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Using Mandelstam analyticity and conformal mapping new variables are constructed so as to extend the

domain of applicability of the convergent polynomial expansion (CPE) to all energies. It is found that the

CPE exists for all energies if the scattering amp1itude possesses at least one zero in the physical region. The
CPE goes over to the optimized polynomial expansion (OPE) for higher energies. The approach from CPE to
OPE is faster the higher the energy is, the farther the left-hand cut is than the right-hand cut, and the
closer the position of zero is to the backward direction. The variables are found to be potentially useful in

describing diffraction scattering at forward angles at all energies. A universal formula has been developed

that relates slope parameters to equations of boundaries of spectral functions and lines of zeros. The formula

gives a good account of the world data on shrinkage, antishrinkage, and shrinkage-antishrinkage of forward

peaks at all energies. Good fits to the data on shrinkage for pp and K+p scattering, and antishrinkage in

Pp scattering have been obtained with known theoretical boundaries and suitable lines of zeros. Reasonably
good fits to the data for K p and e+p scattering with oscillations at lower energies have been obtained with

effective shapes of spectral functions and suitable lines of zeros. In some cases our lines of zero found from
this analysis appear to be different from those of Odorico. From the present approach to the scattering
problem we observe that the imaginary part of the amplitude that yields b('s)~ oo for some values of s must
vanish at one point at least in the backward hemisphere.

I INTRODUCTION

Many models have been proposed to explain
hadron-hadron collisions at high energies. Most
of the results derived from these high-energy
models have also been used to account for the ex-
perimental data at lower energies without caring
for the range of validity of these results. Recent
attempts to explain observed variations of slopes
of diffraction scattering fall under this category.
A short review of experimental data and theoreti-
cal models has been reported in Ref. 1. None of
the models developed so far account even quali-
tatively for the observed experimental data at all
energies. Although shrinkage of forward peaks for
pp and E'p scattering has been explained, there
does not exist even a qualitative explanation of the
shrinkage-antishrinkage pattern observed in pp,
K p, n+p, and n p scattering. Exyerimental data
on slopes of pp scattering show rapid decrease
with energy at lower and intermediate energies
approaching a constant value at higher energies.
In this case the slope parameter appears to go to
infinity as threshold is approached. Although the
data at lower energies for K p scattering are too
erratic, the slope parameter oscillates at lower
energies falling off to a constant value at higher
energies. In w'p scattering a majority of data
points at lower energies show antishrinkage. At
intermediate energies the slope parameter oscil-
lates and at higher energies it increases with en-
ergy. There are clear evidences of rapid decrease
at lower energies, oscillations at intermediate

energies, and increase at higher energies in the
case of experimental data on slopes of m p scatter-
ing.

Very good fits to the oscillatory pattern in the
case of K p, w'p, and m p scattering have been
proposed by Barger and Cline' in a model with an
empirical merger of the Regge and geometrical
pictures. But their work has been strongly criti-
cized by Weare, 4 who has pointed out that the en-
ergy range in which the model should work is much
larger than the authors' have used in their cal-
culation. It has also been shown that there is not
even a qualitative explanation of the shrinkage-
antishrinkage at lower and intermediate energies.
The empirical extrapolation rule proposed by Bar-
ger, Geer, and Phill. ips' fails to account for the
world data on shrinkage-antishrinkage at lower and
intermediate energies.

Recently Leader and Pennington" have proposed
a new kinematic variable, n', for the description
of scattering at high energies. Scattering ampli-
tudes are considered as functions of s and n', and
asymptotic formulas for s-~ are derived. These
formulas have been used to fit the data on the slope
parameter at all energies starting from threshold
values. ' This theory gives a very good description
of shrinkage of forward peaks for pp and K+p scat-
tering, whereas antishrinkage in pp scattering
predicted by this theory' is much slower in com-
parison with the experimental data. While the the-
ory is designed for asymptotic energies, data at
lower energies have been used' to demonstrate its
success. Therefore a similar criticism to that of
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Weare' stands against it.
The conventional partial-wave expansion for the

spinless-particle scattering amplitude converges
within the Lehmann ellipse in the cos8 plane. In
the limit of very high energies the Lehmann ellipse
shrinks onto the physical region making the Le-
gendre expansion unreliable. By means of confor-
mal mapping and the optimized polynomial expan-
sion, the rate of shrinking has been sufficiently
slowed down. ' As a remedy to such shrinking a
parabolic variable was suggested' to describe high-
energy scattering of hadrons. At high energies
and at forward angles scattering is almost pure
imaginary. Experimental data at forward angles
can, therefore, serve as a good guide in obtaining
information about the imaginary part at nearby
unphysical regions. Following up this idea formu-
las were derived~ which could successfully cor-
relate experimental data on slopes of forward
peaks with equations to boundaries of spectral
functions. From fits to the data on slope param-
eters for pp and K'p scattering effective shapes of
spectral functions were computed. But the same
type of approach resulted in the shrinkage of for-
ward peaks of pp and K p scattering also. Fur-
ther the formulas are found to yield shrinkage in
the cases of n'p and m p scattering. We suppose
that the failure of the formulas proposed in Ref. 1
to describe antishrinkage of forward peaks at low-
er and intermediate energies may be connected
with the length of the physical region appropriate
for expansion in terms of Laguerre polynomials.
In earlier works the appropriate physical region
is achieved only at asymptotic energies, and there-
fore the same type of criticism as before can be
raised against them.

