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A model of mesons composed of a quark, an antiquark, and a gluon is proposed. The binding of the
constituents is provided by a confining linear potential between the gluon and the quarks. The lowest states of
the model are described, and their relative masses evaluated, for the case of heavy (charmed) quarks, i.e., ccg
states.

I. INTRODUCTION

A widespread approach to strong interactions
views them as the realization of a color-sym-
metric gauge theory of quarks and gluons. The
justification of this approach relies heavily on the
fact that, through asymptotic freedom, ' it can ac-
count for the high-energy experiments' which use
currents as probes of hadronic dynamics. Re-
cently this theory has been applied to the hadronic
spectrum with notable success in charmonium mod-
els. '4 The role of the gluons in such models is to
carry the force which attracts the quark to the
antiquark, thus creating a binding, and supposedly
confining, potential for the quark-antiquark sys-
tem. It should be expected, though, that the quark-
gluon field theory has a much richer meson spec-
trum than is describable by a quark and an anti-
quark in a confining potential. In fact, several
authors have studied other systems, such as
qqqq. ' There too, the gluons serve merely as the
carriers of the confining forces.

From the analysis of deep-inelastic electron
scattering, we know that a major portion of the
proton momentum is carried by neutral compon-
ents which are customarily identified with
gluons ' In this context, the gluons play a role
which is analogous to that of the (current) quarks.
In this paper we propose that the gluons may also
play a role analogous to the (constituent) quarks
in bound-state configurations. In particular, we
study three-body bound states of a quark, an anti-
quark, and a gluon, where the force between the
gluon and either the quark or the antiquark has
the same confining nature as the force which binds
quarks and antiquarks in ordinary mesons.

In a Yang-Mills theory, ' the division of the gluon
field into a part which represents quanta and a
part which represents forces is well defined, al-
though the breakup depends on the gauge. In the
radiation gauge the division is especially natural.

There, the transverse part of the space compon-
ents of the gluon field A'„represents quanta, while
the time component is a dependent field represent-
ing an instantaneous potential between quanta.

Although we find it convenient to think about the
bound states of a quark, an antiquark, and a gluon
in a gauge-dependent way, we can associate them
with the quanta created by gauge-invariant oper-
ators in the quark-gluon field theory. For ex-
ample, the ground-state levels can be thought of
as the quanta of the composite fields gy&y5F»g
and gy„y„E„~g, which have the same quantum
numbers as ay+„g and gy„D„g (where D„ is the
gauge-invariant derivative), the operators as-
sociated with the I.=1 qq states of the quark mod-
el.

Some of the new quark-antiquark-gluon bound
states have exotic quantum numbers, that is, they
cannot couple to a fermion-antifermion system,
but others have the same quantum numbers as
states made just from a quark and an antiquark.
While the exotics cannot be confused with ordinary
qq mesons, the others will presumably mix with
conventional quark-model states. Nonetheless,
the qqg states represent new levels in addition to
the qq ones, thus increasing the total number of
states with given quantum numbers. We find many
new vector mesons which could contribute to the
rich resonance structure observed in e'e an-
nihilation above 4 GeV.'

The organization of this paper is as follows:
In Sec. II we formulate an effective-potential

model to describe three-body bound states in-
volving a heavy (charmed) quark and antiquark and
a massless gluon. We expect our Hamiltonian
formalism to represent effects to order m,
Since octet-gluon exchange gives attractive quark-
gluon and antiquark-gluon forces, we assume
attractive potentials between these pairs of par-
ticles. Linear potentials have been successful
in explaining the charmonium spectrum, "and we
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take the attractive potentials in our model to be
linear also. The parameters of the effective Ham-
iltonian are determined by comparison with char-
monium calculations. The gluon-exchange strength
is calculated in the Appendix.

In Sec. III we analyze the quantum numbers of the
resulting bound states. The ground state is a set
of levels with the same quantum numbers as those
of the l = 1 cc states, and the first excited states
contain, among others, three vector mesons as
well as mesons with exotic J' quantum numbers.
Table I contains a summary of the quantum num-
bers of states in the first few levels.

In Sec. IV we perform variational calculations
of level splittings and conclude that the first ex-
cited levels mill occur only about 300 MeV above
the lowest levels. Qur model does not fix the mass
of the lowest ccg state. However, since the states
discussed here involve only a single massless
quantum beyond cc, they may well be the lightest
mesons not included in the cc sector, and include
the lowest-mass exotic states.

We conclude with Sec. V, which contains a sum-
mary and discussion of our results.

