53 1

(18)

~ s ~

From this follows u, +u, +u3=o. Hence the con-
straint u, +u + u, = c, is a first integraL of tke
equation of motion. It does not need to be imjosed
as an extra condition on (I3). This is an analogous
to the situation for the original Hamiltonian (1)
with respect to the c.m. constraint. It is not im-
posed on the Hamiltonian (1). It follows as a first
integral of the equation of motion. The initial
conditions of the three-body problem lead to c, =0.
Hereafter the condition u, +u, +u, =cy 0 will be
referred to as the triangle constraint.

The second set of Hamilton's equations

V, H=-P, (I L)

when combined with (16) leads to the equations of
motion (10).

III. LAGRANGE'S EQUILATERAL-TRIANGLE SOLUTION
FOR GRAVITATIONAL INTERACTIONS

For gravitational forces, the potentials are

p&, (u ) =-—,i,j,k cyclic.K m&m~

uy
(18)

Regarding these variables as independent canonical
variables is not, as it first appears, contradicted
by the relation u, +u, +u, =0. The Hamiltonian (13)
is derived without reference to this constraint. As
mentioned above, however, it does imply the con-
straint u, +u +U3 =cy a constant vector. To see
this consider Hamilton's equation in terms of these
canonical variables. From the first set of equa-
tions

Z = , (u, + u, + u, ) = 0
tub'

(21)

Km2m3 Km3ml

lu, l lu, l

(22)

where p, , =m&m, /M (i,j, k cyclic). Of course, the
triangle constraint does not follow from (22) as it
does from (13); it must be imposed. Whereas the
separability of the equations of motion (19) that
follow from (13) is imposed by requiring the equi-
lateral condition and combining this with the de-
rived triangle constraint, the separability of the
equations of motion that follow from (22} is auto-
matic. The triangle constraint as well as the equi-
lateral condition is imposed on the solutions. Of
course, these are the only conditions under which
(22) yields the correct equation of motion.

The Hamiltonian (22) cannot be derived from (13)
except by integrating (19}for i=1, 2, 3 under the
% =0 condition and then adding the results. In that

and Eq. (19) separates into three two-body prob-
lems. The particles revolve about the center of an
equilateral triangle. The relative motion that the
three sets of two-body equations indicate can either
be identical circles, ellipses, or parabolas and

hyperbolas for unbounded motion. For bounded

motion, the periodic motion that results will be
described as a rotating equilateral triangle with
either fixed sides or periodically varying sides.
These are Lagrange's equilateral-triangle solu-
tions. 'This condition, Z =0 is synonymous with
the Lagrange solution for the gravitational inter-
actions.

Equation (19), or more generally Eq. (10}, fol-
lows by applying Hamilton's equation to the
Hamiltonian (13). The triangle constraint follows
from the first of Hamilton's equations. 'The separ-
ability of these equations (19) is imposed by re-
quiring the equilateral condition. 'These same
separable equations can be obtained by applying
Hamilton's equation to the following separable
Hamiltonian in which the u, are regarded as inde-
pendent:
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1/2
Tf ~Kmgmp 3 ~ (23}

Hence equality of the periods requires

1 2 3 m2m3 m3ml m1m2 (24)

Such energy considerations are of importance in
discussions of the quantum analogs of the La-
grange solution for other types of interactions.

IV. EULER'S COLLINEAR SOLUTION
FOR GRAVITATIONAL INTERACTIONS

The Euler collinear solution exists if one can
find a A. and p such that u, = -Xu„u, = -pu, where
A+ p= 1. The K=0 condition characteristic of the
Lagrange equilateral triangle is not allowed for
the Euler solutions:

sense of the word it is a rewriting of the Hamil-
tonian (13). One can gain further insight into the
relation between (13) and (22) by considering the
derivation of (13}given in the Appendix. In that
derivation, the triangle constraint is not imposed
and as a consequence the resultant canonical mo-
menta 0, are independent variables. If in the de-
rivation, however, .the constraint is imposed, then
one finds 5& = m&m~u&/M [(A4) in the Appendix].
These are not independent canonical variables in

view of the triangle constraint. If one neverthe-
less treats them as independent then the resultant
Hamiltonian will be (22). As should be expected,
the equations of motion (19) do not follow from
(22), unless the triangle constraint is reinstated
by way of a Lagrange multiplier. The exception
to this is the Lagrange solution Z = 0.

