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One of the techniques used in quantum field theory in curved space-times to eliminate divergences in the

vacuum expectation value of the stress tensor for quantum fields propagating on a classical gravitational

background is called covariant geodesic point separation. Beginning with the Schwinger-DeWitt proper-time

method we show how to discard divergences in the effective action by renormalization of the coupling

constants in a classical gravitational action functional. We then demonstrate how to determine which terms in

the vacuum expectation value of the stress tensor vanish when this renormalization is carried out. This is

done using the point-separation approach. We give the form of these terms for spin 0, 1/2, and 1 fields,

massive or massless, on an arbitrary curved background. The procedure used is covariant and introduces no

ambiguities beyond those inherent in any renormalization scheme. We note the appearance of trace

anomalies which arise due to the breaking of conformal invariance by the renormalization process and give

the form of the anomalies for arbitrary space-time dimension.

I. INTRODUCTION

Studying quantum field theory in curved space-
times is not easy. ' That is not to say that quantum
field theory done in flat space is easy, but at least
in flat space there are some experiments which

can help guide us to the "correct" theory, In
curved spaces there are no experiments (yet) to
tell us if we are on the right track. We can only

play theoretical games.
The games we play do have some rules. The

main rule says that we must maintain general
covariance in our calculations. This requirement
leads to conservation laws for currents such as
the stress tensor. There are also other invar-
iances (gauge, conformai, etc. ) that we may want

to preserve. Of course we also know that break-
ing symmetries is a popular thing to do these
days. 'The final determination of what invariances
we should keep will have to wait for experimental
verification.

'The other rules and concepts of flat-space the-
ory might carry over to curved spaces. For ex-
ample, the notions of vacuum and multiparticle
states are certainly valuable in studies of such
things as the Hawking effect" (biack-hole evapora-
tion). Unfortunately, in many background gra-
vitational fields we find that we are either very
poor ortoo rich. We may not be able to define
a vacuum state at all or we may find many pos-
sible dejinitions (as is the case in a Schwarzchiid
background). ' In the last case the only recourse
we have at present is to study them all.

The next problem we run into is the usual.
"curse" of quantum field theory —divergences.

hey appear nearly everywhere and the standard
normal-ordering techniques of flat-space theory

are not valid in curved spaces. Fortunately, in

the past few years, manifestly covar iant coordin-
ate-space methods of regularization (identifying
the infinities) and renormaiization (eiiminating
them) have been developed. They are called di-
mensional regularization, ' zeta-function regulari-
zation, ' Pauli-Villars regularization, ' and covari-
ant geodesic point separation. " In this paper we

will take a look at the last one. We will. find that
point separation is manifestly covariant, intro-
duces no new ambiguities, and is a potentially
highly useful way of treating the problem of di-
vergences when studying the vacuum expectation
value of the stress tensor for fields of spin 0, —,',
or 1 propagating on an arbitrary curved back-
ground.

We will see that the breaking of conformal in-
variance in this regularization technique leads to
trace anomalies. " These anomalies may have
important physical consequences in astrophysics'
and even in high-energy particle physics. " We
also begin to see that all of the regula. rization
schemes will give (almost) equivalent results.
'This may not be surprising since it is possible to
formulate the dimensional, zeta-function, and
point-separation regularization methods beginning
from the same initial point —Schwinger's proper—
time technique. ""

In the next section of this paper, we introduce
the stress tensors for spins 0, ~, and 1. We find
we are able to express a special vacuum matrix
element of these stress tensors in terms of the
Hadamard function G'"(x, x') which is caicuiated
in Sec. III.

Section IV introduces the theory of regularization
and renormalization as defined by DeWitt's""
curved-space generalization of Schwinger's prop-
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er -time technique. We show how the divergences
in the vacuum expectation value of the stress ten-
sor may be renormalized away by adding counter-
terms to the classical gravitational action. We
see that by using covariant geodesic point separa-
tion we ean exhibit the terms which we subtract
from the unrenormalized expectation value to
achieve the finite result.

Section V presents the details of the point-separ-
ation techniques and gives the main result.

Section VI shows how massless fields ean be
treated and also that trace anomal. ies arise and

gives their structure in any dimension.
Section VII contains a discussion of an alterna-

tive way to do point separation and reviews how

to do specific calculations using the results of
Sec. V. An Appendix contains a list of expansions
which were used in the previous sections. We use
Misner, %horne, and Wheeler sign conventions. "

II. THE STRESS TENSORS

spin p. 'This case was discussed in Ref. 9 so
only the most important equations will be repeated
here. The action functional for the field (t)(») is

P(P)= lfu"*(P:-.P"~ (PP* ~

(2.1)

where g is minus the determinant of the back-
ground metric g„„, $ = —,

' for a conformally invari-
ant field, R is the scalar curvature, and m is the
field's mass. The field equations for (t)(x) are

++2G""[4,4].—P'~'Z""[4) 41.] (2.4)

the stress tensor. The symbol [, ], is the anti-
eommutator and G"" is the Einstein tensor.

We now pass from classical field Q(x) to quan-
tum operator L()(«) (an underline means that the
symbol above it is an operator) and introduce
states

~
in, vac) and

~

out, vac) which represent
vacuum states before and after any dynamics in
the background gravitational field. DeWitt (Ref.
1) discusses these states in more detail. Define

(out, vac! 6 I ih, vac)
(out, vac ]in, vac)

(2.6)

for some operator 6. Next write each set of
brackets in Eq. (2.4) in the forms

l4', 4 '"].= Ltm .-i[4 '", 4 '"].+ [@",4'" ].),
(2.6)

6(x, x'} is the four-dimensionaL 6 function and

semicolons are the usual covariant derivatives.
Functionally differentiating Eq. (2. 1) with re-

spect to g„„, multiplying the result by 2g ', and

setting (= —,' gives

where

6'8
64)(x)64 (x')

(2.2)

and

[4, ((].= Ltm [4, 0']„
X ~X

g '~2[6. ,P(x, x' }—($R + m-') 5(x, x')] .