In this work we aim at proposing a phenomeno-
logical theory for all energies. We demonstrate
that such a theory is possible if one makes use of
analyticity properties and information about zeros
of scattering amplitude. Many attempts have been
made to obtain information about zeros of scatter-
ing amplitude at high energies. "" Starting from
the assumptions of axiomatic field theory Roy"
and Auberson, Kinoshita, and Martin" have shown
that a Pomeranchuk-theorem-violating amplitude
may have some zeros on the physical region in the
complex t plane. Odorico has extracted lines of
zeros from experimental data according to
which"'~ the zeros propagate in a systematic
manner even up to lower energies in the Mandel-
stam plane. In the present work, using Mandel-
stam analyticity and the assumption of the exis-
tence of zeros on the physical region, we propose
new variables by means of conformal mapping with
a view to provide a global understanding of diffrac-
tion scattering at forward angles. Although the

variables introduce certain kinds of spurious
branch points in the mapped plane we obtain the
following results:

(i) There exists a convergent polynomial expan-
sion (CPE) for the scattering amplitude at all en-
ergies if it possesses at least one zero on the
physical region.

(ii) The CPE goes over to the optimized poly-
nomial expansion (OPE) at high energies. The
approach from CPE to OPE is faster the farther
the left-hand cut is than the right-hand cut and the
closer the position of zero is to the backward di-
rection.

(iii} Using the CPE a universal formula for slope
parameters has been derived that relates the slope
parameter to the equations to boundaries of spec-
tral functions and lines of zeros for several pro-
cesses. Thus the formula serves as a method of
determining effective shapes of spectral functions
and lines of zeros from experimental data.

(iv} Good fits to the data on pp, pp, and If'p scat-
tering at all energies have been obtained with elas-
tic boundaries and suitable lines of zeros. The
formula gives reasonably good fits to the data on
shrinkage-antishrinkage with oscillations at lower
energies for n'p, m p, and K p scattering with
effective shapes of spectral functions and suitable
lines of zeros. Our analysis in some cases favors
Odorico' lines of zeros, whereas they appear to
be different in other cases.

(v) From the present approach to the scattering
problem we conclude that the imaginary part of
the amplitude that yields b(s) ~mus-t vanish at
one point at least, in the backward hemisphere.

In Sec. II we construct new parabolic variables
in terms of which convergent polynomial expansion
is possible for all energies. The importance of
such variables in describing forward (backward)
scattering has been pointed out and a universal
formula for slope parameters has been derived
in this section. In Sec. III the formula is applied
to forward diffraction scattering and effective
shapes of spectral functions and lines of zeros
have been derived. In Sec. IV we discuss our re-
sults and indicate further application of this type
of analysis.

II. THE CONFORMAL MAPPING AND CONVERGENT
POLYNOMIAL EXPANSION

In this section we construct new conformally
mapped variables which extend the domain of ap-
plicability of CPE to all energies. It is argued
that a Laguerre-polynomial expansion in terms of
these variables with appropriate weight factor
should describe scattering at all energies. In the
present work we do not include resonances ex-
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licitly, neither do we make any attempt to fit
the oscillatory pattern of the data on slope param-
eters, but we assume that our formula serves as
a good shape factor for all energies. We observe
that simple considerations of Mandelstam analy-
ticity and zeros of scattering amplitude can ac-
count for a good average of the data near the for-
ward directions at all energies. We will follow
the notations of Ref. 1.

To develop a new variable for hadron-hadron
collisions at all energies we make two important
observations upon earlier works. "