II. THE MODEL

Qur model for quark-antiquark-gluop bound
states is indirectly based on the colored quark-
gluon model' and incorporates the linear effective
potential of recent charmonium calculations. '~
We assume that the gluons have the quantum num-
bers attributed to them by the quark-gluon madel,
that they are color-octet and flavor-singlet mass-
less vector mesons. We also assume that the
forces between quarks and gluons are due to gluon
exchange. Specifically, we assume that there are
attractive forces in those channels in which color-
octet-gluon exchange dictates it. Following the
successful charmonium calculations, we repre-
sent these attractive forces by linear potentials.

We restrict our attention to states which are
overall color singlets. The reason for this is that
we expect that any nonsinglet configuration would
have long-range interactions with others, and so
could not be considered an isolated system.

We wish to represent this model by an effective
Hamiltonian, but to do this we must specify a
Lorentz frame. In order to have a dynamically
preferred frame, we will assume that the quark
mass is large, and express the Hamiltonian in
the quark-antiquark center-of-mass frame. This
choice limits the physical applicability of our re-
sults to bound states with charmed (or still
heavier) quarks and antiquarks.

The effective Hamiltonian has kinetic-energy
terms for each of the quarks and for the gluon,

effective r potentials, and an overall constant.
Since the quarks are heavy and presumably slow-
moving, we treat their energies nonrelativistic-
ally. This is an approximation to 0(m, '), and
one may regard our spectral model as the leading
term in an expansion in m, '. By contrast the
gluon is massless, and so its kinetic energy is
the absolute value of its momentum. The inter-
action between each of the quarks and the gluon
is represented by an attractive linear potential,
the strength of which is taken to be proportional
to the attractive force produced by color-octet
gluon exchange in the appropriate quark-gluon or
antiquark-gluon channel. Gluon exchange here
produces a meak repulsive quark-antiquark force.
This force is lumped with other short-range ef-
fects into the undetermined constant in the Ham-
iltonian.

While our choice of an effective potential is quite
aribtrary, it fits naturally within the framework
of currently popular ideas about hom quark con-
finement might occur in the colored quark-gluon
model. For example, the linear potential might
represent a channelization of color flux, such as
takes place in lattice gauge models' and magnetic-
confinement models based on the superconductivity
analogy, "or it might represent, in a potential
model, an effective confinement resulting from
field-theoretic vacuum-polarization instabilities. "
In either case the magnitude of the effect should
increase with the attraction of the single-gluon-
exchange force (the Born or classical approxima-
tion). Also, these considerations make it clear
that one should not treat attractive and repulsive
interactions symmetrically. Repulsive Coulomb
potentials do not produce vacuum-polarization in-
stabilities, and flux tubes do not develop between
repelling monopoles in superconductors nor be-
tween repelling quarks in the lattice gauge model.

The constant terms in the Hamiltonian include
many effects: rest masses of the charmed quarks,
short-range singular potentials, and both repulsive
and attractive intermediate-range forces (which
might be dynamically different). The asymptotic
freedom of gauge theories makes the short-range
interactions logarithmically less singular than
Coulomb potentials. This is presumably the reason
that charmonium modelg require only a small y '
term in the potential to fit the observed spectrum
well.

Qur precise rule for choosing effective two-body
interaction potentials is the following. We examine
the exchange of an octet of gluons between each
pair of particles. The coupling at each vertex is
g, the universal Yang-Mills coupling constant,
times a generator of SU(3). This is projected onto
each two-body color eigenstate to get an effective
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interaction strength. That is, each two-body ef-
fective potential is proportiona, l to g' times an
SU(3) crossing-matrix element. These are com-
puted in the Appendix. If the interaction is at-
tractive we include a linear potential in the Ham-
iltonian proportional to this effective interaction
strength. However, if some two-body interaction
is repulsive, we do not represent it by a linear
potential, but instead assume that its effect can be
included in the constant term.

The absolute strength of Re effective x poten-
tials is determined by comparison with the char-
monium calculations. 4 The requirement that a
quark-antiquark-gluon (338) state is a singlet
fixes each of the two-body color t:onfigurations.
The quark and gluon must be in a 3, the antiquark
and gluon in a 3, and the quark and antiquark in
an 8. As is shown in the Appendix, the forces are
attractive between the gluon and both the quark
and antiquark, but repulsive and weak between the
qua, rk and antiquark. Relative to the charmonium
potential (the singlet in 3ce3), the attractive forces
here are —,

' times stronger. Relative to charmoni-
um the repulsive quark-antiquark potentia. l has
strength -&.

The Hamiltonian of our model in the charmed-
quark-antiquark center-of-mass frame is

if~f =2m, +p. /m, +Ip, l+G(lr. -~,i+lr;-rJ)+~. .