(2.3)

where x' is a point near x, (L)' = (()(»'), and (t)'"
represents the covariant derivative at x'.

Equations (2.4}, (2.5), and (2.6) are used to give

(Tuv) Ltm [ 1(P(1))ll'v G(1)) Ilv') 1 llvG(1) P' 1 (Q(1)l llu G(1))v'v') 1 llu(G(1) P G(1) P }matrix 6 12g vp 12 48g K up + vPp~

X ~X

+ 1 (Rvv 1R~llv)G(1) 1 2 lluG(1)]
12 4 O (2.7)

'The quantity 6'" is the Hadamard function defined
by

E(x x")G"'(x" x')d'x" =0.

which satisfies

(2.8)
Spin 2. Following DeWitt, "the action for a

neutral spinor field g(x) is
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(2.9)
(Z')sv} 1 I 'iim Tryy()s (S(1)lv) S(1)[v' )}

matrix 8

where g provides a spin representation of the
vierbein group and $= ()) y. The Dirac matrices, "
y and y", satisfy

(2.10)

where 1 is the 4X 4 unit matrix and - means trans-
pose. The covariant derivative of a spinor 8 obeys
the commutation relations

(2.17)

Later we will find it necessary to write

S'"(x,x ) = -f(y'9")., -m9"')y-',

where 9'"(x,x') is a Hadamard function and satis-
fies

F(x x")9'"(x',x'}d'x" = 0,

1 ~8 P
&:vvvv -&;vvv. = sG(~( ylt v.&;vv+ "vv ft. "

yQP V QT)

and so forth. In Eq. (2.11),

(2.12)

where

S(x, x') = -g "'[6,,'(x, x') —(-,'Il + m') 6(x, x')]1.
(2.18)

Equation (2.17) then takes the new form

(Z vv) 1 lim Try(vy s(9(1) v) 9(1) v'))
matrix 8 eP ~P

(2.19)

are the generators of the vierbein group, [, ]
is the commutator bracket, and

v=h eh / ~v

where h, is the vierbein which satisfies h, h „
=g„„. 'The covariant derivatives of y, y', and

G, z, vanish.
'The field equations are

Spin &." This case presents a new complica-
tion, the existence of a gauge invariance. The
vector field A„(x) has the action functional

s(w. l = fs"-v-'. v s*s. -'
where E„„=A„,„-A„.„. Because of the gauge
invariance of the action, the wave operator

F (x, x')(t)(x') d'x' = 0, (2.13)
g2$

aA„aA.„,

with

S(x, x'}=~
5g

=ig "'y[y'6 „( , x).+xm6(x, x')]. (2.14)

The stress tensor found from Eq. (2.9) is

which may be written as

Tlsv (I Tryy()s[(ll(v) g ] (2.15)

where A(„B„)--—,'(AB„+A+„), ()) ())= gg (i.e. , ())—

is an anticommuting field), and Tr means trace
over the suppressed spinor indices. Now write

[0'",0 ] =»m -'([0'", 0 ] +[4'", 0 ]]
in Eq. (2.15) and use the spinor Hadamard function

is singular. 'To remedy this problem we add a
gauge-breaking term [which leads to a nonsingular
operator in Eq. (2.23)]

-a(A;. )'

(the semicolon is now the usual covariant deriva-
tive) and ghost term

c*' c,

where c is a complex scalar field (c* is its com-
plex conjugate). So that we may use the Schwing-
er -DeWitt proper -time method for finding the
G'"'s we also introduce mass terms

--,'m'A A +m'c*c.

'The total action is

sls„, 1 f( s=v(wv=,.'.)*„„

S"'(x,x') =([p(x),8 (x')] & „„„
which satisfies

(2.16) ——'m'A A +c*' c,. +m'c*c]d'x,

(2.20)

and the field equations are

and the property S'"(x', x) = —S"'(x,x') to find (2.21)
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and Applying this procedure to each expression in Eq.
(2.26) gives

with

and

5S
M.M, ,

g 1/g(6ag' p Ra 6pg
' 26ag')

(2.22)

(2.23)

(T "&meteix = (T ")Mexweg + (T "&geege

+ (T""),~, + (T""&mme,

where

(T"")„,„„,g =lim [(g"'g"' ——,'g "g"")

x g"(E,.E„& .i ],

(2.29)

(2.30a)

O'S
F,(x, x') = 6c*5c'

= -g '~'[6„'(x, x') —m'6(x, x')], (2.24}

where 6 g =-g "g5(x, x'}.
The stress tensor is

TVV 2~1/2 6$

X(G gee;ap —G eg'ia'p')

el W fI PT /r (i) r (&)+ gg g g ice gee'ape +G
egg

~ pa )]

(2.30b)

(T'"), o,i=lim[--';(g" g" +g" g" -g'"g )

where

JlV gV lLV PV= ~Maxweg + Tgauge + Tghost ~ Tmass f (2.26)
&(Gi i +Gi i )]

(T )mern —ltm[epig (g g g g )

(2.30c)

Tl~weu =I'"~I' " —4~ +~g g"",
Tg",ug, = —A . "A"-A . "A"

+[A, gAg+-,'(A, ,)']g"",
(2.26) where

x (Gi'i .+G&» .)+-.'m'g'"G'" ]

(2.30d)

TPV ~gg P~t V gg V~g P + ~+g atp
gfsn G'",(x, x') = ([c'(x), c(x')],) e&~ (2.31)

Consider TM""„weg which is constructed from pro-
ducts of the form I", E&. We may write

F„F~= —g'([A, „Ag.,], —[A, „Ang],
—[A.. .A , ,],+ [A,, A ],] .

