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The structure of amplitudes of n p ~gn is investigated by two methods: (a) fixed-t dispersion relations
and effective Regge parametrization of the high-energy imaginary parts and (b) two Regge poles and finite-

energy sum rules. In both cases the resulting imaginary part of the nonflip amplitude deviates from the dual-

absorptive-model form. Similarities with the conclusions of other amplitude analyses involving tensor
exchange are discussed. The question of A,-p exchange degeneracy is also investigated. An important
outcome of the work is that both methods (a) and (b) require a m p~qn polarization of very small

magnitude throughout.

I. INTRODUCTION

For quite some time there has been much in-
terest in the t structure of the amplitudes of two-
body nondiffractive reactions. Concerning the t-
channel vector exchange (odd signature) direct and
detailed information is available, so that it can be
said Chat the structure of the s-channel helicity
amplitudes (SHA) is fairly well established. How-
ever, concerning the tensor exchange (even sig-
nature) the information is less direct and a num-
ber of important questions remain open. '

One of these questions is whether the imaginary
part of the nonQip SHA has the structure predicted
by the dual absorptive model (DAM), i.e., of the
Bessel-function form J,(Rv-t) with II = 1 fermi;
and there has been much evidence to the contrary
from amplitude analyses involving exchange with
the quantum numbers of f„"'of K**, (Refs. 5,
5, 7) and of A, .s'9'" Another important question
is whether the imaginary parts of the SHA for
vector and tensor exchange (such as p and A, )
satisfy exchange degeneracy (EXD); and the re-
sults of various investigations are very contro-
versial. "

The most appropriate reaction to obtain infor-
mation on tensor exchange is m P -gn, which is
dominated by purely A, . Data on this reaction at
not too high energies ((20 GeV} have already been
exploited in amplitude analysis, together with K1V

charge exchange. ' More recently" the differential
cross sections for 7i p -'qn have been determined
with great accuracy up to 200 GeV, i.e., in a range
of energies extending over two orders of magni-
tude.

For these reasons in the present work we under-
took a detailed study of the amplitudes of m p -gn.
Unfortunately, for this reaction a complete set
of observables (in the sense of wN reactions) is
still lacking: experimental information about the
spin rotational parameter T (or R)" is absent.

Even if precise information on T existed, an over-
all arbitrary t-dependent phase of the amplitudes
would still remain. Thus a completely model-
independent analysis is not possible.

To restrict the uncertainties as much as possible
we have proceeded by two somewhat different
methods:

(a) The first is based on fixed-f dispersion re-
lations (DR} together with a simple parametriza
tion of the imaginary parts of the SHA [Eq. (2.5)].
The parametrization amounts to using one effec-
tive Hegge trajectory. This method has been
tested in w P -w'n (Ref. 4) and has provided one
of the first amplitude analyses of yp —w'p (Ref.
14) as well as information on the SHA of other
reactions. ""'"'"

(b) The second method makes use of two Regge
poles, one with a, higher trajectory (A, ) and an-
other with a lower-lying one (say A2); in addition,
the method relies on good satisfaction of finite-
energy sum rules (FESR) (in the present work
exact satisfaction for the lowest moment). The
whole approach is similar to that of Barger and
Phillips, which successfully predicted the polar-
ization of w p —w'n ( p and p')."'"

An important outcome of our work is that both
methods (a) and (b) lead to real solutions for the
residue functions (see Secs. II and III) only if the
polarization I' in m p-qn is of very small mag-
nitude for all t in 0(~t~(1 GeV. All the existing
high-energy data are consistent with small ~P

~

(Refs. 19-21); however, the present uncertainties
do not allow a firm conclusion.

Section II presents our amplitude analysis using
method (a), or the one-effective-trajectory ap-
proach (OETA), and Sec. III that using method (b),
or the two-Regge-poles approach (TRPA}. Section
IV discusses the similarities of the results of the
two methods, concerning the structure of the SHA,
as well as the similarities with the results of
other amplitude analyses. In Sec. IV we also pre-
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sent our conclusions concerning the A2-p EXD
question. Section V presents our predictions for
the spin rotational parameter T and shows a way

to experimentally distinguish between certain re-
sults of method (a) and of method (b). We conclude
with certain remarks on the fact that both our
methods imply iP i

small.