(1)

m, is the charmed-quark mass, which is also the
reduced mass of the two-quark system. r, , r-,
=-r, , and r, are the quark, antiquark, and gluon
coordinates, p, is the relative quark momentum,
and p~ is the gluon momentum. The interaction
strength 6 is g', the Yang-Mills coupling constant,
times a crossing-matrix element (see the Append-
ix), times a parameter with the dimensions of
(mass)'. lt is —', times the charmonium potential
strength.

Except for the constant V„ the parameters are
deduced from the charmonium model. ' Their nu-
merical values are

m, =m, =1.84 GeV,

r. =0.30 GeV'.

Besides burying a lot of physics in the constant
V„our effective Hamiltonian contains several
approximations. The true center of mass differs
somewhat from the quark-antiquark center of
mass, so the Hamiltonian can only give bound-
state masses to O(m, '). This is the same order
of accuracy as our nonrelativistic approximation
for the charmed-quark kinetic energy. In addition,
both the quarkh and the gluon are treated as spin-
less, so we cannot estimate the spin-orbit or spin-

spin splittings. After computing the energies of
the ground state and the lowest excited states, we
will put back the spins by hand, in order to find
how many states occur at each energy level.

The colored quark-gluon model is both gauge
and Lorentz invariant, but our effective Hamilton-
ian lacks these invariances. The reason for this,
of course, is that we have made dynamical approx-
imations and have phrased them in a specific
frame and gauge. We have neglected the spins of
both the quarks and gluons, and treated the quark
kinetic energy nonrelativistically. These approxi-
mations were made in the quark-antiquark center-
of-mass frame. We have sharply distinguished
between the gluon particles and the gluon potential,
which we treat instantaneously. This separation
is appropriate in the radiation gauge. In this non-
covariant, frame-dependent gauge, the gluon field
is decomposed into a dynamical part describing
massless particles and a dependent field describing
an instantaneous potential. We must note, how-
ever, that we have no a Priori argument based on
the non-Abelian gauge theory that the effective
potential is linear. That is an assumption which
we have adopted because of its successful applica-
tion to the charmonium spectrum.

Our crucial assumption is that, in this gauge
and frame, there are states which dominantly con-
sist of one quark, one antiquark, and one gluon.
Wh4le the general premise of our work, that there
is a gluonic component to matter, seems neces-
sary, our specific means of describing the gluonic
matter in a new assumption.

There will always be mixing with other config-
urations, for example states with many gluons,
and the amount of mixing will depend on both the
frame and the gauge. A more precise statement.
of our crucial assumption is that in our choice of
frame and in the radiation gauge the configuration
mixing is small.

If this assumption is correct, then although we
cannot fix the energy of the lowest state, the split-
ting between the lowest, s-wave, levels and ex-
cited, P-wave levels should be given fairly ac--
curately. More importantly, the model should give
the quantum numbers and multiplicities of the low-
lying quark-antiquark-gluon states. Because of
the spin of the gluon, this spectrum is quite rich.

III. BOUND-STATE QUANTUM NUMBERS

We analyze the quantum numbers of low-lying
bound states by a two-stage procedure that cor-
responds to expanding the Hamiltonian in powers
of m, '. Since the charmed quark is quite heavy,
and since our effective Hamiltonian is only valid
to 0(m, '), this procedure retains the full accuracy



17 MODEL OF MESONS WITH CONSTITUENT GLUONS 901

and

L', L„ldl, d' L =d L„ (4)

of the model.
To Q(m, '), the Hamiltonian is

ff"'=Ipdl +G(lr +dl +lr -dl)+const. (2)

Here and afterwards we use r as the gluon co-
ordinate and d and -d as the quark and antiquark
coordinates.

There are two sets of commuting Hermitian op-
erators that commute withe ':

conventions and notation of Gottfried. " The re-
sulting wave function 4 is

(f)d d «(r, d) = gd, &(Rd, "r}5(d—d, )5'(d —d, )

By construction, 4 is an eigenfunction of the op-
erators d and d ~ L.

The wave functions 4 which are eigenfunctions
of the set of operators (4) can be expanded in terms
of the angular momentum eigenfunctions of r and
d:

d d L=d L„. (5) @&.&, .d, .«(r) d}

Each set consists of four operators. L is the total
angular momentum which acts both on r and d:

L = L„+Lq.

Note that d L is odd under parity, I', sothatparity
eigenstates will be superpositions of d. L eigen-
states. Therefore we will later use ld ~ Ll and P
as observables instead of d L.

Let us designate the eigenfunctions of H ~ which
diagonalize the set of operators (4) by &1& and those
which diagonalize the set (5) by 4&. We will use
the following notation for the eigenvalues:

Observable d
l d l d d L L'

Eigenvalue d, d, d, K l(l +1} l,
When d, points in the z direction, we write the
wave function 4 as

(f)d; «(r, d) —= (l)d «(r)5(d -d, )5'(d —«).