In the now familar way, separate points sym-
metrically,

[A .„Ag, ,],=lim —',{[A... , Ag, ,],

G"'„„,=-([A„,A„.],) „,„
to derive

&E. E.g&-.e..

(2.27)

&
~ i(r (1) r (&) ~ (1)= llm ~i~

TQ gp wee pgt e fsy t G gpt ~ T~t

~ (1) r (1)+ %P pyt ~ Opt + G TPt egof ~ )

+ [A., „A, ,„].],
and use the definition for the vector Hadamardfunc-
tion

the scalar Hadamard function with $ =0 in Eq.
(2.1).

III. THE HADAMARD FUNCTION

The Hadamard functions G"', 8"', O'", G'"„„,,
and G'" and their derivatives appeared in the
preceding section as the key structures in the
(T"),„;„'sderived there We wil.l now find the
Hadamard functions for the three spins. This will
be done in arbitrary dimension then for the pur-
poses of this paper specialized to four dimensions.
The two-dimensional case will be discussed else-
where.

The Hadamar~ functions are found by studying
the Feynman function G(x, x'). The two are re-
lated by

G(x, x') =G(x, x')+-,'iG'"(x, x'),
where G is the principal-value function. (We will
suppress all indices since the mathematics is the
same for all spine. ) Let E(x, x') be one of the
operators in Eqs. (2.3), (2.18), (2.22), or (2.24).
The Feynman function G(x, x') satisfies

(2.28) E(x, x")G (x",x')d "x"= -5(x, x'), (3.2)
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f Q+—Q"o—=D-"' I (x x") D"'(x"}'&s s

xQ(x", x', s)d "x", (3.4)

with the boundary condition Q(x, x', 0) = 5(x, x').
This differential equation may be solved by writing
the power series

Q(x, x', s) =Q a, (x, x')(is)',
A~O

(3.5)

in n dimensions. Using the Schwinger-De%itt
proper -time approach, we find that"

" ds
G(x, x')= — .,„„„'„ep im-'—

4&ij", s"
L S

x Q(x, x', s), (3.3}

where &(x, x'}=@ 'i'(x)D(x, x')g 'i'(x'), g(x)
=——det(g„„),D(x, x') -=-det(-a, „„,) (the Van Vleck-
Morette determinant), and a(x, x') is the biscalar
of geodetic interval. The covariant derivative of
o, 0'", is a vector tangent to the geodesic between
x and x' at the point x which is oriented in the
x'-x direction and has length equal to the geo-
desic distance between x and x'. The biscalar
v is related to 0'" by 20 = 0' "o;,„."

The function Q(x, x', s) in Eq. (3.3) satisfies the
equation

whic h gives the recur s ion r elations

~"~„,,+(a. i)a„,=~-'/' ~ x, x )
' m=0

x az(x", x')rJ "x"

and

v "g„., = 0, (3.7a)

along with the boundary condition

aocx, x) = 1.

1 (n-2)
$(n) = ——

4 (n-1} (3.8)

if we want a scalar field which is conformally
invariant in n dimensions. In four dimensions we
have &=-,'.

Using Eqs. (3.3) and (3.S) we find that

Note that in applying the Schwinger-DeWitt tech-
nique we must have an E(x, x') with derivatives of
the form 5, ,'{x,x'). Since the spinor operator
F(x, x') in Eq. (2.14) is not of this form we per-
form the 3'" to 9'" transformation and use F(x, x')
which as we can see from Eq. (2.19) has the cor-
rect form. Also in the seal, .r case,

8 ' " ds
G(x, x') = — . „I, a~(x, x') —, „i, exp im's-— (3.9 }

A change of variables

z' = 2m'a, -u = 2im's/-z

allows us to write the integral in Eq. (3.9) as

kind of order n/2 —1. Thus Eq. (3.9) becomos

G(x, x') =
(

.,„i, Q a, (x, x')

~~

g 1-n/2 -j~

2im'
O Q

„„exp[-,'z (u —1/u)],

which is"

i&( z/2im')' " 'H-„''i', -, (z},

where H„'i', ,(z) is a Hankel function of the second

1-n/ '

x ——,', &'/', , ~).
2c PYl

(3.10)

Now in order to find the small-distance behavior
of G in four dimensions, we expand H,'"(z) in an
asymptotic series" and follow the procedure given
in Ref. 9 to obtain

g1/2 (
G ' (x, x') =, ia, —+ m'L(1+ —,'m'a+ ' ) —zm' ——„m'o'+ ' ' a,[L(1+~zm'a+—' ~ ' ) ——,'m''a — ~ ]

a a[L(—+ —m o+' '') —4 —'' ']+' '' + [a + ]+ —[a +' ']+"1 1 1 1 1
2 2 8 2m' 2n1' (3.11)
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where L—:(y+ —,
'

ln~
—~nv'a ~) and y is Euler's constant.

Note again that above"

G"'(x, x'), a biscalar for spin 0,
Gt" (x, x')= 9'"(x, x'), a bispinor for spin —,',

G"'„„,, a bivector for spin 1;

vitational field and (T"") „,„. „„is the remaining
finite physical part of the matrix element. Re-
normalizing &Tv"&d„away also gives us a renor-
malized (T'")„,,

+&T "&ac tt

a, {x,x') =

a~(x, x'), a biscalar for spin 0,

&~(x, x'), a bispinor for spin

a»„, , a bivector for spin 1.
(3.13)

to be used as the source in Eq. (4.2).
How do we find out what &Tv")«, is? We do this

by applying Schwinger's regularization prescrip-
tion using the covariant geodesic point-separation
methods proposed by DeWitt. " He shows that

We now can see that &Tvv&mmrlx is divergent.
As x' -x, the length of the geodesic goes to zero,
so that a-0. Thus, G'"-~ because of terms
such as c ' and L Since. (T"") „, is constructed
from G'" and its derivatives it is also divergent.