The utility of separable Hamiltonians such as
(22) lies in their possible applications for approxi-
mate solutions to the quantum three-body problem.
Separable Hamiltonians would lead to separable
Schrodinger equations. There remains the prob-
lem of how to impose the Z =0 solution on the re-
sultant eigenvalue spectrum. For example,
another way to view the Z = 0 restriction is to look
at the fictitious, individual energies. Let E = E,
+E, +E, be the total energy of the three-body bound

systems. The individual energies must be re-
stricted so that classically the three individual
periods are the same.

The period of the jth particle is given by

To obtain the Euler solution, the equations of
motion (10) are modified by adding m, z( Ir —l)u, /
~u, )' to each side. This changes Z into

u1 u2 gus
Z IC

[
3 +

[

~ Q
+

[

3 (2

and (10) into

Mu& m
& (g —l)u

u]+K
l l3 ~

~3
=m]Z', g=1, 2, 3.

ug u3

(28)

The value of q that gives rise to the Euler solu-
tion (u, = -Xu„u, = -pu„ l + p = 1) is defined in
(26). The variable A. satisfies a fifth-order equa-
tion first noted by Euler. As this equation will

appear in a later section for other types of inter-
actions, a derivation of it is given here. Use
u, = Xu, and (28) for i=1, 3 (Z'=0). This leads
to

m, +ms'
(29)

Using u, = -pu, and (28) for i = 2, 3 (Z' = 0) leads to

M 1
q= 1+

m, +m, p p'

Combining (29) and (30}gives

(30)

X+ ~+ — p+ 2+ =Oy 31

~0

u, +KM 1+ ' (1 —X') ', =0,
m, +m, ~ lu1l'

u +zM 1+ ' (1-p~) ', =0,
m, +m, p lu, I'

a'M m, 1
u3+ 2+

2 m, +m~A.

m3 1 U3 0
m +m3p p lu I'

an equation of the fifth degree in X.

As an example, consider the case m, = m, = m.
An obvious solution to (30) is X= p= —,'. The corn
mon value of rl predicted by (26), (29), and (30)
is 8.

In the general case, the equations of motion ca,n

be rewritten as

u3 1 1-~+1 4 0.
Jul X p

The reason is that

1 1
g(X) —=—2 +,1,.& 1, 0 & X & 1

has a minimum value of 8 at X = &.

(25)

(26)

where p= 1 —X and X is the solution to (31) that lies
between 0 and 1. As E varies from 0 to 1, (31)
varies monotonically from + to -~. Hence, re-
gardless of the masses, there is only one X that
satisfies (31) for 0&X&1.

Of particular interest are those aspects of the
Euler solution that can be compared with more
general interactions and their quantum analogs.
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One such aspect is the form of separable Hamil-
tonian analogous to (22). It is'

2 2 2P, P, P3 w1m2m3 v2m3m, K'3m 1m,
2 p z 2 p.2 2 p, 3 [uz I Iu2 I lu3 l

(33)

tion of motion can be derived is'

P' P' P' a n aj. 2 + 3

2 pry 2/il2 2 p3 lug I lu2 l lu3 I

where

p, , = p, , = p, , =m/3,

(38)

(39)
The constants, ~„a„and e3 differ from x by the
respective factors in brackets in the three equa-
tions of (32). The condition on the individual ener-
gies E„E„E,for the Euler solution analogous to
(24) for the Lagrange solution is