We obtain 4& for a general d, by rotating d, from
z to a direction specified by the spherical angles
8 and ()& of d„using the rotation operator

Rd R(P, 8, 0) (6)

The angles $, 8, 0 are the Euler angles, using the

C&, «(r, d,)(ll, l L,m&f, m, )
1 2

x Y ', (r)Y~o(d )5(d -d, ). (10)

This expression displays explicitly the fact that
&1& is an eigenfunction of L', L„and ldl.

We must now determine C,', «(r, d, ) and find the
connection between the 4 and the 4 wave functions.
Since either set of wave functions provides a com-
plete set of energy eigenfunctions, each eigen-
function 4 must be expressible as a linear com-
bination of 4 eigenfunctions with the same energy,
and vice versa. Note that there is an independent
4 eigenfunction for each value of d„while the
eigenvalues of H~' clearly do not depend on d, .
This means that each of the energy levels of H~"
is infinitely degenerate, and each 4 eigenfunction
is an infinite superposition of 4 's. We represent
the connection by

te

+&,&d, d(&,«d dof &&d«(do)@, do, do«', ,

This relation will determine both f, , «(d, ) and
CI»& «(r, d, ) in terms of &l)d «(r}. We multiply both
sides of E(l. (11)by Y ', (r)Y ', (d ) and integrate
over the angles r and d to obtain

C'. ..(r, d,)«).l),m, ), ,) = fdd f , (d))' (.d. I.fbi )''.*.""*( )(, O);
' ). (12)

In order to perform the r integration on the right-hand side we make a change of variables and use the
rotation property of the spherical harmonics

Y.'(Rr) =g ~'."..(R)Y'.,(r}.

This gives for the r integral

(14)

where

ed, .«(r) = dr Y«"*(r))Id,.«(r). (15)
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Using the equality

y.'(8, y) = x&",(4, 8, 0),
2i+1'~' „

and the definition of R~ in terms of Euler angles [Eq. (8)], we are led to
0

2g 1 '/'
C'... «(r, d,)(ll, [l,m, l,m, ) = ddof. ..«(d, )S '«($, 8, 0)$"o($, 8, 0) ' e~~~(r)

(16)

For this equality to hold one must choose

f i, i, .«(do) =&I,*«(Ru, )

which, in turn, gives

[4«(2 l, + 1)]'i' g,

(18)

(19)

Thus we have expressed 4 in terms of g:

q. . . ,(r, d) =X I~(R;)y„, ,(R;-'r)6(d d, ). - (20)

We have already remarked that this function is not an eigenfunction of parity, P. H~p~ commutes with

P and therefore depends only on K', so the two solutions with K = +[K~ are degenerate. Parity eigenstates
are

l8 14'i. i,.~,.]«}, =
~2 [&I,)«](Ri)kd, ,]«](Rc 'r)+r}u,'* )«)(R«)q, , t t(«R '«r}]5(d —d ), (21)

where q =+1.
To establish the parity {P) and charge-conjuga-

tion (C) properties of these states we must take
into account the spin of the quarks and the J~~ =1
assignment for the gluon.

Under space reflection, r--r and d- -d, the
vector Rg 'r does not change its length or polar
angle, but its azimuthal angle P (about the z axis)
becomes « —p. The wave function g««depends
on this angle P only through the factor e'~~, so
under space reflection

Nu„«(Ra 'r} ( 1)"6--
Under the change d- -d, the spherical function
becomes

(22)

P ( 1 )I+«q (24}

Under charge conjugation the quark and anti-
quark location are exchanged, d- -d. Under this
change both the polar (8) and azimuthal (Q) angles
of R~ 'r change.

e-~-e,
(26)

If g denotes the parity of the wave function g~ z
under the change 8- « —8, then under C(d- -d)

&I «(Rl)-(-1)'&I. «(I4). - (2~)

Since the intrinsic parity of the quark-antiquark
system is -1 and that of the gluon is also -1, the
total parity of the wave function [ Eq. (21)] is

f«, «(R« ,
'r} t'lu, «(R~ ,

'r)

and, as with space reflection

&', «(R«)-(-1}'5)I -«(R/).