The first observation is that in Ref. 1 the x plane
was folded in such a way that the start of the left-
and right-hand cuts coincided. The physical as-
sumption involved incoinciding the start of the
cuts was to weight equally the right- and the left-
hand-cut contributions. The cuts in the x plane
were mapped onto the branches of a parabola in
the z plane with origin as focus. The forward di-
rection (x = 1) was mapped into origin and the left-
and the right-hand cuts were symmetrically placed
with respect to the physical region in the z plane.
Because of the fact that the left- and the right-
hand cuts are symmetrically placed with respect
to the physical region in the z plane contributions
due to both the cuts were weighted equally. Fur-
ther, the unknown parameters in the series for
OPE, being fixed by the experimental data in the
physical region, the differential cross section will
be the same at equivalent points on both the cuts.
Although such a feature is desirable in the process-
es like pp scattering, it is not desirable for pro-
cesses exhibiting asymmetric cut plane of analy-
ticity. For energies above threshold the right-
hand cut is closest to the forward direction, where-
as the left-hand cut is farther away in the x plane.
Even for processes with symmetric cut plane of
analyticity, forces represented by the right-hand
cut have more influence over scattering in the for-
ward hemisphere. The right-hand cut is considered
so important that Lovelace" has ignored the pres-
ence of the left-hand cut as compared to it in his
analysis of the diffraction scattering data by con-
form@1-mapping methods. We devise a mapping
which places the start of the right-hand cut closest
to the origin and the start of the left-hand cut in-
finitely far removed from it in the z plane. Such a
mapping function gives nonzero values of slope
parameter near threshold. But it fails to account
for the shrinkage-antishrinkage pattern.

The second observation is that the physical re-
gion -1&x ~+1 is mapped onto a segment of the
real axis in the z plane, which in the limit s-~
spreads the entire right half of the real axis from
zero to infinity. It is well known that, ' "when the
domain of analyticity is a parabola with origin as

z,(s, x) =(cosh 'v(u, )'

with

(2a)

(2b)

This conformal transformation maps the right-
hand cut in the x plane [Fig. 1(a)] onto a crescent
that forms the forward portion of the parabola, the
start of the right-hand cut lying at the apex, and
the left-hand cut onto the branches of the parabola
in the zo plane [Fig. 1(b)]. The forward direction
(x =1) is mapped onto the origin which is the focus
of the parabola in the z, plane. Since the right-
hand cut is squeezed onto the forward portion that
covers the origin uniformly and the left-hand cut
is mapped onto the remaining parts of the branches
of the parabola which lie farther away from the
origin, we suppose this type of mapping to take
into account of the relative meight between the left-
and the right-hand cut. . Now using zo instead of z
and taking only the first term in the expansion (1)
then gives' the slope parameter in the forward di-
rection as

When compared with the corresponding formula
of Ref. 1 we note a sign change before the second
term in the bracket in formula (3). Apparently
this means that if the formula of Ref. 1 accounted
for shrinkage, formula (3}may account for anti-
shrinkage. Calculated values of slope parameter

focus, a series in Laguerre polynomials converges
in the interior of the parabola. The physical region
for Laguerre-polynomial expansion is the semi-
infinite line from z =0 to z =~. In the conformal
maps" the physical region spreads the right half
of the real axis in the z plane like (lns}' as s-~.
Thus only in the asymptotic energy region the rep-
resentation

Nfl =f (s,z) =e "'Pa„(s)L„(2az)
n

is accurately valid. We think that this might be a
possible region for disagreement with the lower
and intermediate energy data for pp, n'p, m p,
and K p scattering. To find a convergent repre-
sentation for all energies we construct a new con-
formally mapped parabolic variable that gives the
correct physical region for Laguerre-polynomial
expansion at all energies.

According to our first observation the conformal
mapping that places the start of the right-hand cut
closest to and the start of the left-hand cut infinite-
ly far removed from the image of the forward di-
rection can be written in terms of a parabolic vari-
able
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all energies as pointed out in our second observa-
tion. This is possible if the amplitude possesses
at least one zero on the physical region. Such a
variable is obtained most simply by multiplying
the variables proposed earlier'9 and in Eq. (2) by
a function g„(x), real and positive everywhere on

the real axis, and possessing n poles on the physi-
cal region at x„x„.. . , and x„ in the x plane.
Thus our new variable is

z„(s,x) =g„(x)z

with

(4)

(b)

g„(x) = (1+x)'" (x -x, )',
(=I

(5)

24-
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FIG. 1. (a) Complex x=cosg plane illustrating analy-
ticity properties of the imaginary part' of bvo-body
scattering amplitude. (b) Conformal transformation into
zp plane defined by Eq. (2).

for pp scattering have been shown in Fig. 4. It is
found that although formula (3) gives a nonzero
value of slope parameter at threshold there is not
even a qualitative explanation of the antishrinkage
pattern. Such a situation arises because of the
smallness of 4q' compared to f~ near threshold
and the additional s dependence in ts(s}. We sup-
pose that the failure of such a mapping function to
explain low-energy data may be due to finite length
of the physical region in the z plane at finite en-
ergies.

Before proceeding further we observe that the
conformal mapping of formula (2) does not intro-
duce spurious cuts. In Ref. 1 a square transfor-
mation has been used which introduces spurious
cuts by folding a part of the physical region on top
of the other part. However, formula (3) is not
quantitatively satisfactory.

