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We introduce a simple phenomenological framework based on approximate factorization properties in the

direct and crossed channels of diffractive processes. Observed gross features of diffraction then become

related to gress features of diffractive states. From the observed slope-mass correlation it emerges through
this framework that crossed-channel factorization is broken; increasingly massive diffractive states become

increasingly transparent, and strong absorption for these states progressively weakens.

The outstanding experimental features of in-
elastic diffractive processes appear to be the weak
energy dependence, the slope-mass correlation,
and factorization. "Details emerging from recent
experiments have refined these features consider-
ably and have added new ones such as helicity
dependence, detailed mass distributions, dif-
fraction dips at low mass, slopes at high mass,
and better estimates of total diffractive cross sec-
tions.

Theoretical attempts to describe the data include
absorbed Regge- Deck, ' Regge- Mueller inclusive
models, "quark- gluon, "eikonal, "and other
models. " Generall. y such models do well. on the
gross features and some details. On any parti-
cular process, especially exclusive processes,
the state of phenomenological art is such that
one or more of the models is always able to ac-
comodate most features of the data. They all have
something more-or-less fundamental to say about
the reaction mechanism.

However, one is left with the unsettling feeling
that, after all, we do not understand very much
about why diffractive processes behave the way
they do, perhaps because we are lacking a precise
picture of the diffractive states themselves. We
would like at least to know something more about
the average nature of diffractive states which can
be reached through the dissociation process.

On the crudest level one might guess the p~ is
something like the p, but is it really bigger at
low mass and smaller at high mass as the slope-
mass correlation would seem naively to imply?
What is its transparency? What is its cross sec-
tion for scattering on a proton? Some under-
standing of these things is clearly desirable, since
some are almost measurable. ""

Ultimately, there is a range of dynamical prob-
lems which involve diffraction indirectly, such
as the strength of strong absorption and the nature
of the Pomeron singularity, which bear on theo-
ries such as Reggeon field theories, "dual Pomeron
theories, "and quantum-chromodynamic (QCD)

theories. " Of course, it may well be the other
way around, that these theories will ultimately
tell us everything about diffraction.

In this paper we introduce a simple phenomeno-
logical framework based on some assumptions
about the approximate factorization properties in
the direct and crossed channels of diffractive
processes. The advantage of doing this is that ob-
served features of diffraction become related to
gross features of diffractive states. Some un.-
expectedly good results follow from the observed
slope-mass correlation, namely, that massive
states become increasingly transparent, crossed-
channel factorization is broken, and strong ab-
sorption (which becomes calculable in principle
here) vanishes for high-mass states. The main
defect is that the strong-absorption calculation
may require do/dM for single diffraction dis-
sociation to fall too fast as compared with ex-
per iment.

To begin, it is worth pointing out an intriguing
consequence of including absorption in Regge-
Deck or Regge-Mueller descriptions, namely,
that absorption breaks factorization. Now since
models without absorption fail to predict the slope-
mass correlation correctly, the observed sharp
decrease of slope with increasing mass at low
mass must be dug in l.arge part to absorption.
Consequently, we might expect a rather consider-
able breaking of factorization in some cases in.-
volving low-mass states. At high mass, since ab-
sorption presumably weakens, factorization should
be better. Overall then, factorization might be
considerably better than 20%, and in fact some
say as good as 5% at small enough t."We note,
however, that not all consequences of factorization
are broken equally by absorption. For example,
the relation

do' do
«(pp-pp) «(pp-p;p:)

do' do= «(pp-pp;)- (pp-pp8 (i)
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may be approximately valid even for low-mass
P*'s for both experiment and theory (e.g. , absorbed
Regge-Deck). The kind of factorization which is
expected to be most severely broken by absorption
is related to line-reversed reactions, but this
kind of breaking is not readily testable for dif-
fraction since diffractive states do not make good
experimental beams or targets. Consequently, in
the following we will not assume that factoriza-
tion is even approximately a general symmetry.
We will be assuming factorization to be approxi-
mately valid only for Eq. (1), which is just an ap-
proximate empirical statement on one row of the
T matrix. Factorization may be badly broken on
other rows.

