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Explicit dimensional renorma»~~tion of quantum Seld theory in curved space-time
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Columbia University, New York, New York 10027

(Received 21 September 1977)

The dimensional renormalization of scalar and spinor field theories quantized in a conformally flat (k = 0)
Robertson-%'alker space-time is discussed. The theories considered are conformally invariant save explicit
mass terms. All calculations are performed on the level of the canonical, Heisenberg-picture field theory,
and explicit formulas derived for renormalized Heisenberg-state expectation values, such as particle
production. Some solvable models are presented as illustrations of the formalism.

I. INTRODUCTION

Although a mathematically consistent and phys-
ically viable approach to the quantization of the
gravitational field has yet to be elucidated, it
has recently become apparent that there are never-
theless quantum gravitational effects which are
calculable in the absence of such a theory, and
physically interesting. The archetype is, of
course, Hawking's discovery' of black-hole radi-
ance. The treatment of the gravitational field
as classical with all other matter fields quantized,
though nonintereactfng, leads directly to the prob-
lem of regularizing and renormalizing linear
quantum field theories on a curved space-time
background. '

There are by now a wide variety of competing
approaches to the regularization of quantum field
theories in curved space. The four main candi-
dates appear to be covariant point separation, '
zeta-function regularization, ' the use of Pauli-
Villars regulator fields, ' and dimensional regular-
ization. With the possible exception of a discrep-
ancy in the UR term in the spin-1 case, ' all of
these methods have now been shown to lead to
identical results for the anomalous trace of the
stress-energy tensor. Neverthel. ess, they are
certainly not identical in regard to either the com-
plexity of the calculations required, or their suit-
ability for extension to more general theories
(e.g. , theories with matter self-interactions}.

In both these respects, dimensional renormal-
ization seems to offer pronounced advantages. It
avoids the computational intricacies of the point-
separation approach, which become particularly
severe when one attempts to calculate renormal-
ized quantities (the divergences, of course, are
local, and have a much simpler structure), even
in exactly solvable models. And the algebraic
tedium of the Pauli-Villars method, which requires
the introduction of a bevy of unphysical regulator
fields, is also avoided. Secondly, it is difficult
to see how to apply point separation to the regu-

larization of interacting field theories, especially
those involving local gauge symmetries. The
Pauli-Villars method can be extended to inter-
acting theories, but at the expense' of introducing
additional covariant higher-derivative terms, so
that the calculations inevitably become very tedi-
ous. Qn the other hand, no additional form of
regularization is required in the dimensional ap-
proach when interactions are included.

In view of these remarks, one is led to ask
whether there may not in fact be nontrivial curved-
space field theories in which dimensional renor-
malization ean be carried out explicitly, at the
level of the canonical field theory, and in a way
which facilitates the computation of physically
interesting renormalized quantities. It will be
shown below that such a procedure can in fact be
implemented for scalar and spin--, fields in ar-
bitrary asymptotically flat (0= 0} Robertson-
Walker space-times. In Sec. II this is carried
through for conformally coupled scalar fields:
As an example of a specific physical result, an
exact formula is obtained for particle production
in terms of a single "reflection" coefficient arising
from a one-dimensional Schrodinger equation. In
Sec. III an analogous formalism is developed for
the quantization and renormalization of spin--,
theories. The procedure here is identical in spirit
to the scalar case, differing only in the (fairly
substantial} kinematical complications introduced
by spin. As specific illustrations of the applica-
bility of the method, Sec. IV discusses briefly
some analytically solvable models for both the
scalar and spin-& cases. Appendix A contains
a derivation of some useful relations among the
Bogoliubov coefficients in the spin--, ease, while
Appendix B summarizes the relevant Dirac kine-
matics.

II. SPIN-0 THEORIES

Consider a conformally coupled massive scalar
field theory in a d-dimensional space-time mani-
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fold specified by the metric g„„. The matter field
contribution to the action is

1d-2
41 —d

' (2.2)

It is well known that this theory is conformally in-
variant, for arbitrary d, in the massless limit.
The action (2.1) leads to the equation of motion

S = d+xvg[='g«"s„&s„y ——(m +~)y ],
(2.1)

where

we may now write down expressions for the inter-
polating field in terms of either "in" or "out" al-
gebras of creation and destruction operators:

d 1
( (2M)/4

(2(()' ' [2u)„(k)]'/'

x [f,"(x, t)a„(k) +f,"«(x, t)a'„(k)]

= C(2~)/4 d 'k 1
(2w)' ' [2(o (k)]'/'

x [f~"'(x, t)a,„,(k) +f "~'*(x, t)a,„,(k)],

1 s, (v g g«"a„(t) —(m'+ )R)y =0. (2.3)

where

(2.12)

Now suppose that we are dealing with a conform-
ally flat Robertson-Walker metric of the form

(q„„ is the Minkowski tensor}

(o„(k) —= [
~

k
~

'+ m'C (- )]'",
(o,„,(k) =- [ ~k ~'+m'C(+ ~)](/'.