(26)

(2'f)

The nonorbital C of a quark-antiquark system de-
pends on the symmetry of the spin wave function
as (-1)", where s„—is the total quark spin. The
C of the gluon is -1, so under C the wave function

[Eq. (21}] is an eigenfunction of C with eigenvalue

C = (1) " qg. (28}

It is of course straightforward to express P and
C in terms of the orbital angular momenta of the
gluon /„and the quark, /„ relative to the qq
center of mass:

P =( 1) i 2 C =(-1) (29}

Comparison of Eqs. (24) and (28) with Eq. (29)
shows which l, l, values contribute in Eq. (10) to
the formation of a definite 4 state. The J~c quan-
tum numbers of the first few levels are shown in
Table I ~

So far we have discussed the classification of
the eigenfunctions of H~' . This corresponds to
the limit m, —~. We expressed states with definite
angular momentum in terms of the basis 4, which
describes states in which the quark and antiquark
have a fixed location in space. The infinite de-
generacy corresponding to the arbitrariness in
the orientation of Qp is lifted to first order in m
with the introduction of the kinetic energy term



17 MODEL OF MESONS %1TH CONSTITUENT GLUONS g03

TABLE I. Classification of states.

i%i q 0 l
s-=0aa

gPC

0 + + 0 0
0 + + 1 1

0 + — 0 1
1 + + 1 1
0 + — 2 1

0 1
0 (0, 1,2)

1 (0, 1,2)

1 1++

1 (0, 1»2)
1 (1,2, 3) +

(0.1»2)"
(0, 1,1,1,2, 2, 3)

(0, 1,1,1,2, 2, 3)

(0,1,2)
(0»1»1.1» 2» 2» 3)'
(0, 1,1,2, 2, 2, 3, 3» 4)

for the quarks. Clearly only L', L„and P com-
mute with the total Hamiltonian and the eigenfunc-
tions of 3' will mix different values of d, and K.
The eigenfunction of g will be of the form

ddo'~ is i (do}@g.i,.uo. I@1.n ' (30}

Borrowing terminology from molecular physics
we may say that in the limit ma-~ all quark ro-
tational levels are degenerate and their vibrational
degree of freedom is frozen. To first order in
m, ' the vibrational as well as rotational degrees
of freedom are excited. In contradistinction to
atoms in molecules, the quarks do not sit in a po-
tential well and therefore the vibrational splittings
can be expected to be of the same order as the
rotational ones. It remains to be seen how they
compare with the "electronic level" splittings,
the differences of energy eigenvalues of Hi' . This
calls for a numerical evaluation which will be done
in the next section.

IV. THE BOUND-STATE SPECTRUM

In this chapter we will make variational nu-
merical estimates of the lowest-energy states
in the qqg spectrum. We limit ourselves to the
case of charmed quarks, so we can use the m, '
expansion.

The first question that confronts us is the choice
of a variational trial function. The potential energy
in Eqs. (1) and (3) can be diagonalized in prolate
spheroidal coordinates, since the equipotential
surfaces are ellipsoids whose two foci are the lo-
cations of the two quarks. This suggests using
gluon trial wave functions which are constant on the
equipotential surfaces. The family of such el-
lipsoids is defined by a continuous parameter v,
where

ir+d[+ir —di =2dcoshv.

The two other variables which define this coordin-
ate system are an angle n given by

ir+dj —ir —di =2dcosn (32)

and the azimuthal angle P. The gluon momentum
operator is of course somewhat complicated in
this coordinate system. An alternative choice is
a spherically symmetrical trial function for the
gluon.

We carried out variational calculations using
both types of trial functions. We obtained some-
what lower energies for spherically symmetrical
ground-state trial wave functions. The reason
is that the trial functions of the form e ~ '"'"'
which are constant on the equipotential ellipsoids
and which we used as a ground-state trial function,
include high angular momentum components in the
region where vari is of the same order of mag-
nitude as [d[. Using the m, value of Eq. (2), the
angular momentum degeneracy is fairly strongly
broken, thus favoring s waves in both quark and
gluon coordinates. It is therefore the m, ' term,
the quark kinetic energy, which leads us to prefer
spherically symmetrical trial functions.

We estimate the ground-state energy by using
normalized trial states of the form

)3/2( &) -(z/2)r -(pi2}ae (33)

We vary

~, = &g.irf lt.) (34)

with respect to both p and A. , and find the smallest
value. A straightforward calculation leads to

p
2

+ +2m, +V, .
16mc (35)

2'23+2mc+ Vo ' (36)

The contribution of each term in Eq. (35) is shown
explicitly.

A similar calculation can now be carried out for
the excited state which has l, = 1:

g3/2 5/2

e i~i2dY i(d)e "~i2
6~3» (37)

The minimal value is obtained for A. = 1.8 GeV, p
=3.1 GeV, and is

(gp) 0 '76+ 1 40+ 0 33 + 2m + Vo

= 2.50+2m, +V, . (38)

The first term is the gluon kinetic energy, the sec-
ond is the expectation value of the linear potential,
and the third is the quark kinetic energy. Using
the values of the parameters [Eq. (2)] one finds the
minimal value for A. = 1.9 Gev', p, = 2.6 GeV. It is
(in GeV)

~0 = 0.81+1.20+ 0.23+ 2m, + Vo
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(39)

The gluon p-wave function will be described by

g5/»t2 rl" (r) e ~"~'e " ~'
2 8/3+ m

Its minimal energy is obtained for A. = 2.3 GeV, p,

=2.4 QeV, and is

~, = 1.17+ 1.51+0.20+2m, + V,

= 2.88+ 2' + Vo (40)

FIG. 2. The dominant two-body decay amplitude for
high-mass ccg states.