We now construct another variable that contains
the good feature according to our first observation
and conforms to the appropriate physical region at

where z represents variables proposed earlier"
and in Eq. (2). The real and imaginary parts of z„,
when x lies on the cuts in the x plane satisfy the
relation

(Imz„)'=v'g„(x) [Rez„+-,'v'g„(x)]. (~)

One can use the factor (c +x)'" instead of (1+x)
m g„(x), where c is any real constant. We have
chosen q = 1 for the sake of simplicity and to avoid
another free parameter. This choice, of course,
introduces strong behavior at the point x =-1,
which is not far away in the z„plane. Considered
as a function of x, g„(x) appears to possess a zero
of order 2n atx=-1, andn poles each of order 2
in the x plane. But when looked as a transforma-
tion of the cut x plane, the many-sheet structure
is folded together introducing spurious cuts in the
g„(x) plane or equivalently in the z„plane. Since
the mapping of Eq. (4) introduces branch points
which may influence convergence of polynomial
expansion, it is important to realize their loca-
tions in the mapped plane. For a general g„(x}as
given by Eq. (5) location of such branch points may
be complicated. But we will see in the subsequent
sections that z, (x) gives a global understanding
about slopes of diffraction scattering. Therefore,
we have studied locations of branch points for sim-
ple cases. Let us consider the case of a particu-
lar z„(x}for which x, =x, = ~ ~ =x„. In this case
there are two spurious branch points each of or-
der 2n in the z„plane at z„=0 and z„=~. Similarly
there are two branch points at exactly the same
locations in the z, plane but each of order 2. Thus
in both these cases, one of which is relevant for
data analysis, the spurious cut completely over-
laps the physical region appropriate for Laguerre-
polynomial expansion in the mapped plane. Ciulli'
has discussed convergence of polynomial expan-
sion in terms of a mapped variable which intro-
duces an "artificial" cut explicitly along the physi-
cal region. Although the spurious cut has been
finally removed on physical grounds' the conver-
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gence phenomena have been shown to hold true
even in the presence of such cuts. We, therefore,
suppose that the spurious cuts will cause no prob-
lem for convergence in the simple cases as long
as they lie on the physical region or outside the
figure of convergence.

The mapping function (4) does not map the cuts
onto a regular figure of convergence. However,
for the distant parts of the cuts satisfying ~x~ »1
» ~x, ~, g„(x) = 1, and hence the real and the im-
aginary parts of z„satisfy the equations of a para-
bola. The physical region in the x plane is mapped
onto the right half of the real axis in the z„plane
for all energies. Such a possibility has been
achieved due to the presence of poles of the func-
tion g„(x). When z„ is used in place of z we observe
that the representation (1) yields zeros of the scat-
tering amplitude at the n points corresponding to
the poles of g„(x) on the physical region. We as-
sume that these zeros are in general energy de-
pendent. We further note that the existence of only
one zero on the physical region is sufficient to
guarantee the physical region appropriate for La-
guerre polynomial expansion at all energies. Prob-
ably this is the requirement if one wishes to obtain
a physical region of infinite length in the z plane
from that of finite length in the x plane. By the
function z„, however, the cuts do not map onto any
regular figure of convergence at all energies. It
has been proved by Cutkosky and Deo' and Ciulli'
that the greater the convergence of the polynomial
expansion is, the larger the area of the cut plane
of analyticity mapped onto the interior of the fig-
ure of convergence is. The convergence is maxi-
mum when the entire cut plane of analyticity is
mapped onto the interior, the cuts forming the
boundary of the figure of convergence. By the con-
formal mapping (4) the branch points do always
remain away from the physical region in the z„
plane. Thus there exists a parabolic figure of
convergence, its boundary touching the image of
some point(s) on the cuts, with correct physical
region for Laguerre-polynomial expansion in the
z„plane. Then the Laguerre-polynomial expansion
in terms of z„ is convergent at all energies. But
since this figure of convergence contains only a
part of the image of the entire cut plane of analy-
ticity the convergence is not maximum. We shall
presently show that for a simple g„(x), the domain
of convergence is greater the higher the energy is,
the farther the left-hand cut is than the right-hand
cut, and the closer the position of zero is to the
backward direction. In fact it is possible to achieve
maximum convergence at high energies. The same
type of reasoning also may hold for the convergence
of Laguerre-polynomial expansion in terms of z„(x).
Even though the convergence of expansion in terms

z, (s, x) = (1 -x) ' z „(s,x)/ [x -x (s)]',
where

(10)

of z„ is not maximum at finite energies, only the
first few terms in the expansion will contribute to
scattering in the forward direction since z0=-t/ts,
for 4q +tz»(t) and (t) «tz.