II. THE ONE-EFFECTIVE-TRAJECTORY APPROACH (OETA)

In this section we present our basic formalism
for the reaction v p -qn. We denote by A(v, t) and

B(v, t} the usual invariant amplitudes and

RBM„{v,t{=—p d '{mM„{ ', {), , )
1 1

(2.4)
Following usual procedures"'"" we split the dis-
persion integrals into two pieces: a low-energy
piece (v~t{t) and a high-energy one (v)N).

In the low-energy piece we calculate ImM„(v, t)
by means of phase-shift analysis. Thus the limit
N is specified in terms of (2.1) by the limiting
energy E of the phase-shift analysis.

In the high-energy piece we adopt the following
effective Regge parametrization:

ImM (v, t)=b (t)(v' —v') ""' ' (v~N}. (2.5)
s -u t-m2+ q2

4M 4M
(2.1) Here v is the unitarity threshold given by

where M, m, and g are the nucleon, g-meson,
and pion masses and E is the pion laboratory en-
ergy. Above -2 Gev, to a good approximation, the
s -channel helicity-nonf lip and helicity-Qip ampli-
tudes are, respectively, given by the following two
combinations of A and B:

Mo= 2M(A+ vB), M, =~tA. (2 2)

Then the differential cross section and polarization
are given by

96rM'v2 —=
I MD i

+

46w3P v'P = Im(M—,M,*).
(2.3)

ln view of (2.2) the amplitudes M„, n = 0, 1, are
crossing-even and satisfy fixed-t DR [the same as
of A(v, t)]. These are of the form (leaving out, for
the moment, the question of subtractions and pole
contributions}

t —m'+ p,
'

4M
(2.6)

where m and p, are the g and pion masses, and

a„(t) are effective Regge exponents.
Clearly, ImM„of (2.5) represent effective A,

(tensor) contributions; and as we discuss below,
at least for small it i, a„(t) are not far from the
experimental A2 Hegge-pole trajectory. " It is
then easy to see that the DR (2.4) requires a sub-
traction. To this purpose it is convenient to intro-
duce the asymptotic form"

M~'(v t)= I{ (t) —cot " + i (v2 — v') ~o'" '{wa t)
n y n 2

(2.7)
so that, for v)N, ImM„"=ImM„. Then we can
write an unsubtracted DR for the difference M„
—M„"; and applying well-known Hilbert transforms
to the high-energy piece (v)i{t) of the dispersion
integrals (see, e.g., the Appendix of Ref. 14) we
finally obtain

VNrn v' 2 VReM„(v, t) =ReM~"(v, t)+," ",+ — dv'ImM„(v', t),» — b„(t) d—v'(v"-v')"" „,. (2 6)
N V -V

The second term in the right-hand side (RHS) is the nucleon-pole contribution so that

t-m —p,
2 2

N (2.9)

the residues r, and r, are given by

W2g,g„v~, ry 0, (2.10)

where g, and g„are the mX and qN coupling constants. "
In the last three terms of the RHS of (2.7) we can make an expansion in powers of (v — )',vso that

(2.7) takes the form

ReM (v t) =ReM"'(v, t)+ (v'- v')-"' — "' (iV'- v2)""""-S"'(t)2 b(t
w a„+2+2% (2.11)
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cause S,(t) changes sign near t= -0.55 (in accord
with well-known dual-absorptive requirements).
To test the stability of our results, throughout all
this work (Sec. II and Sec. III) we have also carried
calculations with the solution II of Ref. 22 (the
corresponding S,(t) and S,(t} are shown in Fig. 1
with dashed lines); and we have found that our
amplitudes remain practically unaffected.

In the calculation of this section we have used
the following effective Regge trajectories:

ao(t) = 0.45+ 0 8t+ 0..03t',

a, (t) = 0.45+ 0.9t+ 0.03t'.
(2.14}

We used as input the differential cross-section
data at E= 5.9 GeV and we varied a, (t) and a, (t)
(within reasonable limits) until we achieved a fit
to all do/dt data in the range 5.9~ Z ~ 199.3 GeV
(Fig. 2, solid lines). In particular, at the highest

/

r
FIG. 1. The auxiliary functions S„=S„(t)of Eq. (2.10).