(gravy 2 -I/2 off
imatrix = 4' ~ )

Vgpp

where

W,« -= iln(out, vac-~ in, vac)

(4 8)

(4?}

IV. REGULARIZATION AND RENORMALIZATION

In Sec. II we looked at &T""),m„defined using
Eq. (2.5). Here we are really interested in finding

(T ")„,—= (in, vac~ T "~jin, vac), {4.1}

the vacuum expectation value of the stress tensor
in the vacuum state defined prior to any dynamics
in the background gravitational field. This quan-
tity, properly regularized and renormalized,
gives us all the information we want about par-
ticle production and vacuum polarization. It is
the object we choose to use as a source in the
semiclassical gravitational field equations,

G vv &Tvv& (4.2)

&T"")vlv = &T "&matrm v &+ )f /nits &
(4.3)

where &Tv")«,«, is zero when there is no particle
production, is alseays finite, and satisfies the
conversation equation (T"")„,«, .„-—0. The di-
vergences appearing in (T "),and (T &mmgm are
identical. Regularize (Tv") „,„and you have re-
gularized (T"")„, Regularizing .(T "),„gives

(4.4)

when doing a back-reaction problem. -" So why then
do we need to calculate (T ") „, ?

The answer to this question (and many others)
can be found in DeWitt's work. " He shows that

is the so-called effective action. He also shows
that

5W I „fd'x
&A'I v &O'P, f

, , „5E(x,x")
=2g Tr a x

5g„„

x ([P(x"), 0 (x)]Q „, ,

(4.8)

where Tr means trace over the suppressed spinor
and vector indices and the anticommutator is re-
placed by a commutator for spinors. If we per-
form point separation on the right-hand side of
Eq. (4.8) we will obtain Eqs. (2.'I}, (2.19), or
(2.30). Thus we see that the divergences which
will appear in the right-hand side of Eq. (4.8),
found by studying G'", are exactly the same as
those obtained by functionally differentiating W, f f.
Eliminating the divergences on one side of Eq.
(4.8} will make the other side finite as well.

DeWitt (see also Ref. 5) goes on to find that

L,« ———lim ~ Tr —[g' 4(x}G"'(x,x'}g ' '(x')]

(4.9)

(4 -' and 0 held fixed), which may be written in
terms of G,

L,« —Imlim Tr [g' '(x}G(x,x'}g' '(x')].80
where (Tv")d& contains the infinite pieces which
we will renormalize mvay by adding infinite coun-
terterms onto the classical action for the gra- Now using Eq. (3.3) this becomes

(4.10)
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eff, ren eff div y

where

(4.12)

D"' " ds
L,ff lim Tr, , exp -i m's —

232m', s' 2s

x Q(x, x', s), (4.11)

in four dimensions.
Schwinger's prescription tells us that the re-

normalized effective Lagrangian is"

"ds
L« =-limTr

~ 2 3 exp -i
div 32g2 S3x'~x 0

g I

2

2s

x [a,+a, (is)+a, (is)'].
(4.13)

The a„a„and a2 are the expansion coefficients
determined by Eqs. (3.6) and (3.7).

From Eqs. (4.9) and (3.11) we can determine the
form of L«, . We find

1./ 2 2 4

L«, =lim Tr, a, + — — (y+~ln~~m o~)+ —„m
D 1 yn m

2

+a, + (y+21n~2m'a~)--, 'm' -2a'(y+-,'In~-,'m'o~),
„20' 2

which we can use to find

(4.14)

Wd, v
—— Ldi,d X, (4.15)

and then

(T"")«,-=2g '~'6W /6g (4.16)

The normal procedure now would be to absorb W«, into a classical gravitational action of the form

S = g' %0+K +a0 R R ( —3R')+P d X (4.17)

by renormalization of the bare coupling constants Ao, x„a„and P, Unfor. tunately, Eq. (4.14) is not ob-
viously of the same form as Eq. (4.17). If we expand D'~', Trao, Tra„and Tra, we find that

—,
g'~' ' + —C,(s)m'+C, (s)R+C, (s)R„&div 8&2 0' (T

+ [C,(s)m'+ C, (s)m'R + C, (s)R"t"'R„,„,+ C,(s }R"tR„&+ C, (s }R'+C»(s)CIR](y + —,
' ln

~

2m'a
~

)

+ C„(s)m'+ C„(s)m'R+ C,~(s)m'R„~

( tf a
p v z 0' 0' 0' 0'

,4(s) (288 R~qR„, y ~~ R „ t Rp„„+80 Rz c.„g)

OX+C,5(s}[—+~()R„pR ~+ 860 R Rp„~~+ 24OClRg~+ C~ (6s)R~~"„R „+C, (s)R,„],(4.18)

where the constants C, (s) are functions of the spin
s. The direction-dependent terms cannot be ab-
sorbed into Eq. (4.17) without special treatment.

One of the main advantages of the point-separa-
tion approach is that, unlike dimensional. regular-
ization, we never need to know the mode func-
tions outside of four dimensions. However, this
advantage is also the cause of the complicated
form of I «, in Eq. (4.18). In dimensional regular-

ization there is one regularization parameter a
=—n -4, while in point separation there are four.
If we write a'= Et', where E is the geodesic length
and t' is parallel to a' but normalized to +1, we
see that the regularization parameters are E, t',
t', and t'. To eliminate three of the parameters
we can average over direction in the manner of
Adler et al. (Ref. 19). With the averaged
products



REG U LARIZAT ION, REN OR MALI ZATION, AND CO VARIANT. . . 953

and

(oncet) 1ognc We want to find the expansion of G"' and its de-
rivatives in terms of functions at the point x and

the tangent to the geodesic a''" =o". To expand
a biveetor such as G"'"", for example, we form

(4.19) I G(I); yX'
C )t (5 1)

the direction-dependent terms become combina-
tions of R, R', R"~R„& —3R', and R"4"'R„&„,an
may, after use of the four-dimensional Gauss-
Bonnet theorem, be absorbed into Eq. (4.17) to
produce

I/2[g
nrnv, ren g [ ren+ reJ

+ ci„n(R" R„q —nR')+ P„nR ]d x,
(4.20)

where the renormalized constants must be deter-
mined experimentally.