For simplicity let us consider the case when the
forward amplitude has only one zero in the back-
ward hemisphere with x, = -x,(s). The mapping
function becomes

z, = (1+x)'z,(s, x)/(x +x,)'.
It is found that, although the image of the right-
hand cut deviates only slightly at lower energies, "
the image of the left-hand cut does not lie on any
regular figure of convergence in the z, plane. At
fixed s the deviation of the image of the left-hand
cut from the parabola is less the closer the position
of zero is to the backward direction and the farther
the left-hand cut is than the right-hand cut in the x
plane. In plotting the conformal transformation we
have used'4

x,(s) = 1 —0.7/2q'

for pp and pp scattering and

x,(s) = 1 —0.15/2q'

for pp scattering corresponding to crossover
zeros. " The conformal transformations have been
shown in Figs. 2(a), 2(b), and 2(c) for pp and pp
scattering illustrating our conclusions. The con-
formal transformations for n+p, m p, K+p, and
K p scattering behave in the same fashion as that
for PP scattering. It is found in general that a domain
of convergence exists for all energies for all scatter-
ing processes in the z, plane. This domain of con-
vergence is larger the more the asymilietry of the
cut plane of analyticity is and the closer the posi-
tion of zero is to backward direction. As energy
increases the domain of convergence increases and
at high energies the images of the left- and right-
hand cuts approach lying on a parabola correspond-
ing to the figure of convergence of Laguerre poly-
nomial expansion. Thus the convergent polynomial
expansion becomes maximally convergent' at high
energies. "

As we have already discussed the conformal
transformation has been constructed to describe
scattering data at forward angles where the right-
hand cut has more influence. Similarly a conform-
al transformation can be constructed so as to ac-
count for scattering in the backward hemisphere
where the left-hand cut has more influence. In
the special case with only one zero in the forward
hemisphere at x =x,(z), the transformation can be
written as
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It may be noted that for processes like pp scatter-
ing possessing t-u symmetry, x, =x, and the
symmetry can be explicitly preserved by taking
~x,(s)( = ~xz(s)~, a pair of symmetrically placed
zeros and putting J3=~, g„=g„, for n =0, 1, 2, ... .
This reduces the number of parameters in (12) by
one half. We note that near backward angles and
high energies

2

Q —Qpg

Thus the contribution of the forward amplitude is
damped out with energy in the backward direction.
A further damping is provided by the closeness of
up to u =0. Similarly the backward amplitude given
in terms of z, is damped out in the forward direc-
tion. Thus for scattering near forward directions
we can write from (12), by retaining terms first
order in t, to a good approximation as

f (s,x)=b, e "'&+co. (14)

24-

I6-

(c)
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Similarly the first term in the second series in
(12) contributes to angular distribution near back-
ward directions. We will use formula (14) to ob-
tain a universal formula for the slopes of diffrac-
tion scattering and parametrize the experimental
data for different diffractive processes. As has
been discussed earlier the variables zy and z~ in-
troduce spurious cuts on the physical region in the
mapped planes.

0-

-8-

III. UNIVERSAL FORMULA FOR SLOPE PARAMETERS,

LINES OF ZEROS, AND EFFECTIVE SHAPES

OF SPECTRAL FUNCTIONS

-16-
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FIG. 2. Conformal transformation into z& plane with
(a) ~0(s) =1—0.7/2q2, (b) xo(p) =1—0.15/2q2 for differ-
ent energies for pp scattering, and (c) xo(s) =1—0.7/2q
for different energies for pp scattering.

In this section we use our CPE to derive a uni-
versal formula for slopes of forward peaks in
terms of lines of zeros and shapes of spectral
functions. It has been demonstrated that such a
formula describes very well the world data on
shrinkage, antishrinkage, and shrinkage-anti-
shrinkage of forward peaks at all energies. While
analyzing the data for various processes we are
not disheartened if we get a lt'/Nnp (Nn„=number
of degrees of freedom} larger than what is expected
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b()=—In( ) (15)

and use formulas (2), (6), (7), (8), and (12) to ob-
tain expressions for b(s) for two-body elastic scat-
tering of unequal masses as"

b(s) = 16(y q4

[4q'+u, (s) —g/s] ts

of a good fit, because, as we have emphasized in

the beginning of Sec. II, no attempt is made here
to include resonances explicitly or to fit the osil-
latory patterns with a large number of parameters.
Even then our fits are found to be better in view of
the discussion made in the Introduction. Lines of
zeros and effective shapes of spectral functions
have also been computed from the experimental
data. We define the slope parameter of the forward
peak as

u, (s) t,(s ) =a,s (17)

where u, (s) and t, (s) are u, t values lying on a line
of zero. One of the values of a has been found to
be" -0.7 GeV'. A slightly different type of line
of zeros has been suggested by Pinsky. " From
(17) we have

-4q +(16q+ —4as)~
u, (s) = (18)

Choosing the positive sign before the radical we
obtain with the help of (16) and (18)

A. pp scattering

Odorico"' has extracted lines of zeros for pp
scattering and many other processes from experi-
mental data. It has been suggested that a Krisch
type" of variable describes the lines of zeros in
the Mandelstam plane:

x 1+ (16)

16Qpp g 1
b (s) =

[2q'+ (4q'-as)'t']' ts»