Solid (dashed) lines correspond to solution III QI) of Ref.
22.

10

where

2S„"'(t)=2v„""r„+— dv v(v' —v')'ImM„(v, t).

~ 1.0
OJ

C9

(2.12)

For v»N (which is the case in all subsequent cal-
culations} we find it is sufficiently accurate to keep
only the leading term (k =0) in the sum. Subse-
quently, we set

=S (0)(t) (2.13}

In this approach, once the effective Regge ex-
ponents a„(t) are fixed, there are two unknown
real functions: b, (t) and b, (t). These are deter-
mined in terms of the experimental differential
cross section do/dt and polarization P at a given
high energy (inputs) by means of Eqs. (2.3), (2.4),
and the above expressions for Im M„and ReM„.
'Then the t structure of the amplitudes is complete-
ly specified.

In Fig. 1 we present the functions S,(t) and S, (t)
used in our calculations (solid lines). These have
been determined on the basis of the phase-shift
analysis of Ref. 22. This analysis extends up to
E = 2 GeV and presents four different solutions,
I, II, III, and IV. The solid lines of Fig. 1 corre-
spond to solution III, which has been selected be-

10

10

0
I

0.4
I

0.8
I

1.2

—t (GeV2}

FIG. 2. Differential cross sections for 7( p- qn. Data:
O Ref. 12, ~ O. Guisan et al. , Phys. Lett. 18, 200 (1965).
Solid lines: calculations of the OETA (Sec. II); dashed
lines: calculations of the TRPA (Sec. III).
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Fermilab energies the fit is very sensitive to the
exact form of a, (t) and a, (t); however, the t struc-
ture of the resulting amplitudes is much less sen-
sitive. " Our effective trajectories are not too far
from the "experimental" effective trajectory. "

a(t) = 0.371+ 0.008+ (0.'f9 + 0.04) t

+ (0.03 +0.04) f .
Our effective trajectories vanish in the region

~
t

~

=0.5-0.6 GeV'. Since Eq. (2.7) contains the
term cot(»a„/2), which diverges at a„=0 in our
calculations, we have written the effective residue
functions b„(t) of (2.5) in the form

(Gey9

10

(Gey')

& ~ ~
3 3 ~ M t [ / ~ ~ ~ ~ ~ ~

~ mrna ~ ~ ~ ~ ~
0.5 t (Gey ~

1.0

b„(f)= a„(f)g„(f). (2.15) 10

The polarization data" "are imprecise, and in
some cases different experiments seem to dis-
agree. All high-energy data are consistent with
very small polarization P. We have varied widely
our input P (within the experimental limits}, but
our approach gives real solutions for b,(t} and b, (t)
only when ~P

~

0.03, i.e., when the input polariza-
tion is practically zero. This point is further dis-
cussed in Sec. III and Sec. V.

The nonflip and flip SHA at E = 5.9 GeV corre-
sponding to zero polarization are presented in Fig.
3. One of the basic features of all the SHA deter-
mined by the OETA is that they are very smooth
functions of t in the whole range of our amplitude
analysis. Further discussion of their features is
postponed until Sec. 1V.

In general, the DR approach we follow in this
section leads to more than one solution for b„(t)
(Refs. 4, 14, 16). The solution corresponding to
the amplitudes of the Fig. 3 has been chosen by
requiring the best possible agreement with FESR.
For m p-~ the FESR of moment k has the form

OETA

12

—10
/

/

—20— ./

FIG. 4. Comparison with lowest-moment FESR in the
OETA [Eq. (2.16) for k =0]. Solid lines: right-hand side
of Eq. (2.16); dashed lines: left-hand side of (2.16).