E, :E2:E3=1:1:1.
For more general potentials such as

(40)

and the condition on the energies for the equilater-
al-triangle solution is

@3 (K1)' 'm, m, '. (v2)' 'm, m, : (z2)' 'm, m,

(34)

eAQ
P = -1/u+ P/u', (41)

V. GENERALIZATION OF THE LAGRANGE SOLUTION

TO OTHER INTERACTIONS

Are special solutions similar to the Lagrange
equilateral-triangle solution possible for other
than gravitational potentials? In the general case

(35)

'The first type of potentials gives rise to purely
mutually attractive forces among the bodies,
called "scalar" forces. Examples include forces
derivable from a world scalar potential such as
nuclear forces and model forces derived from a
Lorentz scalar Coulomb potential. 'The second
category of potentials includes the real Coulomb
potential and other "vector" forces which allows
only two of the three interparticle potentials to be
attractive.

Consider the first type of force. Assume that

P'(uX) n„m, P'(up) a„m,
x1t'(u) a„m, p1t1'(u) a„m, (42)

To this must be added the triangle inequality
X+ p~ 1. For homogeneous potentials such as
Q = -1/u this isaneasy algebraic equation. For
example, if a„=n„=a„,

(43)

and we must have

(44)

For nonhomogeneous potentials such as those in
(41) the equations are more complicated. For
example, if 1t1 = —1/u + P/u' and a» --a» = a» =-n,
then

the same condition on the individual energies would
be expected because of the symmetry involved.

Next consider the case of a general triangular
solution u, +u, +u, =0, [u, f

=X/u, [, /
u,

[
=p/u, /.

One has Z =0 under these conditions if

41'„(u2)=n„1t1'(u2), i,j, k cyclic. (36)

Consider the condition under which a generaliza-
tion of the Lagrange equilateral-triangle condition
is satisfied. If /u,

/

= /u2[ = /u2/ =- /u/, then

I
I 22 2 21 3 12+ + 137)

m2m 3 m3m, m, m, lu I

An equilateral-triangle solution (Z =0) is possible
if

12 3 23 1 3j. 2

(2) the individual equations of motion

~ 2

u, + ' " 41'(u() =0, i, j, k cyclic
Iu, I m)et~

(u —2P) =, (1u —2P)

= —,(pu —2P)
1 m2
p' m,

'

Combining these two equations yields

2P m2A' -m, p'
Xpm3 A.

' —p'

Now since u&0, this implies that either

A&p and

or

(46)

(46)

(47a)

can simultaneously retain
~
u,

~

=
~
u,

~

=
~
u,

~

and u,
+ u, 1- u, = 0. For p =-1/u and n» = n» = n» =- a,
only the equal-mass solution exists. 'The appro-
priate Hamiltonian from which the above equa-

p&g and (47b)

Thus, if m„/m2&1 then (47a) holds, and if m, m,
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&1 then (4Vb) holds. Beyond this, however, (46)
implies that the actual scale or size of the triangle
is not an arbitrary quantity. 'The scale is set by
the parameter P. This contrasts with the homo-
geneous potentials which do not have any length
scale and therefore do not lead to any restriction
on the size of the triangle when Z =0.

If (46) is substituted back into (45), the two
simultaneous equations for m, /m, =—k, and m, /m,
=—k, do not depend on P. The two equations are

p'k, '+(p~'-k, ~')k, +(k, X'-~'p-Zp')Z'=0,

x'k, '+ (xp' —k, p'}k, + (k, p' —Zp' —pA. ') p' = 0,
(48}

and

Q„(u,)=, 2,j,k cyclicegeg

ua

e,e, u, e,e, u,
m2m3 uy m3m g u2

(49)

eÃa u3

m, m, [u,)'
(50)

Let e, be opposite in sign from e, and e~ and de-
fine

and their solutions determine the mass ratios
(k„k,) as a function of the triangle shape (A., p).

For electrical or vector forces, the system will
not be bounded if all three charges have the same
sign. If one has a charge opposite that of the other
two, then two of the potentials will be attractive
and the other will be repulsive.