A similar expression" for the slope of backward
scattering can also be derived. In Eg. (16) u, (s)
corresponds to the position of the zero in the back-
ward hemisphere whose s dependence ean be ob-
tained from the equation to the line of zero in the
Mandelstam plane. Here tR and t~ can be obtained
from equations to the boundaries of spectral func-
tions as discussed in Ref. 1. We note that u, (~)
=const. thus lim, „b(s) =const. It is also possible
for certain values of s and shapes of lines of zeros
[4q'+u, (s) -a/s] =0, in which case b(s) =~. Thus
we conclude that the imaginary part of the forward
scattering amplitude, that yields large values of
slope parameter for some value of s, must possess
at least one zero in the backward hemisphere. We
wiU presently see that such a behavior of the slope
parameter is consistent with the experimental data
for pp scattering. We next proceed to analyze the
experimental data for various diffractive process-
es by means of formula (16). If the process under
consideration is g +5-g +fy we will replace n, ~,
tR, and t~ by 0.„,5„, tR„, and t~„, respectively.
Our approach is as follows: We first use known
equations for lines of zeros and boundaries of
spectral functions and examine the agreement of
formula (16) with experimental data. Whenever
there is disagreement we use new parametrizations
for lines of zeros and shapes of spectral functions
until there is agreement and thus compute effective
shapes of spectral function and lines of zeros. We
find that the formula (16) is universal in the sense
that it describes very well the experimental data
on slopes of pp, pp, K'p, and m+p scattering.

tRPP
x 1+ 2+t (19)

where the theoretical elastic boundaries of spectral
functions are given by

4m„4
2

Rpp (20)

(happ
=0.8V'7. (21)

The value of y'/N» for the fit is 14.9. Most of the

From the expression (19) we observe that the
slope parameter and hence the amplitude near
forward angles possesses spurious square-root
branch points in the s plane at

s =s, =4m +2(4m a+a )'
Such an undesirable feature is the characteristic
of the Krisch type of lines of zeros. With the ex-
pression (20) and the value of a =-0,7 Ge&2 de-
termined from the data on differential cross sec-
tions, formula (19) has only one free parameter,
Q pp The fit to the data' "at all available energies
has been shown in Fig. 3. We find that the fit at
high energies is the same as in Ref. 1, giving good
account of the shrinkage of diffraction peak. The
formula of Ref. 1 yielded negative values of slope
parameter near threshqld; the present formula
yields b»(s) caq for s near threshold. It may be
noted that, whereas effective shapes of spectral
functions were necessary to fit the data with three
free parameters, the present analysis gives a
reasonably good fit with elastic boundary and one
parameter only:
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FIG. 3. Slope parameter of the forward peaks for pp scattering as a function of g. The solid curve is the result of
this analysis. The data points are from Refs. 2 and 23.

contributions to the X2 value come from very-high-
energy data points for which our formula yields
constant slope. Presumably the fit at ultrahigh
energies may be improved if one exploits s-plane
analyticity also. In this analysis and subsequent
analyses we do not suppose it is meaningful to
evaluate uncertainties of parameters because of
the larger X value.

B. pp scattering

16Qp&e I fspp

With elastic boundaries of spectral functions

4m„~
2

RPP m'

~ 4~2

4m„
tr &&

—4m2+

(23)

(24a)

(24b)

up(s) =cy y (22)

the formula for slope parameter can be written
in the following form:

Experimental data on pp scattering show rapid
antishrinkage of the forward peak at lower ener-
gies and the slope parameter appears to rise to
infinity near thresho1d. We find that it is impos-
sible to account for this type of behavior with lines
of zeros obtained by Odorico"'~ and Pinsky, "
which give shrinkage of the forward peak like pp
scattering. But if we assume existence of a fixed-
g line of zeros

o, p p =0.974,

c~ = -0.295 GeV'.
(25)

We observe that the slope parameter approaches
infinity more sharply near threshold than the ex-
perimental data. The rise to infinity can be made
slower by choosing a curved line of zeros

(s —s, ) [up(s) —u, ] =c, (26)

we tried to fit the experimental data by the formu-
la (23), taking o.pp and c, as two unknown param-
eters. %he fit is shown in Fig. 4 (curve II) with
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Approximate hyperbolic shapes of p„and p were
assumed and effective shapes of spectral functions
were computed from fits to the experimental data
in Ref. 1. Here we theoretically deduce~ equa-

tions to the boundaries of spectral functions by
taking box diagrams shown in Figs. 5(a) and 5(b).
Thus we get two different equations for two differ-
ent energy ranges:

f, =4m„2+4m, '[4m2m»2+ m, 'm» —2m m»(m + m»') +2sm, m»]/[s —(m + m„)'] [s —(m —m»)']

for s&(m + m»)', where m» =m, +m», and

(29a)

m, ' m +m»' —s 1 1 2m, 2m„
2m ——+ 2 + +1

t~=16m ' +32m„'m»m ' m m» mm» 2mm» ' m» m m mm»