[see the right-hand side of Eq. (2.11)J

b(t
(N3 &33)(3)) I2~&+&) —So'&($) (2 16)

» a„(t)+ 2+ 2k

For the lowest moment (k=0) the left-hand side
of the last relation is compared to S O' = S„(t)
in Fig. 4. Although agreement is certainly not
perfect, we see that our solution is in qualitative
accord with FESR. Agreement seems to be better
for the flip amplitude (n = 1}than for the nonflip
(n= 0). Notice that this is much the same situation
as for the vector-exchange amplitudes. '""

III. THE TWO-REGGE-POLES APPROACH (TRPA)

0 3

—4e
/

/r-8 —
Imv,

0.5 - t (GeV ) 1.0

Here we turn to an amplitude analysis of m p -~
by means of two Regge-pole exchanges, a(t) and
a'(f). The SHA at high energy take the form

Ol I
~ 3 (3) (-cot +

'
'(„'— ')'~' (3.()

2

FIG. 3. The SHA in the one-effective-trajectory ap-
proach (OETA) at E =5.9 GeV.

with &3 given in (2.6). The FESR for the lowest mo-
ment k = 0 becomes
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"t2 t „(I) (~ v,),(2+1+ —f "( (pP —v2) ~ + =$ (f).
g 0+2 gQ +2

(3.2)

In this section we proceed as follows: We use
the last equation to determine P„'(t) in terms of
p„(f) and S„(t) T.hen with the trajectories n(t)
and n'(t) specified, all ReM„(v, t) and ImM„(v, t)
depend on two unknown real functions, P, (t} and

p, (t). These functions are determined by means of
input data on do/dt and P at a given high energy.
Clearly, in this way the lowest-moment FESR,
Eq. (3.2), are satisfied exactly.

Again we use as input the differential cross sec-
tion data at E = 5.9 GeV. As in Sec. II, the fit to all
do/dt in the range 5.9 ~ E ~ 199.3 GeV is sensitive
to the exact value of n and o.'. For simplicity here
we use straight-line trajectories, and we have
found that the forms

4

(pb)
0

1/'
(p.b)

4

~ ~ ~ ~ ~~ ~

I

I

l

l

I

Re M, (0(.)

Oa ~ 0

/
'+ ~ ~ ~ ~

ImM (0(.')

ReM (~)

—t (GeV')

n(t) =0.43+0.81t, n'(f) = —0.1+0 72t. (3.3) IrnM, (~')
0 o Lo~ L I j/

~ ~ %a
~vF JTf Zk sLo ~ ~ o ~I~ + 5 + ~ ~ 4

give a reasonable fit to the do/dt data (Fig. 2,
dashed lines). Thus our leading trajectory n is
close to the p-A, exchange-degenerate trajectory
of several Regge analyses. Qn the other hand our
nonleading trajectory n'(t) is not far from the
nonleading p' trajectory of Barger and Phillips. "

As in Sec. II, because of the fact that cot(vn/2}
= ~ at t = -0.53 GeV' in our calculations we have
written the A, residue functions in the form

P„(t) = n(f)y„(t) . (3 4)

TRPA

2) )O

FIG. 5. The SHA in the two-Regge-poles approach
(TRPA) at @=5.9 GeV.

Again we use the functions S,(t} and S,(t) shown
with solid lines in Fig. 1 (solution III of Ref. 22).

Also owing to the even signature of the trajec-
tory of A„ taken literally, the contribution of
n'(f) of (3.3) would imply the existence of a spin-0
particle of mass -0.374 GeV. However, our
analysis has no implications for t&0, and such
unwanted objects can easily be eliminated by prop-

1.0

—t (GeV')

FIG. 6. Separate contributions to SHA in the TRPA
from the leading trajectory n (t) and the nonleading n' (t).
Solid lines: Im M„(n); dashed lines: ReM„(n); dash-
dotted lines: Im M„(n'); dotted lines: ReM„(n').

erly making the residue functions P„'(t) vanish at
t= 0.14.

It is very remarkable that in the present ap-
proach as well, in spite of using two mell-separat-
ed trajectories n(t) and n'(f), we obtain real solu-
tions for p, (t) and p, (t) only when the polarization
lP l

is very small (here lP
l
&0.05). Therefore

we proceed in our amplitude analysis using again
zero polarization.