(2.13)

g„„(&)=C (t)0„„. (2 4)

At this stage, the only restriction on C(t) is that
it should tend to a constant for t -+~ (asymptotic
flatness). With this metric, one finds

1 C d 3R=(1-d)——+ —--
C C 4 2 C

(2.5)

Making the change of variable'

=o. (2.7)

C u/2 (2.6)

and the equation of motion becomes (C3=—V V —8'//

st 2)
~ «

d—O{t)+ 1-——2y — m2+

By the general theory of second-order ordinary dif-
ferential equations, we must have

f"(x, t) = a(k)f '"'(x, t)+ P(k)f '1' (x, t) .

py examining the Wronskian W[f ~"(t),f ~' (t)] one
easily finds

(2.14)

(2.15)

This formula precisely implies the canonical char-
acter of the Bogoliubov transformation relating the
"in" and "out" algebras. Namely, (2.12) and (2.14)
imply

1/2
a,„,(k)= '"' [a(k)a„(k)+P*(k)at„(-k)],

~~n
(2.16)

and it is trivial to check that

C (2M )/4X

we arrive at the much simplified equation

(2.8} [a„(k),a(t,(k'}]= 5~ '(k —k') ~ [a,„,(k), a(„((k')]

= 5'-'(k —k')

Clg=m Cy. (2 9)

Essentially, in going from (2.V) to (2.9), we have
utilized the conformal symmetry (up to mass
terms) of the theory and the conformal flatness
of the metric to make a field rescaling which re-
duces the equation of motion to its flat-space
form The gen. eral solution of (2.9) may be writ-
ten

if and only if (2.15) holds.
We are now in a position to compute physical

quantities, such as the expectation of the stress-
energy tensor in the Heisenberg "in" vacuum

~0„), defined by a„(k)jo„)=0 for all k. This
quantity, in the limit t +~, give-s the particle
production due to the external gravitational field.
We shall need the expectation values

f,(x, t) =e""f,(t),
where f„(t) satisfies a SchrMinger equation

f/, + [~k ~'+m'C(t)]f, (t) =0.

(2.10}

(2.11)

(o„iy'(x, t)io„)=c" '"(t) d~ 'k
(27()"-( 2&v „(k)

The particular solution satisfying the pure pos-
itive-frequency boundary condition at t- —~ (+ ™)
will be denoted f~" (fP'). In the standard fashion, where

C (2-d) /2(+ 0«)(D+ y) (2.17a)
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D ~~~
I

d II
0u t

d' 'k
(2v)d ' 2(d.„t(k)

d
))td-2C (d-2) /2(~ co)r 1

(2v)d 2

d 'k IP(k) I

(2')d ' (d„(k)

(2.17b)

(2.17c)

Here ku"'=-(d, „(k), k;"'=(k), for 1 ~i = d-l. Once
again (with reasonable conditions on the metric)
the entire divergence is isolated in the contribution
labeled D„. It is now trivial to obtain the expecta-
tion value of the full bare matter stress-energy
tensor as t-+ ~. Using the expression for ~"",«„

Now semiclassical methods" allow us to relate
the asymptotic behavior of the "reflection" co-
efficient P(k) for large Ik I

to smoothness and

asymptotic properties of C(t). Namely, we have

012 oo

I p(k) I

"'
~ c(t)e" ' 'dt . (2.18}„4Ik I

Thus, for example, if we require that C(t) be C"
and that all derivatives vanish as t- +~, then
partial integration applied to (2.18) implies that
P(k) vanishes as

I
k

I

— faster than any power
of Ik I. We shall assume this to be the case [al-
though sensible physical results obtain with con-
siderably weaker restrictions on C(t)]. With this
assumption it is now evident that the quantity lab-
eled F in (2.17c) is in fact finite for arbitrary
physical space-time dimension d,„„,. The diver-
gence has been explicitly separated as the quantity
D in (2.17b), appearing of course in this frame-
work as a pole as d- d,„~, where d,», is any even
positive integer ~2.