[s —(m + m»)'] [s —(n —m»}']

(29b)

for s&(m+m»)2. Thus t»», ~ is given by the mini-
mum of f, and t2 given by Eqs. (29a) and (2Sb).
Theoretical deductions of equations to the bound-
aries of p appear to be tedious. Therefore, we
assume an approximate shape'

2 4m„'
fI»+p (m + m») + I )2S —(PP7g + SPY

(30)

(31)

Reasonably good fit to the experimental data"' by
this formula and with a fixed u line of zero has

The formula for slope parameters for K'p scatter-
can be written as

16oI»+~ q' 1

[4q +uo(s) —rI, »,I/s]' tR», I

been shown in Fig. 6 with

o = 0.575,

u, (s) =1.5 GeV' .
%e observe that the line of zeros lies in the un-
physical region. For this fit y2/N„„=15.9.

D. E p scattering

For KN scattering equations to the boundaries of
p„, are derived from those of p„by replacing s by
u. Thus for K p scattering t«-p = t«+» and 6„-p
=~~+p, if we ignore mass difference between K'
and K mesons. Thus the formula for slope pa-
rameters in this case is the same as Eq. (31) ex-
cept that the constant Qg+p is replaced by +z' p.
Fit to the data using elastic boundaries and a
fixed-u line of zeros with

(y~-p =0.572

uo(s) =0.088 GeV2
(33)

has been shown in Fig. 7 (curve 11). We observe
that curve II gives a good qualitative description
of the data at lower and intermediate energies.
The fit can be improved if an effective shape is
taken for p„,. For this purpose we replace the
pion mass before the square bracket in the second
term in Eq. (29a) and before the large curly brack-
et in the second term in Eq. (29b) by a variable
parameter X. Since the left-hand cut is farther
away we do not suppose that the slope parameter
would be sensitive to the changes of the shape of
t«-p. Thus taking tz g p fg~+p we obtain a good
fit to the data (curve 1, Fig. 7) for

(y~ p=0. 572,

~ =0.031 GeV,

FIG. 5. Box diagram for K+ scattering with (a) two-
pion exchange, and (b) four-pion exchange, in the t
channel.

u, (s) =0.088 GeV' .
For this fit y /Nop =10.8. We find that our formula
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FIG. 6. S)ope parameter of the forward peak for K'p scattering as a function of g. The solid curve is the result of
this analysis. Data points are from Refs. 2 and 27.

yields oscillations at lower energies. In the pres-
ent case the data at lower energies are so erratic
that we do not feel the need for using a curved line
of zeros for analysis. According to Odorico'4 the
lines of zeros at high energies are all fixed-u lines
with a -1 GeV' spacing which is a characteristic of
the Veneziano formula. Our line of zeros uo(s)

=0.088 GeV' does not coincide with the analysis of
Odorico. '4 The disagreement may be due to fol-
lowing reasons: First, our analysis is based on
inaccurate data. Second, Odorico has extracted
lines of zeros of nondiffractive parts of the amp-
litudes Rhereas we are concerned with the diffrac-
tive part.

K P
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FIG. 7. Slope parameter of the forward peaks for K'p scattering as a function of g. Curve I is the fit with effective

boundary and fixed I line of zeros. Curve II is the same fit with elastic boundary. The dotted curve is the fit given in
Ref. 1. The data points are from Ref. 2.
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64sA. 4

ted=16m +
[s —(m + m, )'] [s —(m -m„)']

for s&(m +m, )', and

16X4(s +3mm —3m, s)t=4 +
[s —(m +2m„)'] [s —(m —2m, )']

(35a)

(35b)

E. 7r'p scattering

It is well known that tR,+~ is the minimum «
for s&(m +2m, )', which represent theoretical
boundaries of p„ for X =m„. Since the left-hand
cut in the x plane is farther away than the right-
hand cut from the forward direction we suppose
that the slope parameter for n'p scattering may
not be sensitive to the changes of shapes of p
Therefore we have chosen the elastic boundary of

p given by the minimum of t, and t, :

f, =m~+m 2+8m„2(m s —a„N)/([s —(m+2m„} ] [s -(m —2m } ]]

64,'(m' —6,„}' 4m' (m' ~,'}~ 3m'4, „~2m, '4, ~ 464, }''([s —(m+ 2m, )'] [s —(m- 2m, )']j' [s —(m+ 2m „)'][s —(m —2m „)']

for s&(m +2m„)',

I, =m 2+4m„'+8m„'(m's -s,„)/[ [s —(m + m, )'] [s —(m -m, )'])
64m, '{( 's —4„,)' ~ )6{4 ', '

(
' ~4,') —(2m„' ~ 4,'s)Ss, I)}s- m+m„' s —m-m„'

(36a}

(36b)

for s&(m + m, )'. We tried to parametrize the data
on slope parameters for n+p scattering by -the form-
ula (16) with fixed u lines of zeros. Curve I in Fig.
8 represents our fit with

(y,p
= O.723,

X =0.253 GeV,

u, (s) =0.288 GeV'.