We now turn to the size of the diffractive cross
section. Rather carefully analyzed data from
CERN ISR show that the diffractive cross section,
including elastic and inelastic diffractive pro-
cesses, is fairly close to half the total cross sec-
tion. " In. fact the relation

( 1
diff 2 tot (2)

is a bo~nd in every partial wave if diffractive pro-
cesses have purely imaginary amplitudes" (which
phase we will assume). Models in which this bound
is studied have been the subject of some dis-
cussion recently. " In fact, such studies guide one
to consider the nature of diffractive states at
least qualitatively as to radius, transparency,
cross section, etc. The bound (2) implies, for
example, that inelastic diffraction may be more
peripheral than elastic scattering since (2) is
nearly saturated in the lower partial waves by
elastic scattering alone. This in turn raises
questions about the partial-wave structure of in-
dividual inelastic amplitudes.

While absorption undoubtedly affects the lower
partial waves, especially for the Low-mass dif-
fraction where it is most important, its main
gross effect is to reduce and collimate the angular
distribution, i.e. , it affects the normalization and
the mean-square impact parameter (slope of dk/
dt). The appearances of dips in dk/dt and polar-
ization phenomena are consequences of the de-
tailed behavior at small impact parameters. In
this paper we will be concerned with gross-average
behavior. Consequently, we will refer only to the
gross properties of diffraction. Each transjtion
amplitude will be characterized by a normaliza-
tion and by a radius (two parameters). We wish
to reduce the number of independent parameters
by considering possible relations between them.
Factorization is one example of a set of relations.
Another example, and one we wish to consider
rather seriously, first appeared as a mere device
for discussing the bound (2)." In this example,

Then the bound (2) reduces to the trace condition

(4)

Normally, one would not expect any such s-
channel factorization, except for resonance-pole
amplitudes at low energy, so that the choice (3)
would be merely an illustrative one. Crude eikonaL
models factorized in the s channel have been dis-
cussed in the context of asymptotic saturation of
the bound (2),"and thermodynamic models of pro-
duction processes are on occasion assumed to
factorize in the s channel, but these discussions do
not lend much theoretical support to the idea that
(3) might be a general asymptotic symmetry.
However, it is conceivable that in fact s-channel
factorization may be a useful approximation at
least as a device for studying the breaking of t-
channel factor ization.

It is important to point out as early as possible
in this connection that an inevitable consequence
of having both s- and t-channel factorization is
that all diffractive processes have equal ampli-
tudes and slopes, ' in contradiction to experiment
at least up to ISR energies. Since t factorization
is broken perhaps mostly in the low-mass regime
where diffractive slopes are not equal, it is sug-
gestive that the two effects are related. In this
work we will relax t factorization slightly in order
to accomodate the slope-mass correlation. , and
assume s factorization is generally valid.

In the following, we will work out the con-
sequences of assuming limited t factorization as
in (1) andgeneral s factorization as in (3).

We will parametrize the amplitude for the pro-
cess i-f near -f = (t'=0 as

T(f Cjf exp(-Bjf &'/2)

or in impact parameter, using (3), we obtain

T(f {b)= (A(A f) exp( b /2B(f) (6)

where A, = k, (total)/4((B( and (3) gives

B(f ——2B(Bf/(B, + Bf),
C(f (kj B( kf Bf) '/(B( +

B f) .

(7)

(8)

The cross section for i -f, neglecting kinematic
factors of order unity is

0'g (Fg

8(j(B(+Bf) '

Now, limited t factorization (1), with the as-
sumption of purely imaginary amplitudes, gives

the s-channel partial-wave amplitudes are allowed
to factorize, e.g. , as

(3)
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T(PP-PP)T(PP- mn) = T(PP-Pm)T (PP-PN),

(10)

which gives the following relations among the co-
efficients C,~:

o»o „X „/(1+X „)'
= 4' op„Xp Xp„/[(I +Xp )(1+X„)]; (11)

and for the slopes X „=B(mn- mn)/B(pp-pp)
we obtain

(12)

where by (7) the left-hand-side of (12) is equal to
X(pp-mn). Finally, inserting (12) into (11) re
suits in

4(X ~„„)' '(1+X )(1+X„„)
(2+X +X„„)(X +X„„+2X~ ) (13)

From (12) it is apparent that whatever the value
of X„„, the value of X(pp- mn) will be bounded
both above and below. For single dissociation the
bounds are

~
& X(pp-pp*) & —,

whereas experimentally these bounds are nearly
realized. The single-dissociation slope falls from
about twice the elastic slope to about half the elas-
tic slope as the mass M(p~) increases from thres-
hold to values above 2.0 GeV/c'. This slope ap-
pears to remain constant at about half the elastic
slope up to very large mass M(p~)- 5-6 GeV/c'.
Thus the bounds on the slope are reasonable, and
the fact that the bounds become nearly saturated
experimentally can be exploited further. For
example, X„„=X(p*p*-p*p*) must fall from large
to small values as M(p*) increases from threshold
to 2.0 GeV/c'.