We may similarly compute the expectation value

(O„le,(I)(x, t)s,p(x, t) IO„) = C" '/'(+ )(D„+F„),

—g'"[-,'g -s,ys, y+ —,'(», d+ gt)y2]

+ $[(g'"g" „"-g"')D,D,((t')+R "y'],

a simple calculation yields

(0 Ie'" (x t)IO &
— c ' " '(+ )(D'"+F"")

g~ + oo

(2.21)

Of course, this is not yet finite —we have yet to
include the contribution from the counterterms
in the action. The only relevant counterterm
(yielding a nonvanishing asymptotic contribution to
&u") is the cosmological constant

s„=-t ' " ~'(t
) &, I'(-t) d'*Wg.

(2.22)

The coefficient in (2.22) has been fixed by re-
quiring

lim (O„l e„;(x,t) IO„)= lim (O,„le'«„,(x, t)

where

d k 1 koutkout
(2)() ' 2(d,„t(k)

p& /t'2

},m'c'"(+ )r -- q„,
dd 'k

I p(k) I

(2)/)d ' (d„(k)

(2.19a}

(2.19b)

(2.19c)

=0

+ e,","(x, t) Io„&

(2.23)

In the t-+ ~ limit we find that the contribution
arising from (2.22) exactly cancels the divergent
piece D'" of the stress-energy expectation value,
leaving us with a general formula for the (finite)
particle production in terms of the Bogoliubov co-
efficient P(k):

lim (Ot I
e",",(x, t) IOt ) = lim itm (Ot. l

e"."(x t) IO).&

+ u p ys

C-(dg uu+2) /2(+ oo)
ddutuu 'k

I P(k) I

(2v)d t ~ (k) out out ' (2.24)

The full renormalization of the theory will in
general require additional counterterms such as
J ddx&gR, f d xvg (R', R,„',R,„d, R „„'),etc.
For example, it is known" that for d,», = 2 the
counterterm action in the massless limit is just

(with a, minimal subtraction)

1 1
24~ d

d'xWga .

It might be thought that this coefficient could be
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determined by looking at the stress-tensor ex-
pectation at finite times, when the contribution
of this counterterm, proportional to the Einstein
tensor G~„, would presumably appear. However,
because of the high degree of symmetry character-
izing the metrics under consideration here [Eq.
(2.4)], one finds that G, „ is explicitly proportional
to (d- 2), so that this counterterm is not in fact
reflected (for d,„„,= 2) in a pole term in the ex-
pectation value of the stress-energy tensor. Nev-
ertheless, the counterterm must be added; other-
wise, divergences in products of stress-energy
tensors, e.g. , in

(0.„,1&""'(x) ..&'"""(x„)10„)
(0 „t101 )

will not be canceled. In fact, Feynman-Dyson
perturbation theory can conveniently be used to
extract the counterterm here by a simple one-
loop calculation. " In any event, caution should
be exercised in making sure that the method used
to extract the divergences is independent of the
symmetries of the class of metrics considered.

A related point is the rather obvious criticism
which may be leveled at the method just outlined
for regularizing the theory by extension to arbi-
trary integer dimensions followed by analytic con-
tribution to complex dimensions. Namely, the ex-
tension procedure seems hardly unique: One
might, for example, instead have added on (d
—d,~,) extra, "flat" dimensions to the original
Rober tson-Walker metric. I have no rigorous
proof that this regularization leads to a satisfac-
tory (i.e., generally covariant, local, and unitary)
quantum field theory. However, the fact that the
results obtained for a specific finite renormalized
quantity such as particle production agree pre-
cisely (cf. Sec. IV}with those obtained by means
of the Pauli-Viilars approach (in which general
covariance, locality, and unitarity are manifest)
strongly suggests that the method followed above
is both natural and correct. It must be admitted,
however, that finding a "natural" extension of the
theory to d dimensions depended crucially on the
high degree of symmetry manifested by the class
of metrics elected for study. Of course, it is very
difficult, in the absence of such symmetry, to
perform the calculations analytically in the first
place, so that this limitation of the method may
not be too significant in practice.