0++ 1++ 2++ 1+ (41)

taking into account the spins of the quarks and
gluon. This spectrum is the same as that of a p-
wave cc system. Indeed one should expect that
physical states are an admixture of these two dif-
ferent types of bound states. A few hundred MeV
higher, about the same as the separation between
the J'/$(3. 1) and the X states, one expects the sec-
ond level of particle states, whose wave functions
primarily describe P-wave quarks ahd an s-wave
gluon. This level contains many particle states
(see Table I):

g c =(0, 1, 2) ' and (0, 1, 1, 1, 2, 2, 3) (42)

The two groupings in Eti. (42) correspond to s,—, = 0
and 1, respectively. Here we find for the first

FIG. 1. The dominant decay amplitude for low-mass
ccg states, those below the cqg 6 qc threshold.

At this point we can quantitatively examine the
molecular analogy of the preceding chapter. The
gluon p wave is the analog of an excited electronic
level. Although its excitation energy is greater
than that of the quark P wave, the analog of a mo-
lecular rotational excitation, it is of the same or-
der of magnitude. This rough equality depends on
the relative values of the various parameters in
our calculations. Only if m, were an order-of-
magnitude larger would one find an order-of-mag-
nitude difference between gluon and quark rota-
tional excitations.

From these numerical results we infer the likely
structure of the low-mass ccg bound-state spec-
trum. Small variations of the parameters used in
our calculation do not change the qualitative con-
clusions.

The ground state should be mostly s wave in both
quarks and gluon, . The quantum numbers of the
corresponding particle states are

time states whose quantum numbers are such that
they cannot be made from a quark and antiquark
alone ("exotics of the second kind"). These are
the 1 ' and 0 states. These states are forbidden
from decaying into N¹ In addition, there are
three ordinary vector mesons. Although their
coupling to the photon is allowed only through ad-
mixture with cc states, ' these may be some of the
many close resonances seen in e'e annihilation.

The next level of states should occur another
several hundred MeV higher and include the states
with l, =1, l, =0. These states will have the oppo-
site charge conjugation as the l, =0, l, = 1 states
(see Table 1). They also include states which are
exotics of the second kind, i.e., which cannot de-
cay into N¹ The prediction of exotic states as
well as the multitude of new vector mesons is ex-
citing. One would like to know at what mass these
states will begin.

The answer depends on the value of V,. In char-
monium calculations with the same parameters
that we have used, V, is determined by the ob-
served J/g mass to be -1.37 GeV. To the extent
that V0 represents the short-range Coulomb term,
one could expect it to be roughly twice as big in
our calculation. That would bring the ground state
of our calculation down to near the Z/g mass.
However, another component of V, stems from re-
pulsion from the continuum of charmed states. '
This effect could be much weaker for ccg states.
Using the magnitude of Vo in the charmonium cal.-
culation as a measure of the ignorance covered up
by this term, we can make an "educated guess"
that the ground state of ccg lies somewhere be-
tween the J/g and 2 GeV above. Wherever it lies,
we expect that the first excited quark rotational
level is only about 300 MeV higher, and the first
gluon rotational excitation a similar amount above
that.

Let us close this section wiih a, short discussion
of how the ccg states can be expected to decay. %'e

propose the process shown in Fig. 1 as the decay
vertex for the low-lying states; i.e., we assume
that the decay proceeds by the conversion of the
gluon into a qq pair. An alternative mechanism is
the one shown in Fig. 2, in which there is also a
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ccg state in the outgoing channel. For high-mass
resonances one would expect the Fig. 2 process to
dominate, since it does not involve the gqq vertex.
However, for low-lying ccg states it seems likely
that the cq 6 cq charnel will be open while the cgq
8 cq one will still be below its threshold, thus al-
lowing only the Fig. 1 process. An example of the
consequences of this assumption is that there is
one linear combination of the three 1 states of
Eq. (42) that can decay into D*D* but not into DD*
or DD. That state corresponds to the cc and gluon
spins being combined into an overall spin 2. It can
decay via Fig. 1 only into two mesons, each of
total constituent spin 1. Straightforward spin re-
arrangement calculations show that of the other
two linear combinations of 1 states, only that
with total spin 0 can decay into D*D*, and its de-
cay amplitude will be only 2 as strong as that of
the total spin-2 combination. This example is of
interest because the 4.028-GeV resonance in e'e
annihilation seems to have an anomalously large
decay rate into D*D*, a fact which has recently
led De Rujula et al." to yropose that this state is
a D*D* molecule. In our model we could associ-
ate this resonance with a 1 state that has a large
admixture of the constituent spin-2 state discussed
above.