The nonflip and flip SHA of this calculation at
E= 5.9 GeV are given in Fig. 5. In the present
approach (TRPA) the imaginary parts of the SHA
are again smooth functions of f (as in the one-
effeetive-trajectory approach of See. II); their t
structure is determined, to a great extent, by the
t structure of the input functions S,(f) and S, (t)
and by the condition of Eq. (3.2) (satisfaction of
FESR). However, the real parts of the SHA show
significant variation in t. In particular, ReM,
changes sign and shows much variation around
t = -0.6 GeV', and this feature is understood as
follows: Notice first that near t= -0.5 we obtain
real solutions for P„(t) only when lP

l
&0.05; hence,

as me already stressed, our approach demands
P =0. On the other hand the input da/dt is smooth
(and fairly large) around

l
f

l

= 0.5-0.6. Now, the
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input S,(t) and therefore also ImM, (t) change sign
at I= -0.5; however, S,(t) and I~(t) stay posi-
tive. Also, ReM, (t) stays positive [as can be seen
from the shape of ImM, (t) and the cot(va/2) fac-
tors]. Then, to obtain P =0 and d&r/dt large,
ReM, (t) has to vary significantly, and change sign
in this region of t.

In Fig. 6 we present separately the contributions
to ReM„and ImM„ from each of the exchanges a(t}
and o."(f). We remark that at small

I
t

I
the con-

tribution of a'(t) to both M, and M, is small com-
pared to that of a(t). At large

I tl the contribution
of a'(t) becomes more significant, in particular
to the nonflip ImM, .

8

IL

(Gev')

T T-m

o -t {GeV2)

IV. AMPLITUDE STRUCTURE —EXCHANGE DEGENERACY

The basic difference in the results of the OE'TA

(Fig. 3) and of the TRPA (Fig 5} is the relative
magnitude of the nonflip M, and the flip M, SHA.
In the first case, in general, IM, I

is significantly
smaller than IM, I, as is usually believed for
& +p-q+n; in the second case IMO I

and 1M~ I
are

comparable, at least around Itl =0.2-0.3 GeV'.
Another difference is in the overall shape of

ReMO (t).
In spite of the differences, however, there are

several similarities in the t structure of the SHA.
First, in both cases the imaginary part of the

nonf lip SHA, ImM, (t), differs significantly from
the DAM form -J,(Rl t), R = 1 fe-rmi. This is
the conclusion of a number of amplitude analyses
involving tensor exchange' "and is well supported
by both approaches of the present analysis. Also,
in both cases we find that ImM, (t) has a minimum
m the region

I
t

I

= 0.5-0.6.
Second, the imaginary part of the flip, ImM, (t),

is clearly of the DAM form -J,(R~t}. However,
this features is a result of our procedures rather
than a prediction. In Sec. II it is the result of
writing the residues in the form b, (t) = a, (t)g, (t)
[Eq. (2.15)], and in Sec. III it is a result of satis-
fying the FESR (3.2) and of having the input func-
tion S,(t) with a change of sign at t =-0.5 GeV'.

Third, the real part of the nonflip, ReM, (t), al-
though it differs in overall magnitude and shape,
does have in common the feature of changing sign
at

I
I

I

= 0.5-0.6 GeV' in both cases. This change
of sign of ReM, has also been observed in many
amplitude analyses involving tensor exchange. '"

Finally, the real part of the flip, ReM, (t), shows
no change of sign and stays relatively large at

I
t

I

= 0.5-0.6 GeV' in both approaches.
Recently we have received an amplitude analysis

involving A, exchange" in which a parametrization
of the p and A, amplitudes is used to fit available
data on m +p-m'+n, 1T +p-g+n, K +p-K +n,

—8—
[(p.b) ]

-12—

FIG. 7. Exchange degeneracy between&2 and p at E
= 5.9 GeV. —g2 exchange contribution (7r p —qn): solid
lines, OETA, dashed lines, TRPA; —p exchange contri-
bution (7t p 7r n): ~ Ref. 24, I Ref. 25, 0 Ref. 26.

K'+ n-K'+P. Although the approach is quite dif-
ferent from ours, the resulting A, SHA show all
the above-mentioned features for both nonflip and
flip. 'The SHA of Ref. 23 are particularly similar
to our Fig. 3 (OETA).

An important question, over which there has
been much controversy, is the exchange degenera-
cy (EXD) between A, and p exchange amplitudes,
and specifically between the imaginary parts of
the SHA for A, and p."