III ~ SPIN-2 THEORIES

The quantization and renormalization of spin--,
fermions in a curved spacetime background fol-
lows a similar path to that outlined above for scal-
ar fields. However, the complication of spin

makes somewhat more difficult the disentangling
of the purely kinematical (i.e. , metric independent)
from the specifically dynamical parts of the cal-
culation. We begin with the expression for the

matter action

Smatter d'xdet(V)
L'V-'[4y. &.0 —(&,f') y. ]4

+mfa}, (3.1)

where V ", the vierbein field, satisfies V "V~"q
~

=g"", and the covariant derivative on the fermion
field is

(3.2)s.4-+ .o"V—".(D.V&.)4,
}t&.Va. = ~~Vsse- I'"V8~ ~

With the metric (2.4), we may take

(3.3)

v..= c'i'(f)q. . (3.4)

The action (3.1) leads to the Dirac equation in
covariant form

(V."y" u„+m)q =0. (3 5)

QI, + k +fez C+m& yy2 f~ p. (3.7)

On the u eigenspaces of y'

Q' '+ k +m C +&~ 2C'~2 (3 8)

So again we encounter a Schrodinger equation —but
this time, with a complex potential. We now state
various properties of the solutions of (3.8) which
will be needed later. Let p»""' (P»"'"') denote
the solution of (3.8) behaving as f --~ (+ ~) like
e '~in»&»(e '~out ) where7

~&.(~) =-(lkl'+ p& ')'",
co.„,(k) =- ( ik i

'+ p.,„,')' ',
p, ,„=-m C' ~'(-~),

p,„,=—mc'~'(+ ~) .

The corresponding negative-frequency solutions
are then p»""'*,p»"'"'* [note the sign flip, due

Our procedure will be to analytically continue to
complex dimension formulas derived in an arbi-
trary even-integer-dimensional space-time mani-
fold. Thus, by y in Eq. (3.5), we mean the na-
tural 2 /2 x 2 i" matrix representation of the Dirac
algebra, with g a 2 ~»-dimensional spinor. [Both
o. and p, in Eq. (3.5) run, of course, from 0 to
d —1.] Writing now

g= C"-""(t)(y'S,+ik -y —mC'"}e'" *y,(f),
(3.6)

we find that (II)~ satisfies
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to the explicit factor of i in (3.8}]. Define Bogo-
liubov coefficients a"', P'*) as follows:

~in(n)(t) (k)(k)~out(k)(t)+ p(k)(k)~out(u)bk(t)

(3.10)

Then the following relations are readily established
(see Appendix A for derivation):

U„(k, )).; x, t}:K—„(k)C""' (t)(-i&,+ ik y —IC' )

~in(-)(t)ezx xzz(0 y) (3 ] 4)

V„(k, ii; x, t)
—=K„(k)C" ' '(t)(t&, —ik y - )))C' ')

+y(n(b)bk(t)e-ik xV(0 )1)

where

(+) ~in —~in out+ &out
(-)

+out ~out +in+ ~ in

~(+ )
in I in out ~out

7
~out+ &out ~in+ &in

(3.11)

K (k)=--—
Ikl 2p, „ (3.15)

with corresponding equations for U,„,(k, X; x, t},
V,„,(k, i(; x, t), and K,„,(k). These spinors go over
asymptotically to the corresponding flat-space
solutions as follows:

&(-) (+ ) 4 p(-)p(+)g in

out
(3.12)

U (k ) . x t) C(1&) /4( bo)e(() xv (k /()

Given a complete set of zero-momentum, flat-
space spinors zi(0, &), v(0, /1) satisfying

U, (k, /( x t)- =C" ' (+~) e ' zz'"(,(„k/1,),
)~+no (3.16)

y's(0, ~)=-zu(0, ~) I

y'v(0, il) = iv(0, )()

] &y&2«2«1 (3.13}

V„(k, (( x, t) = C" 4' (- )e ' '"
(k /()

t-+ «ao

V,„,(k, X; x, t) = C "~' «(+ )e '"'*v,„,(k, )().

we can construct the appropriate curved-space
spinor solutions of the Dirac equation:

The interpolating field takes the form, in terms
of the algebra of "in" operators,

- 1/2 2 d /2«1

0 = (2)z) («""/x du 'k " p (a„(k, ii)U„(k, i).; x, t)+ bt, (k, i1)V„(k, i(; x, t)j
in

(3.17)

with a completely analogous expression in terms of "out" operators. By equating coefficients of the vari-
ous curved-space spinors of (3.14) one obtains the Bogoliubov transformation

(d
,„,(k, b)= " '"' " ' '(k) „(k, b)bb' '(k)" I, x,.„(-k)b',„(-k, b')),

I out in out )t'

1/2
b, (k b)= ' '"' " '(k)b(k b') —(b ', (k) I x .(k), (—k b'))

&out in out }t«

where the polarization tensor X», is purely kinematical and given explicitly by

X„,(k) = 2izo„, K „(ko)-(„(zz-ok(A'))v(0, A) .