Note that we will never do an averaging in the
actual calculations. It is presented here only to
show the underlying similarity between regulariza-
tion methods.

This process leaves us with the finite quantum
action W,« „,whose functional derivative will
give (Tn") „„„,„and then using Eq. (4.5) give
(T"")„„„.We have eliminated (T"")n,„by renor-
malization. This whole process is totally equiv-
alent to simply subtracting (T"")n„ from (T"")„„.
Since both (T ")mnnm, ,en and (Tn")rm;„are conserved
by construction, (T"")„„„,„will, by definition, be
conserved.

How do we find the detailed structure (T"")q„. ?
There are two possible paths. We may functionally
differentiate Wdiv using Eqs. (4.14)-(4.16) or we
can put the expression for G'" in Eq. (3.11) into
Eq. (2.7), (2.19), or (2.30) and then pick out the
pieces which are constructed from a„a„and a,
and of order m', m', m', and lnm'. 'These are
the only terms which ean arise from the functional
derivative of Eqs. (4.14) and (4.15). The only
reason we will choose the second path is because
it is conceptually simpler than trying to func-
tionally differentiate W'eff. In Sec. VII we will show
how one might carry out the first method.

Recently, Wald, "using a very general axio-
matic approach, has shown that the point-separa-
tion approach will give the unique vacuum expec-
tation value up to the addition of arbitrary con-
served local geometrical tensors (the usual re-
normaliz ation ambiguity).

V. FINDING(L ")~.,„

which is a contravariant tensor of rank two at x
and a scalar at x'. T' he object g"„, is the bivector
of parallel displacement which has the effect of
transporting in parallel the vector-at-x' part of
G"'"" along the geodesic between x and x' back
to x. When this is done we can expand expression
(5.1) in powers of oe.

The procedure we actually follow is to sub-
stitute G'" from Eq. (3.11) into Eq. (2.7) and then
expand each bitensor using the series expansions
on page 2497 of Ref. 9 and in the Appendix of this
paper. We then collect terms in powers of O'. Fi-
nally we pick out the terms built from ao a1 or
a, and of order m', m', m', or lnm'. We call
the collection of these terms Tn;„"[x,o'] and we have

(T" )n,.„=lim Tn;", [x, o'] .

See Eqs. (5.5)-(5.8) for the results.
Spin &. The procedure in this case is almost the

same as the spin-0 case. We now have 9'" and
8„8„and 8, in Eq. (3.11). We substitute Eq.
(3.11) into Eq. (2.19) and expand the parallel-
transported bispinors. The expansions are dif-
ferent of course.

In the scalar case, Eq. (3.7) implies a, (x, x' )
= 1 for all x and x'. But in the spinor case the
solution to Eq. (3.7) is the bispinor of parallel dis-
Placement 8(x, x'). Thisobjectparalleltransports
spinors from x' to x. We have tt, (x, x') = 8(x, x&)
and 8(x, x)=1. Equation (3.6) for spinors is

(5 2)

Following the expansion procedure in Ref. 9 and
using Eq. (2.11), we obtain the expansions of the
bispinors listed in the Appendix. Note that in
calculating an object such as 8,'"" say, we form

8+v

first. The 8 parallel transports the spinor -at-x'
part of 8, back to x and the g"„, does the same for
the vector-at-x' in the eovariant derivative.

Now collect powers of a' and perform the trace
on the y"'s and 6& ~, matrices which appear. We
need the relations 'Try "y' = 4g "',

Now we will find the explicit form for (T"")~;„
for the three spins.

Spin 0. As was done in Ref. 9, we use Eq. (2.7). and

Try'yeGt aiR~„= 4R"„,
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Tr'Y "&'G(ug&G (rg&R', PR"'„,

when we take the traces. Once again, pick out the
terms which come from I «, to obtain

(3.6) and (3.7}. For spin 1, the solution to Eq.
(3.7} is a,„„,=g„„.the bivector of parallel dis-
placement. Now lim„, „g„~=g„„, the metric.
Equation (3.6) becomes

(T"") „=lim Tg[x, o ']
X ~X

given in Eqs (5..5)-(5.8).
Spin 1. This is the most difficult case. In Eq.

(3.11},we now have the bivectors G'"„„.and

a,„„,. Consider Eqs. (2.30b} and (2.30c). To ex-
pand these objects we must form g,' G B& p,

Bg PP (j) p'G(l)A Cp ~ TB';e'p'~ CT Cp ~ BT';ap'~
B' e" ( l) B' a' (l)

RB fa G TB'pe ~ fB G ~ aB &
and fe G Be ~

But there are two relationships between G'".„„.
and G"),"

G(l) g + = -G(l)
pu 'u

G(l);u' G( 1)
Qu g4

which is we put then into the parallel-transported
forms of Eqs. (2.30b) and (2.30c) give

(T""&„„g,+ (T""&s,.„==,' g
'" lim G"',",

g ~X

= ——,'m'g'"limG'", . (5.3}
X ~X

This simplifies the calculation greatly.
Now define

B'r (l)
wveB @v EB G gu' ', aB' g

G B -gB G aBP ~
(1) B' ( 1)