For the Coulomb potential

For potentials such as

Q = -1/u, Q = -P/u (54}

1 PPu+ 1 ~(j -,)
p pg+ 1 (56)

As with the triangular case, this condition leads
to a restriction on the site of the colIinear config-
uration. That is, the magnitude of u (for a given
k, A., and p= 1 —A) must satisfy (56). One could
regard (56) as defining a surface in a three dimen-
sion space (u, k, X). When (u, k, X) lie on this sur-
face, a collinear solution is possible for inhomo-
geneous types of potential.

Fox Coulomb forces,

A, and p would come from a direct solution of an
appropriate algebraic equation if the masses and
coupling constants are the right size. For exam-
ple, if n»= n» = u» = o. and m, = m, = (I/k)m, and
Q=-I/u) then (53) is

1 1k= —+ —.
A. p

This has a solution for 0&8.&1 if k~ 3. If the
masses and couplings are not the right size, then
one would have to make a modification of Z similar
to that done in the gravitational Euler solution.

If Q is nothomogeneous, say Q=-e /u, and
n»=n»=n»=~, m, =m, =mgk, then (53) is

~P&+1 -8 () -i)e
J3u+ 1

e3= -z,e, = -z,e, , m, = k,m, = k~m2, (51)

where z„z„k„and k, are positive constants.
Then

cannot vanish as u, and u, are in directions oppos-
ite to that of u, . One can modify Z by adding

1 2
( 1) 3

This Z cannot vanish if (u, [
= [u2( = [u2( or for any

other triangular configuration. Collinear or Euler
configurations are possible as shall be demon-
strated in the next section.

VI. GENERAI. IZATION OF THE EULER SOLU'+ON
TO OTHER INTERACTIONS

Special solutions similar to the Euler collinear
solution are possible for interactions other than
gravitational. For potentiaIs of the form of (36)
(i.e., nuclear forces or scalar potentials such as
the scalar Coulomb potential), the Z of (37) van-
ishes for ul Au3 ug -pu„A+ p= 1 if

o'» ~n» 0'(»2)»2& 0'( pu2)
m, m, m2m2 P'(u2) m2m, P'(u, )

(53}

to both sides of (10}just as was done in the grav-
itational case of Sec. IV. This yields the following
set of equations:

~ ~

exe2
u] + —M, „+m, (q+1), '„=m, Z',

Iuc l lu, l

2= 1, 2 (58)

~ 0

u, + ' ' (m, (@+1}-M), '„= m, Z',
m

/mal

Iu31

where

m, m, k, /uJ' k, fu, f' fu, f'
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Since u, = -A,u3$ u, = -pu„and x+ p = 1,

z, 1 z2 1 u3

m, m, )k. , z' k, p' [u, i'

=0 (60)

and

8e 1 8K

2+k

(71)

(72)

z 1 + 2z
k A.

' k p' '

Equation (58) for i= 1 has the form

PN 1' 2 k 1 A,
'

)u3

(61)

(73)

The condition on the individual energies for the

Euler solution is

'The separable Hamiltonian tha. t leads directl. y

to (70) if the u, are treated as independent is'

2p, 2p, 2p lu, I lu, l lu, t

Combining this with the last part of (58) implies
E, E2 k F-, 2

z,M
X(m~(q+ 1) —)Vl) + m, (q+ 1) — ', = 0.

k,A,

This can be solved for q,

1 zl'g=-1+ AI 2 +~
A, m3+ m1 kP

(63)

(64)

In the gravitational case the fifth-order equation

(31) has only one solution for arbitrary mass ra-
tios since the left side monotonically changes
from —~ to +~ as X goes from 0 to 1. This is
also true for (66). Now (66) can be written as

Performing a similar analysis for i =2 leads to

1 z'
g=-1+ M 2 +p

pni3+ m, k, p'

Equating the two expressions gives

(65)

8z'ri-
k

(67)

The orbit described by u, is closed and periodic

rn, (q + 1) —M & 0 (68)

or
1z&g. (69)

Assume that conditions allow Z' = 0. Substituting
u, = -~23 and u, = ——,'u, the equations of motion (58)
are of the form

/&)M u]
u$ +

m, m, lu, l

Now with m, = m2= m,

(70)

—(k '$ *', *) =O. (kk)

This fifth-order equation is similar to that derived
earlier for the Euler solution to the gravitational
problem.