(3.18)

(3.19)

The canonical character of the transformation (3.18) is ensured, as a short calculation shows, once we
verify the relation

2' '(k)i' —kb 'x '(k)(l — '"' ib' '(k)('=
&out &in ~out( ) Kln(k)

(3.20)

but this is a trivial consequence of (3.11) and (3.12). From (3.18) we obtain the formal connection" be-
tween the "in" and "out" vacuums

P( )+ k
~0„)=(0,„,~0„)exp d" 'k,

) ( )
X„,„(-k)(zt„,(k, ll)bz„, (—k, ll') ~0,„,). (3.21)

Indeed, the right-hand side i.s easily seen by a standard commutator identity to be annihilated by (z„(k, ii),
and the normalization follows immediately by applying (0,„, ~

to both sides.
The calculation of renormalized physical quantities can now be carried out in complete analogy to the
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scalar field case. We will again consider the stress-energy tensor expectation value (0„~8'"(x, t) ~0„)
for large positive times. By varying the action (3.1), one finds

(3.22)

Inserting the expression (3.17) for the interpolating field,

d" 'k ",g [V„(kX;xt)V"8'V„(kX; xt)+ (p, —v)], (3.23)

where p, , v on the right-hand side of (3.23) are "flat-space" indices (80= 8/8-t, etc.). From (3.10) and

(3.14} it follows that

Vg (kx; xt) = K) (k)C ~(+ ~)(t8( —tk. v —&C~/2)[o '«+(k)e~~out~+p~+~*(k)e-~~out&]e-&I *~(0 y) (3 24)

Substituting this in (3.23) one finds, using again (3.11) and (3.12},

(3.25a)

where

Dt'v 2g/f2
d~ 'k k" k" 1 1out out

ypz C~~ + I'
(2vg ' 2(o,„,(k} 2 (2w)4/2 2

(3.25b)

d' 'k IP"(k) I' [&u„(k) —p, „]
(2vg-' co„(k) [&o.„,(k)+ p.,„,] '"' '"' (3.25c)

Once again, we may now add the contribution from the cosmological-constant counterterm [again fixed
by requiring (0„~8"„",(x, t) ~0„)-0 as t- —~]

S„=—2, m~1" —— d~xdet(V),
1 1 „d (3.26)

which exactly cancels the explicitly divergent part D"" of the bare matter stress-energy tensor. Thus
we obtain the final formula for particle production in terms of the Bogoliubov coefficient P"(k):

lim (0
~

all (x t)
~

0 ) C (lr»y 8) / (+ )pf»~ /2
d~»~ 'k I P "(k)I' ~„(k)—p,„
(2w)4»~s-' &u„(k) &o,„,(k)+ p,„,

(3.27)

IV. SOME SOLVABLE EXAMPLES

C(t) =A+ 8 tanhpt . (4.1)

It suffices to note here that the formalism of Sec.
II extends the discussion of Ref. 5 (in two space-
time dimensions) to arbitrary dimension. Also,
it is trivial to check that (2.24), for d „~=2,

The formalism presented in the preceding bvo
sections is valid for general conformally flat Rob-
ertson-Walker metrics which are asymptotically
flat and sufficiently smooth [recall the discussion
following (2.18)]. In this section we display met-
rics for both the scalar and spin--,' cases which
lead to explicitly solvable models.

A solvable model of Robertson-Walker type for
scalar particles has already been discussed in
the literature. ' The metric is

agrees precisely with the formula [Eq. (3.21) of
Ref. 5] for particle production in this model der-
ived previously employing Pauli-Villars regular-
ization. In fact, it is possible to obtain the re-
sults (2.24} and (3.21) by a Pauli-Villars ap-
proach —at the cost of considerably increased
algebraic tedium.

A solvable model for the fermionic case is ob-
tained by taking the vierbein field proportional to
(A+8 tanhpt), namely

C(t) = (A+8 tanhpt)'. (4.2)

It is interesting to note that in the limitA-O, this
metric behaves, for 0 &t«1/p, precisely like the
radiation-dominated, k = 0 Friedmann universe,
with an exponentially rapid approach to asymptotic
flatness for t» 1/p. The latter we may regard as
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simply a convenient way of "freezing" the red-
shift in order to define asymptotic particle states.
Thus, if the question of the appropriate initial
state in a universe expanding from a singularity
can be resolved, this model offers both a fairly
realistic and analytically tractable descrip-
tion."