This gives the parallel-transported (T"")

(Z uv) l&m [G &uv G vu Guet Gvua
Maxwell 4

X ~g

Using the usual commutation relations for covari-
ant derivatives and the method of expansion in
Ref. 9 gives the expansions for g„„,, a»„, , a»v,
and their derivatives. These are put into Eqs.
(5.4) and powers of oP are collected. The terms
which arise from L«, are picked out and we again
have

(T"") -=lim T""[x a']

The results are in Eqs. (5.5)-(5.8).
In the calculations above the following relations

are very useful:

RurBa 1Ra RvaB r
aBr eBr

~a QB zpa ABR peBa R pe aB

Re"' =Ca" --'R'" +RaBR4
PgaB P 2 P epB a p &

g}to f
Ru . " =(R '«"-R '" —R R"gia (aea & Xg k g X ee

pl

+R" R+egg&(P
Ru v &R ( Rv &u Rpv )(aea )

1 g &Kg (a a)P
p p

After a great deal of algebra, we finally obtain
the expressions for (T""&g;,. The notation is

- coefficient for spin 0 ($ = —,
' ),

- coefficient for spin —,',
- coefficient for spin 1

and

G}trav Give Go% u Guk g ~(l)~v -l/2 l/2R2d 45
g X IJ

(G k P G P&) uv]

(T "&geuge +(T "&ghee& = -em'gu" limG"'
X ~X

(5.4}
H(2)uu -l/2 l/2ReBR d 4~-g — g eB X ~

The results are

(Tuv& = lim [ &mg(G&&&uv G&~&vu guvG&&& g)

+ —,'m'g""G'" ]

TO determine the eXpanSiOnS Of G„u B and G'"„„
we need to use the recursion relations in Eqs.

1 j +P u

uee 2

(5.5)
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1 1&7""~ . = lim)die,quadratic 4tta g p~
X ~X p

2
3

lk v g v)gX
"v+R —4R " +-R ""——R" "

&4 gpssp p p p-

O
0 g V g V )g )) g )lg g g g g v

+ 2--Rm g —2 +RR „-—,'R„d (, ),
QV (v

tX 0'p O' Cfp 0'p

2

(5.6)

1 1
(T )divdcgarithmic 4tta ) ]20g'~x

12

0 t

[H(ntnp tR(t)nrr +
2 RGnp 1
4

1

(5.7)

1 3
)die, tmite 1™

4 2 (x' ~x

0

2 gPV+R

1
720

R~«& + 2 R~~R +4 XgR
-13 88

0

-25

R'+
V

3 OR
cr per

p

-18

2

-14 2 -8

1
180

1 R ~ R~ ~+

44

v)( )L( fgg

(~'tT, )'

1
180

p v 1-12 R
)) ~"' 36

0

v-1 R„cR " '+ 180
~&g 4~kgg

((r 'cr, )'

1 1 1 e g
0' lT (7 0'

~ v
0' (T

v
-2 (—,+„., „+—„R 4R„~—,+ „4R 4,) . . ., p"" 4, )(& &p) 0' (Fp

1 g&g C

72
0 (2RR&. «+RR&R«+R „ tR &, ) tr4 p 42 g(0' 0'p)
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0 0
1 ~ 1 1

+ —— 0 m'R„g +—
0

c '72

-24
4

0'
1 elr ~v+
8

0 ft ~&eey( n0' 0'p
(5.6)

Note that as in Ref. 9, we have eliminated odd
powers of 0' by forming

(T"")„„= iim (Td;„"[x,o']+ rd„"[x, o']) .

The notation (T"")definite seems a bit confusing
perhaps. The 'div, finite" means that these are
finite terms in the stress tensor which arise from
the divergent part of W,«, namely 8'«, .

Many of the terms in (T'')«, have coefficients

0

This is an infrared divergence. We cannot include
this divergence in L«, since it would also make
Lf ff en infrared-divergent. So we put an upper
cutoff on the integral by introducing a factor
e '" '. This makes the integral finite and allows
us to write Eq. (4.14) as

X/2

Ld„=lim Tr 8, [a,o '+2a, o '
e~x

2a,(&+2»l-'g'I)] (6 2)

2-
The first is (-1)"times the number of helicity
states for each spin while the second is (-I)'~s'.
%hy these particular dependences on spin occur
is not completely understood as yet.

VI. THE MASSLESS CASE AND ANOMALIES

Tr —e" "a (is)'ds
S3 2

0
(6 1)

in Eq. (4.13) not only diverges at the upper (s= 0)
limit when x'-x but also diverges at the upper
(s=~) limit even when x and x' are separated.

As we can easily see the massless field pre-
sents a special problem. In the expressions for
(&"")d„we find that all the divergences and finite
subtraction terms have smooth m-0 limits except
the logarithmic divergence. The H"'""—3H"'""
term blows up. If we go back to Ld„ in Eq. (4.14)
we see that this term comes from the functional
derivative of the a, term which is divergent as
m -0. This term appears in Eq. (4.14) because
the integral

The cutoff factor p, , which has units of mass, is
completely arbitrary. Suppose we write p. = p, '(p/
p'), then

(6.3)

The finite a, lnl(p/p, ')'I term only contributes to
the renormalization of ~, in S„,„„,„. No extra
terms are produced in (T"")d;„or (T"")„„,„.