V. DISCUSSION AND SUMMARY

The features of the spectrum of hadrons can be
successfully described in terms of a simple quark-
model picture. In particular one of the impressive
qualitative conclusions of low-mass phenomeno-
logy is the absence of exotic states, i.e., mesons
and baryons that cannot be constructed from qq
and qqq combinations. Although confinement in a
color-SU(2) gauge theory would explain the ab-
sence of colored hadrons, '"'" it would still be
possible that exotic color-singlet states exist. In
fact it should be expected that the spectrum of a
field-theoretical model will be more complicated
than that of an effective-potential model with a
fixed number of constituents.

The details of the spectrum of the low-mass
hadrons become unclear above the 2-GeV region.
Thus one rarely observes radial excitations of
meson families. It seems likely, therefore, that
if exotics exist they will more readily be found in
an experimental study of particles composed out
of heavy (charmed) quarks. There, a two-year
experimental program led to a harvest of five
states in the same J~~ = 1 charnel.

From a theoretical point of view, heavy quarks
are also a blessing; they justify an m, ' expan-
sion, i.e., nonrelativistic calculations. %e made
use of this fact in our model by introducing an ef-

fective Hamiltonian to calculate a specific family
of new states. Spectroscopic predictions of par-
ticles constructed from charmed quarks" have
turned out to be very successful. " The meaning
of the mass of a. quark seems to be better under-
stood nowadays in the light of asymptotically free
gauge theories. " Nevertheless it is still unclear
how the field theory generates the relatively sirn-
ple potential structures used in charrnonium" and
the present calculations.

In our model we introduced an extra ingredient
to the well-established constituent quarks —a con-
stituent massless gluon. The gluon field plays an
important role in the formulation of quantum chro-
modynamics, and it seems to us reasonable to as-
sume that it should play an important role as a
spectroscopic constituent also, in addition to being
the carrier of the confining forces. The proof of
this approach should lie, as in the case of constitu-
ent quarks, in experimental spectroscopic verifi-
cations.

%'e mentioned in the Introduction the question of
gauge invariance that is naturally associated with
the concept of the gluon. Our calculation is done
within a specific gauge. In this framework one can
clearly envisage many other exotic systems, for
example, those gotten by adding more gluons or
light quark-antiquark pairs. It remains to be seen
if any exotic structure will be found, and, in case
it is found, if it follows the hierarchy of states
outlined in the preceding section.

The main qualitative prediction of our calcula-
tion is the small splitting between the ground and
excited levels. The first 300-MeV splitting be-
tween the s andP waves of the charmed-quark-
antiquark pair is a feature determ, ined by their
large mass. This should be invariant under small
changes in the other parameters of our model. %e
expect that even if the gluon acquires a small mass
by some dynamical spontaneous symmetry break-
ing, "since the gluon has high momentum (see Sec.
IV), it should not lead to qualitative chases. As
a matter of fact, we also applied our model to
doubly charmed baryons, and found there too a
characteristic mass splitting of about 300 MeV for
the first excitation of the angular momentum of the
charmed-quark pair.

Finally, one should emphasize the large number
of states resulting from our model. In particular,
there is an abundance of vector mesons in the first
excited levels. These new states may account for
one or more of the excitations observed in e'e
annihilation. Although the general features of the
observed resonance structure may be explained
by the charmonium model, "there are experiment-
al puzzles that may require states of the new kind
(see discussion at the end of Sec, IV). If this is
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P
I

P

The vertex coupling an exchanged gluon to either
3, 3, or 8 is shown in Fig. 4. The pair of oppo-
sitely directed lines coming from the bottom of
each diagram represents a double-index, trace-
less tensor labeling of the generators, G'j, of
SU(3). The indices i and j run from 1 to 3, but
there are only eight independent generators since
Z;G =0. The connection with the conventional
labeling o is that

FIG. 3. Diagrammatic representations of the projec-
tion operators on the 3, 3, 8, and 1 representations and
of the trace formula Tr PS= 3.

8

Z (~ )iiGa ~

f2= 1

1
G, = ~ Q (X')ir G

j,j
where

The numerical factors are chosen so that

(A2)

(A3)

true then all our other states (see Table I) should
also be found in the same region, which means
that further experimental studies should reveal a
rich spectroscopic treasure.