To answer this we plot in Fig. 7 our ImM„(t) at
E = 5.9 GeV of OETA (solid lines) and of TRPA
(dashed lines). In the same figure we plot the
imaginary parts of the SHA as they have been de-
termined in a number of model-independent am-
plitude analyses""'" (within an arbitrary t de-
pendent phase).

With respect to the nonflip amplitude, at small
It l (~0.3 GeV') we see that ImM, (t) of our OETA
is exchange-degenerate with the ImM, of p ex-
change; the ImM, (t) of TRPA is somewhat larger.
At larger

I
t I, however, we find no EXD; this is

a result of the fact that the ImM, corresponding
to tensor exchange (A, ) deviates from the DAM
form -J,(Rv'-t ), whereas the ImM, of vector ex-
change (p) is quite consistent with DAM.

With respect to the flip amplitude, for p exchange
the results of the amplitude analyses differ. If
we accept the analyses of Refs. 24 and 25, our
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solutions for Iml, of A, are in fair agreement with

EXD. The analysis of Ref. 26 gives ImM, (p) in

accord with ImM, (A, ) of TRPA at ~t~ &0.5; how-

ever, at larger ~t(, ImM, of Ref. 26 deviates from
the DAM form and therefore violates EXD. As is
well known, the difference in ImM, (p} between the
amplitude analysis of Ref. 26 and Refs. 24 and 25
is dug to different input polarization for m +p -w

+ n (ANL vs CERN).
We may conclude that if we accept the amplitude

analyses of Refs. 24 and 25 (CERN polarization),
on the whole the imaginary parts of our SHA do

satisfy EXD, ImM, for all t and ImM, for
~
f

~

& 0.3
GeV2

V. SPIN ROTATIONAL PARAMETER-DISCUSSION

OF POLARIZATION

To further distinguish between our two approach-
es (OETA versuh TRPA} we have calculated the
spin rotational parameter

(5.1)

In principle this parameter can be determined ex-
perimentally and will allow a distinction between
the SHA of Fig. 3 and Fig. 5.

The results of our calculation at E= 5.9 GeV are
shown in Fig. 8. There is a clear difference in
the predicted 7 for all ~f

~

a0.2 GeV'. In the OETA
(solid line) AT[ is smooth and very small for ftf
a 0.2. In the TRPA (dashed line}

~

T
~

is generally
large and shows a dramatic change near t = -0.6
GeV'. This is easily traced in the different struc-
ture of ReM, (t).,

We would like to conclude with certain comments
on the fact that both QETA and TRPA required
very small input polarization P. Clearly both our
approaches rely on the input functions S„(f)de-
termined from the phase-shift analysis of Ref. 22.
It would be highly desirable to use input S„(t) aris-
ing from other phase-shift analyses (of other auth-
ors) as well. Unfortunately we have been unable
to make effective use of any other analysis of

,0.8—
T

0.4—

—0.4

-0.8

I I 1 I
I

I 1 1 I I
I

TRF'& I
t

I

l
I l

0 5 / t (G yp) 1 0
I

I
I

I
/

r
I » & & I

FIG. 8. Predictions for the spin rotational parameter
T, Eq. (4.1), at E=5.9 GeV. Solid line, OETA; dashed
line, TAMPA.
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~ +p-g+n. Anyway, as stated in Sec. II, Ref.
22 presents four somewhat different solutions,
and we have obtained very similar results by using
different S„(t}.

Now accepting the S„(t) of Ref. 22 we carr say that
the demand P =0 in our work is not unrelated to the
analyticity requirements [in the variable v = (s -u)l
4M] which we impose in our solutions: In the
OETA we make direct use of fixed-f DR Eq. (2.4},
and in the TRPA analyticity is satisfied via the
FESR Eq. (3.2). We may conclude that the input
do/dt and S„(t) together with the analyticity re-
quirements lead in the present case to I' =0.

We note that the recent analysis of Ref. 23 also
predicts small polarization for m p-qg at all t;
their maximum (at t = -0.2 GeV') is P = 0.2.

For all these reasons more accurate polarization
data for n p -gn will be of much interest. We may
hope that they will be available in the not-too-dis-
tant future.
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