The (T"")d„for a, massless . field is the same as
in Sec. V with m set equal to zero everywhere
except in the lnl~m'ol factor in the logarithmic
divergence. There m becomes p. . Note that exact-
ly the same sort of cutoff factor appears in the
order regularization methods where the symbol
for jt js f( g Z' or p,

For massless fields of spin 0 (( = &), spin —,,
and spin 1, the classical theory is invariant under
conformal transformations of the metric, i.e. ,
g „-0'(x)g„„. This symmetry carries over to the
stress tensor making it trace-free. In the quantum
theory, the renormalization process causes the
trace of the stress tensor to be nonzero. This
trace is called an anomaly. "

We can see the form that the anomaly will have.
The trace of (T""),,„ is
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-1
'—n n(v 3880))2

C' —" (R"R '-R2)
0tg 3

62 ~

+ 3 R (6.4)

Thus, since the trace of (T'")„,„. is zero by con-
struction, the trace of (T'"),,„„„must be the neg-
ative of (Tn, )g.,„ in Eq. (6.4).

We might ask why we cannot keep conformal in-
variance by adding more finite counterterms to
Sgvnvgvn in such a way that (7» )„„,„ is zero. The
reason is that such counterterms must be non-
local (see Ref. 10). There are no local action
functionals whose functional derivatives with re-
spect to g,„will give stress tensors whose traces
are C' or R ~R

8
—3R'. The R term's status as

an anomaly is still vague. There is a local action,

It is an interesting and relatively simple exer-
cise to find the form of the anomaly for arbitrary
dimensions. We will confine our discussion to
theories which are classically conformally invari-
ant in all dimensions.

The anomaly arises because of the logarithm
term in Ld;„. We can find the form for this term in

any dimension. Looking to how we found L~;„ in

Eq. (4.16) we see that the logarithm term arises
from the aggln~-, )n'o

~
(or ag(/ln~-, -)g'a

~

for mass-
less fields) term in G"' when we differentiate with

respect to o fEq. (4.9)].
Consider Eq. (3.10) which gives G in arbitrary

dimensions. Suppose n is odd, then

for n= 3, where h,"„'»/„ is a spherical Hankel
function of the second kind of order — (n —3). The
asymptotic expansion of h('„', »2 is

~(2) ~(n+1)/2Z-1eie
(n-3) /2

whose functional derivative has a trace proportion-
al to R. So by adding an R' counterterm we can
eliminate the ~R trace. To further confuse the
issue we find that in the spin-1 case, dimensional
regularization gives 1221R in the anomaly instead
of -18CIR which both zeta function and point separ-
ation give. All other anomaly coefficients are the
same in all methods. We know why dimensional
regularization gives a different answer. It is the
fact that unlike the spin-0 and spin-2 cases the
spin-1 theory is not conformally invariant for
arbitrary dimensions. The n -dimensional manip-
ulations of the effective action force extra. R'-
type counterterms and therefore an extra 30 R
anomaly term to appear when continuing back to
four dimensions. (See Hefs. 5, 6, and 11 for more
details. ) Only with new physical arguments, such
as those presented by Horowitz and Wald, "will
we know more about what the ClR anomaly should
be. At present we will accept the value predicted
by our method.

We see immediately that the H(2/)2 ((z) has no log-
arithmic terms and therefore there is no possib-
ility for an anomaly. Hence we have"

(T (v}vncpen = 0v

for all odd dimensions.
In even dimensions, the situation is totally dif-

ferent. Using the definition of H(/)2, (z),

H„'/'2, (z) = J„/2, (z) -i Y„/2, (z), (6.5)

from Eqs. (3.10) and (3.1}. Now we write the ex-
pansion of F„/2, (z),

where J„/2, and F„/2, are Bessel functions of the
first and second kind, respectively, and z' —= -2m'0,
we get

2~x'/' k

)( (&2) (n/ 2-() /21
n/2-1

y' (&) ( 2&)-(n/2-(&))-l Q ' 3-2((&2})+ 31.-n/2&-( ln
(

2 ~(&2)(n/g-l)/2 + ( /

ltI'n 2+l

31 n/2 l( 2)(n/2 l)/2 ~ [P(! 1) y( /3 /) ]
'( ) ( )
f!(n/3+l —1)! '

and note the log term in the second term on the right-hand side. In Eq. (6.6) this takes the form
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2m''~' k

G"'(x x')= o' " ' a (2o)' 2' " 'v 'ln~-, s'~(z')" ' '
(4v)n/2 k sx2

{ 1)l2 2l( 2) l

x g. . . +nonlog terms. (6.8}

If we do the differentiations in Eq. (6.S) we obtain

(1) 2vn 1 /2 1 1 /2 ll
(-1}'2" (f+u~2-1)' 2 l ken/2 1 L 2

G (X,X )= (4- )„/2 2 1T o " Qa~(2IT) Qf( ( g2 ) ( ~ 1)( -2m o) ln~ m

+ nonlog terms.

D'/'(x x')
L„„&,„lim Tr , ——— , ,„'/, a„/, (x,x')

x'~x

x in~-.'m'o(x, x')
~

. (6.9}

This leads to the anomaly (for m - p)"

We now find the term which is oln~2m'o~. Count-
ing powers of 0 we find that only when l = 1 will
we find such a term. We must also have no nz's
in the term so we require E —0+n! 2 —1=0. %'ith

/=1, this gives k=n/2. Finally,
g1l 2( I)

G"'(x, x') = —
(4 )„/, a„/, (x, x')oink am'o~

+ non-o ln
~

2 m'o
~

terms,

which gives the log term in I.d„

tain &T'")~;„. Finally, we will discuss calculations
in other dimensions.