APPENDIX

Pj Pj Pj5 jj y (Al)

and that the trace of each P (computed by joining
each line position end-to-end and using the rule
that a closed loop equals 3) is the indicated dimen-
sion,

In this Appendix we compute the strength of the
potential resulting from octet exchange. In our
model, the effective potential is linear but its
strength is assumed to be proportional to the po-
tential produced by octet gluon exchange, with the
gluon having universal gauge couplings to each
kind of particle, quarks or gluons. The effective
strength of the octet exchange potential depends on
the direct channel. The numbers that express the
relative strengths are SU(3) crossing-matrix ele-
ments.

We compute these numbers using diagrams. "
Lines in the diagrams represent particles with
given quantum numbers, or, more abstractly,
projection operators on their representations.

Figure 3 shows the diagrams representing the
projection operators on the 3 and 3 representa-
tions in the quark and antiquark sectors, and on
the 8 and 1 representations on the qq sector. A
closed loop stands for the number of basis ele-
ments (quarks) of the 3 representation, i.e., the
number 3. The reader may verify that these are
the proper diagrams by checking that, within each
sector,

Tr G3jGj j & Pjj'j j
3

L(6ir'6i'i 16ii6i'i') (A4)

P, is the normalized octet projection symbolized
in Fig. 3. This corresponds to the conventional
normalization for the A, matrices,

Tr(2~.)(24) = ~5„. (A5)

G =I-(3G +G—I (A6)

I--( l

3

G-

I

s

FIG. 4. Diagrammatic representations of the vertices
coupling an SU(3) generator to the 3, 3, and 8 repre-
sentation, that is, representations of these matrix ele-
ments of the generators.

As the diagrams show, the G& matrices are the
negative transposes of the G, matrices. Since the
8 is the only nontrivial representation contained in
3rgr 3 (G", =0), the octet generators are obtained by
the direct product formula
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(5,s) g
A —'-

2
I

3
(8 3) g2--2

g
2

I

3

g2 (85) g2 (8Z) 3 2 (8@P)
2 8 2 3P ——

g P ——

FIG. 7. Decomposition of the octet-exchange ampli-
tude for 883 883 into direct-channel amplitudes.

g3 (3

P — —
g Pg 4 2

6 8

FIG. 5. Decomposition of the octet-exchange ampli-
tude for 3E33 33 into direct-channel amplitudes.

Figure 5 is a diagrammatic representation of the
amplitude for octet exchange between a 3 and a 3.
By rearranging the lines and adding and subtract-
ing diagrams, the amplitude is decomposed into

(8 3)

l5 2

-8 ~C-

(8 3)

6 2

(83)
Ip-

8 24

FIG. 6. Diagrammatic representations of the projec-
tion operators on the 15, 6, and 3 representations in
the 83 sector.

direct-channel amplitudes. The coefficient multi-
plying each direct-channel projection operator is
the strength of the effective potential in that chan-
nel. Thus we see that in the singlet channel there
is an attractive (negative) potential of strength
—fg', while in the octet representation there is a
repulsive (positive) potential of strength~eg'.

Figure 6 shows the diagrams representing pro-
jection operators on each of the representations
contained in 83, namely 15, 6, and 3. As with
Fig. 3, the reader may verify that these are the
proper diagrams by checking that each satisfies
P'=P, that the product of any pair vanishes, and
that the trace of each is, in fact, the dimension of
the representation.

Figure 7 is a diagram representing the octet ex-
change amplitude between an 8 and a 3. Again, by
rearrangement, addition and subtraction of dia-
grams, the amplitude cd be drawn to show its
direct-channel structure. The result is that there
is a repulsive potential of strength 2g' in the 15
channel, and attractive potentials of strength =,g'
in the 6 channel and =',g in the 3 channel.

The entire calculation symbolized by Figs. 6 and
can be adapted to find potential strengths in the

representations contained in 8 3. Diagrammati-
cally this is most simply accomplished by changing
the sense of every arrow in these diagrams. This
operation preserves all algebraic relations be-
tween diagrams: the commutation and trace rela-
tions used to identify generators, the product and
trace relations used to identify projection opera-
tors, and the arithmetic connections between dia-
grams used to evaluate the potential strengths in
each channel. Hence octet exchange between 8 and
3 leads to a repulsive potential of strength 2g' in
the 15 channel and attractive potentials of strengths
-2g' in the 6 channel and -&g' in the 3 channel.

Thus relative to the attractive effective potential
in the singlet channel of 3 3, there is an attrac-
tive potential —,'times as strong in the 3 channel of
8 3 and in the 3 channel of 8S 3, and a repulsive
potential q as strong in the 8 channel of 3|3)3.
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