An example of particular interest is m, = m„k,
z, = z, = z. In this case, (66) is satisfied

for )). =—,. The value of 7) from either (61) and (64)
or (65) is

k' i)=kkk. tk ~ k, )(—)-k, '

—k, (k k, ) —.—k,
)

=0.

In this form it is easy to see that for all vat. ues
of z, and z, each of these two terms decreases
monotonically as A. increases from 0 to 1. Hence
there is only one root just as with the gravitation-
al potential. The existence of this one root does
not in this case guarantee, however, that the orbit
for n3 will be bounded. This requires an addition-
al constraint such as given in (68) and (69).

VII. A SUMMARY AND AN APPLICATION

TO A QUANTUM SYSTEM

The equations of motion (10) for a three-body
system under the influence of arbitrary interpar-
ticle potential can be derived from a Hamiltonian
(13). This Hamiltonian was shown in the Appendix
to be the c.m. Hamiltonian. One can treat the va-
riables u1 u2 and u3 as independent. Their de-
pendence follows from the equations of motion.
One advantage of these variables is the clarity
with which the exactly soluble configurations are
identified with separability (Z =0) of the equations
of motion (10). This was presented in this context
in Ref. 3 for the equilateral-triangle case. For the
collinear case, this separability was presented as
a modification of the Z =0 condition to a Z' =0 con-
dition.

In the gravitational case, the separability of the
equations of motion for the Lagrange Z =0 solution
and the Euler Z' =0 solution was expressed for-
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mally by rewriting the Hamiltonian (13) in the se-
parable forms (22) and (33). The variables u, are
treated as independent and the conditions leading
to Z =0 or Z' =0 are imposed on the solution of the

equation of motion.
For scalar types of forces that are independent

of the mass, condition (1) [below Eq. (37)j seems
to require a relation between coupling constants
and masses for an equilateral-triangle solution.
However, for equal masses, there is no mass de-
pendence on the coupling and nonhomogeneous po-
tentials such as given in (41) allow such a configu-
ration as well as the scalar -1/M potential. These
types of nongravitational scalar type of forces also
allow general triangular solutions. In this case,
unequal-mass combinations are allowed if the cou-
plings are a.ll equal and/or independent of the mass.
If the potentials are nonhomogeneous, then the ac-
tual dimensions of the triangle are not arbitrary
as with the homogeneous potentials. There are no

triangular solutions of any kind for Coulomb or
vector type of forces.

In the gravitational case there are no Z =0 se-
parable collinear solutions. This is in contrast
with the nongravitational scalar type of forces
which permit Z =0 in addition to separable Z' = 0
solutions. As in the triangular case, nonhomoge-
neous potentials give rise to restrictions on the

absolute size of the orbital configuration.
The Coulomb case leads to a Z' =0 collinear so-

lution similar to the gravitational ease. The same
type of fifth-order equation is obtained for the re-
lative positions of three particles. However, un-
like the gravitational case, there are additional
restrictions. In particular, the charge ratios must
satisfy certain constraints.

As mentioned in the Introduction, this paper is
to be regarded as the classical starting point of a
quantum solution. The most attractive feature
concerning applicability to a quantum-mechanical
system is the separability of the equations of mo-
tion. This would mean that the corresponding
SchrOdinger equation would be separable. An im-
portant question to be asked and answered is
whether a spectrum derived from such a procedure
is moderately accurate or in gross error.