Whether the lower-slope bound at high mass ever
becomes exactly saturated is a, question of some
interest. Inclusive phenomenology would indicate
probably not, for if so, the Pomeron slope n~
would vanish and the "Pomeron-proton" total cross
section o,~ (M', t) would become independent of t,
implying a constant triple- Pomeron vertex. One
expects the following on a simple factorized Regge
model at high mass":

~ Bo+ 2as' ln(s/M')+ Bs»
B + 2n~ ln(s/s, )

where B»~ is the logarithmic slope of the triple-
Pomeron coupling, and B, is the logarithmic slope
of the ppP residue. Consequently, if +~=0, X»- —,

' + B»s/B„otherwise Xss wilt ultimately vio-
late the model bound. With a~=0, X„„-B»p/
(B, B»s). Data' g—ive XsD=—0.6, B»~= 1.0
GeV ', a.nd X„„=O.j..

In summary, this framework and its bounds are
asymptotically incompatible with a triple-Regge

to

o»- -' (o» o„„/X„„)'"at low mass
3

(14)

(15)o»--' (o»o„„x„„)'' at high mass.

Consequently, at low-mass o„„/X„„-constant,
or else o» and hence by (9) also o(PP-Pn) would
be very small. The upper bound on (14) at low
mass is from the unitarity bound on (6):

o~ ~ —4wBpp,3

where B» is the pp elastic slope.
At high mass, the unitarity bound on (1'5) is

(16)

g „s—' 4mB„„, (17)

where B„„,the nn elastic slope, is getting very
small. Thus not all diffractive states can be of the
same opacity (o/4'), since in the same high
mass limit B~„~ 3 B~. That is, a~„can and does
get vanishingly small but B~ cannot. ""

At low mass (14) and (16) lead to a similar limit
and bound on the dissociation process from (9):

o(pp ptE) s (Tp„o»/4sB»

a(pp —pn) ~ 3 o»,
whereas at high mass (15) and (17) lead to

(18)

(19)

theory in which a~ is nonvainshing. However, in a
world where as' is known to be small (a~ & 0.2), it
may be that the Pomeron slope arises from the
breaking of approximate dynamical symmetries
such as the ones we are discussing.

Just as the variation of X leads to dissociation
slope bounds through Eq. (12), the variation of
o „limits the behavior of the forward amplitudes
C,f through Eq. (13). Let us investigate this be-
havior qualitatively for single dissociation (m = p,
n = anything). Since the slope bounds are nearly
saturated, X„„varies from large to small as the
mass M(n) varies from small to large. In (13)
o~ varies from
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v(PP Pn) 8 o'q„(x»/4vBpq,

v(PP-Pn) & 4vB„„.

In genex'al from (13) and (9) we obtain

(20)

(21)

which by (6), (12), and (13} is a calculable sum

once o(M} and X(M) are given.
Nore explicitly, the strong- absorption factor

which modifies the partial-wave amplitude of an in.-
elastic or quantum-number-exchange process is

a(PP P—n) = cr» (A» A„„)'i'X„„/(1+3X„„), (22) $ z -(St $I )i i2 (24)

from which the limiting behaviors and bounds
above can also be inferred. Thus o(PP-Pn) also
gets small at high mass, whereas B(pp-Pn)-

& 8», which is just what we need to describe
the data.

For masses M(n) between the lowest and highest
values we can make the plausible assumption that
diffractive states at a given mass take on average
properties (average total cross section, average
slope, etc. ), so that (12) and (13) apply to those
with in) the average state at mass M. Then (12)
and (13) represent a phenomenological framework
for diffraction. Data on diffraction dissociation
B(PP-PP~) and do/dM'(pp-pp*) can be fitted to
find, from (12) and (22), the "free" parameters
X(M) =B(P*P*-P&f+)/B„

o(M) =o...(~*l*).
Qualitatively we would expect the bound (4) to be

respected relative to the average states, and this
together with the considerations of the last para-
graph imply that both X(M) and o(M) decrease
with increasing mass M. The integral under the
o/X curve is finite by (4) and infact must be small
since at small b, T(PP-PP) saturates most of (4).
This is slightly misleading since we assumed the
form (6), appropriate to (5), valid mostly for
large b where T(pp-pp) does not saturate most
of (4). In other words, with a continuum it is
always possible to avoid demanding small opacities
(implied by small values of v/X} for all diffrac-
tive states. However, v/X must become van-
ishingly small at high mass at least to keep (4)
fin, ite.