In several recent papers, the method for finding
(T"")„,,„, in various cosmological models has
been given. " The method described in those pap-
ers will work in all cases if certain pieces of in-
formation are given. 'The first bit of information
is the definition of the vacuum state

~
in, vac). As

we said in the Introduction, this may not be easy.
Let us suppose that through perseverance we dis-
cover a complete set of mode functions u, (x) which
we find give a. physically reasonable

~
in, vac)

state. It is then easy to show that if we expand
the field operator in terms of creation (a,*) and

annihilation operators (a, ) as

P(x) = Q [a,u, (x) a,'+u,*(x)],

1
&T' w)vgc, ren= sw xg/2 Tra~/2(xyx) ~(4'�)

As a check, for n=2

1(T",)„„„„=4
Tra, (x,x),

&ed fOr l&=-~

(T",)„„„„=-,Tra, (x,x),
1

(6.10)
then

The Z, in Eq. (7.1) represents a sum (when i is a
discrete index) or an integral (when f is continuous)
over all modes. T'"[u, (x), u,*(x)] is constructed
by substituting u, and u,* in for the p(x)'s in Eqs.
(2.4), (2.16), or (2.26).

We already know that

in agreement with previous calculations. Note that

a~(x, x), for spin 0,
&l,(X,X) =

~

~

~TrQ, (x,x) for spin ~.

Spin 1 is not conformally invariant in all dimen-
sions. "

VII. DISCUSSION

('f. 2)

when we eliminate the infinite (T ")q;„with infinite
counterterms. We also know the forms for

(T""),„=lim T,"„"[x,o'],
x ~x

from Sec. V. We use this information in the fol-
lowing way. Take (T""), in Eq. (7.1) and form

(T"")„„=—,
' lim g [T""[u,(x), u,*(x')]

In this section we will look at three subjects.
First, we will outline briefly how to use (T"")d;„
in a practical calculation. Second, we will show
how we could functionally differentiate Wd» to ob-

+ T""[u,(x'},u,'(x)]
-=lim T„",",[x, o'],

x ~x
(7 4)
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being very careful to make the point separation in

exactly the same symmetrical manner as Sec. II.
Calculate the mode sums (usually a gruesome
task) if possible. Expand the sums in powers of
o'. Now because (T'")d;, contains the divergences
and finite subtraction terms which are renorm-
alized away, if we form

(7.5)

we will have the finite result of Eq. (4.5). The
lim„. „ in Eqs. (7.5) becomes superfluous since
we will have no terms left which depend on o'
and which also survive in the coincidence limit.
'This procedure is quite general and will work for
any quantum field or background field so long as
we can define an

~
in, vac) state and do the mode

sums.

Next we consider the possibility of finding

(T ")@„by functionally differentiating. DeWitt"
has shown that

+terms of order (a')' and higher.

(7.6)

Consider the scalar field where a, = 1. Remember
that D'~'(x, x') =g'~'+terms of order (o ~)' and

higher. Let us look at the direction-independent
terms of line one in Eq. (4.14) which are

8m' g '"[a '
—,'m'a-' ——,'m'(y+ —,

' ln
~

2m'a—
~
)

+ —,', m']d'x. (7 7)

Making a variation of g, „ in Eq. (7.7) gives

(6g"'[o ' ——,'m'o ' ——,'m'(y+-, 'ln(-,'m'o))++m']+g '"[-2o ' 6a+'m'o '6o —Bm'o '5o]]d'x.l8r2

Using 6g' '=
~g

' 'g""6g„„, Eq. (7.6), and the definition of (T"")~,„gives

4 o"
, m'g""(y+ ~ln~~m'o)+, m' g"" ——, +higher-order terms in o',

which are exactly the same as the terms which ap-
pear in Sec. V. The anomaly comes from

Varying g, „ in this term gives one finite term from

mensions. fn Eq. (6.6) we give the expression for
G'" in arbitrary dimension. To find (T'")&;„we
simply follow the same procedure as we did in

four dimensions. We need only be careful to take
into account terms such as $(n) and remember that
g""g „=n. In dimensions higher than four, the
calculation would be extremely long and probably
would have to be done on a coinputer.

V

327' e-. 0' 0'p

So the trace term in the finite part of (T"")~is

1 o Pgv
, lim a, (x, x')

167t' „, , ' v'o,

exactly as in Sec. V. In the massless case, this
is the gnly finite non-trace-free term which arises
from the functional derivative of L«,. The rest of
the terms in Sec. V come from the expansions of
D' ', a„a„and 5o' of higher powers in o'. As
far as we know, the expansion for 5o has not been
calculated. %e hope to carry this out in later
research just to prove that it can be done and find
(T~")e, in another way.

Finally, a few comments on (T"")d;„ in other di-
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APPEN DIX

Here we present the expansions of the various bitensors used in the text which did not appear in Ref. 9.
The methods us ed to find thes e expansions can be found in Ref s . 9 and 29:

1 ( P 1 P & 1 1 1
6RPP& + 24 ( up;7+ PT u) (4o up; + 4o pT;0 + 90 u p

+ —,', R„,R,„+„',R,—"R„„„)ops'("+ ~ ~,

g p$ 6 Bg + 12 (R vp p + R R p g )0.1/2 p

+ ( 40 "llui pT 240 "pTi uv 80 "pTI su 20 "4p«v r'30 "vpi l«T 72 "av pT

36 yp VT 360 g VPXT 360 v Mphil 90 g v Xpf~

P ~ ~ ~ ~
90 Rl«gv1(T 90 R ll Pu(17 + 360 RP1R uv7 360 R p1R vu 7)(( + +

Cg geh' g eg g

p 1 ~ P & - 1 / u u n& 4 p
gB ge)I '; g 2 eggp + 6 "eg gps, g 24 I( eBg p; gg + eggy VV gJ

gg 1 a p P ~ 1 fa n ~)I 1 P & ~ ~ ~ ~
Qg Q~ ge$ ' f 2 egyp+ + 3 ~&eg~p'p+ + 24 (3&&eg gp' zg +&+eg&PR zp )+ O. + +

A gV genug &
gg»~ "eBgV 6 i~ "eggP&V ~w~ggV~ Pl + 4 12 r ~~ gPg VZ + 24 reeByV3' PT + 24 roe& &Pre gV&
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