For example, suppose one used the quantum ana-
log of (73). In the SchrOdinger representation the
corresponding equation for stationary states would
be

x g(u„u„uJ =Zq(u„u„ug . (76)

As in (73), the u, are treated as independent. The

energy eigenvalue is.

E =Ej +E~+E3,

where

(77)

P.«
E) = — ~, i=1,2, 3.

To test the reasonableness of this spectrum, I
shall work out the ground-state energy level of
helium-like atoms using this method. I.et ~», =ni,
=m and m, =~. Hence p, =~=m and k =~. This
in turn implies g, =@2=e'(z —~) and g, =0. For the

ground state, (74) requires n, =n, = l. Hence

-m e'(z ——,') '

where E„=13.6 eV. A comparison with the first-
order perturbative and experimental values is
given as

He(-74, -78.1, -83.3), Li+ (-193,-197.1, -205.7),

Be++ (-365.5, -370, -382.5),

where the first number is the perturbation result,
the second number is the experimental value, and

the third number is the result from (79). The re-
sults are comparable with the first-order values.
Note, however, that the results of (79) are lower
than the exact results. This is contrary to what
one expects from a variational procedure which

gives upper bounds. ' It must be emphasized, how-

ever, that the results of (79) do not follow from
an approximate solution of the exact SchrOdinger
equation as is true with the standard variational
approach. Bather, they follow from an exact solu-
tion of an "approximate" Hamiltonian. As dis-
cussed earlier, the sense in which the Hamiltonian
is approximate is related to classical considera-
tions.

There are, of course, many well-established
methods for obtaining far more accurate results
for helium. ' The purpose of this example is to
show how an adaptation of the classical three-body
Hamiltonian ean lead to a moderately accurate spec-
trum prediction. This mild success serves as a
further motivation for considering other applica-
tions. However, there are nontrivial questions of
interpretation to be considered. For example, how

is the separability condition to be reconciled with
the constraint u, +u, +u3=0 and how is this in turn
to be reflected in the eigenfunction? Can one ob-
tain accurate corrections to the result (79) by using
the exact Hamiltonian (13) in a, quantum content with
the trial wave function chosen as a separable form
but with the constraint 6(u, +u, +up included in a
variational calculation? These are difficult prob-
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lems and will be discussed in a, future paper con-
cerned exclusively with quantum-mechanical as-
pects.
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In what follows, assume R =0. Since the con-
straints

u) =0= u] ~

are not imposed, one can define canonical momen-
tum conjugate to u& by

m~m~ug

M
' (u, +u2 +up, i,j,0 cyclic . (A4)

If the constraint is imposed, then P& =m&m, u, /M,
but in this case they are not independent canonical
momenta.

As is customary, the Hamiltonian is defined by

APPENDIX: DERIVATION OF THE HAMILTONIAN (13)
The Lagrangian corresponding to the Hamiltonian

(1) is

rf ~ rl r2 r2 r3 r3 rg . A1

3

P]- u] -I .
j=l

Using (A4) leads to

H = T + V(u„u„u 3),

(A5)

(AS)

Substituting Eq. (I) into (Al) leads to
~ ~I =T —V=L(H, u, u, u, u„u, ug.

If the constraints
3 3

u2=0= u]

(A2)
Pl P2

P.—P3

P —P

m 2m 3 m 3m J

m gm m2m

~2m 2 m gm

where T is given by (A3). On the other hand, from
(A4) follows

defining the u's g the sides of a triangle and the
c.m. constraint R =0=R are not imposed one finds

Using these vectors, one finds that

(AV)

1 m,m, (m, +m2)T--,MR +—,u,

1 myn, (m, +mg
2 M'
1 mgn, (m, +m,)
2 M

mIm~ 3

M (u~ ~ u2 +u2 ~ U3 +U3 ~ u~) ~ (A3)

+ V(u„u„ug =H . (AS)

Since we have made at an earlier point the as-
sumption R =0, this is the Hamiltonian in the c.m.
frame.
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