Substituting (4.2} into (3.8), we must solve

yn")+ [lk l'+m'(A+B tanhpt) +imBp sech'(pt)]p,"'=0.
(4.3}

After some algebra, one finds for the solution
behaving like e '"»'~" as t-

1 i imB i imB i j.+ tanhpt
)t),"")(t)= exp itd-, (k)t+ &d (k—) ln(2 coshpt), F, 1+- td +,—td v; 1 ——&d„;

P P P P P P
(4.4)

The solution behaving like e '"«t'~" as t-+ ~ is

pn"""(t)=exp itd,-(k)t+ &d (k) ln—(2coshpt), F, 1+—e a, -&o +;1+—&o,„„.(4.5)1 i imB i imB i 1 —tanhpt

Here urn(k} =——,'[td,„t(k}+~„(k)]. The Bogoliubov coefficients defined by (3.10) now follow directly from the

linear transformation properties of the hypergeometric function:

F(1 —(i/p) &d „)F(-(i/p) &t),„t}
I'(1- (i/p)td, +imB/ p)I'( (i/p)&o-, + imB/p) '

I'(1 —(i/p}(o„)I'((t/p)(o, „,)
I'(1+(i/p)&u +imB/p}I'((i/p)&t) vimB/p}

'

(4 6)

The reader may easily verify directly the relations (3.11) and (3.12}among these coefficients. Finally,
the explicit formula for particle production is obtained by substituting (4.6) into (3.2V):

(O„l t)„,(x, t) l0,.) = 2'»»~' t(A+B) '»» '

d n»» 'k k,"„,k",„, cosh(2vmB/p) —cosh(2))td /p)
(2v}~»» i (0 „t(k) sinh(v(s) Jp) sinh(t)td„t/p)

(4 V)
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(A2)

3) ytntn) (& ~ p )~tnin)

By taking now t-+ ™in (A4} and recalling

~tutu)(t) ~ Oto)e (&@nutty pto)efcuoutt
~k

(A4)

Applying K), to both sides of (A2) gives an inter-
twining formula

~.~, (~,e,"')= lkl'(~ y"') (A3)

Thus 3) pnt') is a solution of (3.8} of "minus" type,
X),f~ ' a solution of "plus" type. By looking at
the region t- —~, we conclude that

. a
3) =-i—+mC'"(t)

et (Al)

in terms of which (3.8) becomes

In order to derive the relations (3.11), it is con-
venient to factorize the Schrodinger etluation (3.8)
by defining first-order operators

we arrive at the required results:
(+) ~r —&in out+ ~out

+out ~out +in+ ~in(-)

p(+ )
~in —&in out —&e t

A(-) +out+ ~out (din+ &in

(3.11)
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Equation (3.12}follies directly by comparing the
values of the constant %ronskian

gr[y(((( )-yi(((+)4] —~in(-) yl(((+(48

where

lal(2p )

in the asymptotic t- +.

APPENDIX B

The spinor formalism [for d(even}-dimensional
space-time] needed in the developments of Sec. HI
will now be presented. Our sign convention is q~
= -1, q« =+ 1, 1 ~ i ~ d - 1. Choose a representa-
tion of the Dirac algebra in terms of 2d ' x 2' '
matrices, and withy =-y', y't=y', 1&i &d —1.
Let u(0, X), v(0, A) be an orthonormal complete set
of eigenvectors of y'..

y u(0 X) fu(0 X)
(1

y'v(0, &) =+ iv(0, X)

These spinors satisfy the following completeness
and normalization relations (u = iu y'):

2d/2 1

u(k, &}u(k, A.)=—(p, —i}t),
2p.

v(k, &,)V(k, X) = ——(l( —i@,
2 jl

u(k, &)u(k, &') = -v(k, &)v(k, &') = 5~. .

Of some use in the computations are the formulas

u(k, A.)y u(k, &') = v(k, &)y~v(k, V)

ik'

Then the corresponding (flat-space} spinors with
polarization &, momentum k, and energy (d( I

k I)
= fi& I'+ u')'"=&' are

u(k, X) =K(in i)(O' l()u(0, X),

v(k, X) = K( ik i)(Q-+ p, )v(0, X)

and [with X„„.defined in (3.19)]
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