Within this new phenomenological framework for
diffraction, strong absorption becomes explicitly
related to diffraction. The vanishing opacity at
high mass, together with s-channel factoriza-
tion, leads to a semiquantitative understanding
of the phenomenon of absorption weakening for the
production of high-mass states. The usual state-
ment of strong absorption is that one has an ef-
fective absorption factor S'=1 —T', where T' is
obtained by summing over all intermediate states
connected diffractively (coherently) to the final
(or initial) state:

Tf Tf

where

S& -—1 —F(b)(Ai) 'exp(-b'/4B&),

F(b) = P (A )'i'exp(-b'/4B ) . (26)

From (13) and (12), with f =m+n we obtain

Af =A

(27)

Qualitatively, we found A must decrease in-
definitely with increasing mass, essentially re-
flecting the bound (4). Consequently, StI -1 so one
is left with only absorption in the initial state at
most. The final-state absorption will vanish like

[ X„„(A„„)'i']'i'for fixed m as state n gets mass-
ive, which from (22) is the same rate at which the
square root of the single dissociation rate
[&x(pp-pn)]'i' vanishes (-1/M). This conforms
qualitatively to the apparent experimental situa-
tion, where the fitted value of the absorption
strength has been shown to decrease with in-
creasing produced mass. " In spite of this good
result, however, if the data, falls off so slowly then
F(b) in (26) would diverge like v s, assuming

Z, fdM' This .must be considered to be a.

serious defect of the present framework. Either
we disagree with the data (i.e. , scaling) or we
cannot calculate strong absorption without a cutoff.

In conclusion, we wish to emphasize the fact that
two rather simple assumptions, general s fac-
torization and limited t factorization, lead to a
viable phenomenological framework for dif-
fractive processes. There is a fair amount of pre-
dictive power inherent in the framework:

(1) Diffraction-dissociation slopes are bounded
above and below. Experimental slopes seem to
saturate both upper and lower bounds.

(2) The observed slope-mass correlation di-
rectly breaks general t factorization through this
framework. The line-reversed cross sections do/
dt (Pm-nP) and do/dt (PP-mn) are not equal.

(3) Experimentally inaccessible cross sections
and slopes for the scattering of diffractive states
off each other become known through this frame-
work from fits to data on diffra, ction dissociation.
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The observed dissociations imply through this
framework that o(p*p) must decrease as the mass
of the p* increases.

(4) Strong absorption becomes explicitly related
to diffraction dissociation. The observed dissocia-
tions imply through this framework that strong
absorption for a p~p state must decrease as the
mass of the p* increases. The rate of decrease is
related to the rate of decrease of the single dis-
sociation cross section.

Many of the same features as discussed here
probably also emerge in a multieikonal approach
to collective high-energy phenomena incorpora-
ting generally the effects of Regge cuts. We will
emphasize just one. Our result that B( pM- pM)
varies from 3B» to B»/'3 as M increases seems
to imply that the proton probes a larger structure
at small M and is being probed by a smaller struc-
ture at large M. Arnold" has found fluctuation
structures in the eikonal picture appearing in uni-
tarity sums and acting as if they were heavy and
small and as if hadrons were composites of them.
It seems plausible that the extent to which eikonal
models do factorize in the direct channel, which
as discussed by Blankenbecler" is crudely cor-
rect, may determine to what extent these fluctua-
tion structures show up as apparent hadron con-

stituents.
Finally, any realistic model of diffraction would

have to incorporate the effects of absorption
(strong absorption) particularly at low mass. The
fact that absorption effects approximately fac-
torize in the direct channel and break the usual
cross-channel factorization will not present any
difficulty in the present approach which already
has these features. The main difference is that
the slope-mass correlation becomes a more com-
plicated calculation in which the decreasing ab-
sorption enhances the slope-mass correlation
(making the slope bigger at low mass, decreasing
faster with increasing mass).

The framework discussed here should be taken
as a crude approximation for investigating gross
features. Its novel features are its direct-channel
factorization and its mechanism for breaking
cross-channel factorization. Its main conse-
quences are slope bounds, relations between known
cross sections and slopes and almost unknown
cross sections and slopes, and calculable (in
pr inc iple) strong absorption.
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