(37)

Rm Pt +

46' 4( „, -4„ /6 ) (38)

Although our fit describes a good average of the
data, the slope parameter rises to infinity at s =1.5
GeV' corresponding to the zero of 4q'+u, (s) —4,)}(/s.
At lower energy the line of zero passes near the
backward direction in the physical region. Experi-
mental data of Bowler et al."at lower energies
indicate strong evidence of dips near the backward
angles. The value of y'/N» for this fit is as large
as 54.1. Such a large value of Xa is due to the os-
cillatory nature of the slope parameter and the
larger population of data points with relatively
small errors near the n, (-1900) resonances. '
Curve III in Fig. 8 gives the same fit with elastic
boundaries X =m, .

We also tried to parametrize the data with a
curved line of zeros given by E(I. (26). Assuming
for the sake of simplicity ~, =s„ the formula for
slope parameters is

160' +pq 1
[s -Z, +u, +cj(s -u, }]' ts,,~

where Z =2(m'+ m, '}. Fit to the data by this
formula has been shown in Fig. 8 (curve II) with

o. +q=0.519,

~ =0.178 GeV,

c,=1.031 Gev',
(39}

g, =-0.195 GeV .
The y /N» value for this fit is 25.7, which is al-
most half of that for the fit (37). In spite of the
smaller value of g' it is clear that visually curve
II is a worse fit than curve I. This is because
curve II has fitted the average of the data near
a(-1900}resonances in a better fashion. Although
this fit accounts for the data only qualitatively one
of the asymptotes to the line of zero is very close
to that obtained by Odorico'4 (u = -0.2 GeV'). We
will presently see that a curved line of zero gives
a good account of the n p data.

F. m p scattering

Equations to the boundaries of p„, for rN scatter-
ing are derived from those of p„by replacing s by
u. Thus tR„-~ and ti„~ are taken to be the same as
those for m'p scattering. Fit to the data taking
fixed g lines of zero and effective shapes of spec-
tral functions with
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o.„~=0.75,

x =0.187 GeV,

u, (s) =0.302 GeV2,

(4o)

is shown by curve I in Fig. 9. Although the fit
describes a good average of the data, the slope
parameter rises to infinity at s =1.5 GeV' as in
the case of w'p scattering. Curve III in Fig. 9 is
the fit with elastic boundaries, A. =m„. Next we
tried to fit the data with a curved line of zero as
given by formula (38). Good average of the data
on shrinkage-antishrinkage with oscillations at
lower energies is described by the fit with

o „p=0.664,

z =0.200 Gev,

~, =0.98 Gev',
(44)

u, =-0.195 0 V'.

This fit has been shown by curve II in Fig. 9. The

y /No„ for this fit is 14.7. We find that the infinity
has been removed and very near the threshold the
slope parameter rises to a value in agreement with
the data. The slope parameter also falls to zero
at threshold in this fit. Such a fit has been pos-
sible because of the closeness of the zero of s-Z
+u, +c, /(s -u, ) to threshold where the numerator
damps out the large values. We note that one of
the asymptotes to the curved line of zeros is close
to u,(s) =-0.2 GeV'. In the next section we dis-
cuss our results of data analysis obtained in this
section.

1V. RESULTS AND DISCUSSION

It is well known that the usual partial-wave ex-
pansion for scattering amplitudes converges with-
in the Lehmann ellipse. This ellipse shrinks onto
the physical region like -1/s as s -~. In the op-
timized polynomial expansion for scattering amp-
litude, developed by Ciulli, Cutkosky, and Deo'
shrinking has slowed down. The ellipse in this
case shrinks like -1/(Ins)~. As a remedy to such
shrinking parabolic mapping was suggested" for
high-energy scattering of hadrons. In such type of
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mapping the boundary remained fixed but the physi-
cal region moved like -(lns)' in the z plane as s

Thus the physical region appropriate for
Laguerre-polynomial expansion was achieved only
at asymytotic energies. It was found' that only
shrinkage of forward peaks could be explained by
this variable. In Ref. j. a square transformation
has been used which introduces spurious branch
points in the mapped variable plane by folding a
part of the physical region on top of the other part.
In the present work we have at first proposed a
new variable zo which does not introduce spurious
branch points in the mapped plane. But we find
that such a variable is not quantitatively satisfac-
tory to explain antishrinkage. In this case also
the physical region is mapped onto only a yart of
the right half of the real axis at finite energies.
Next we have proposed new variables which map
the physical region onto the right half of the real
axis in the mapped plane at aQ energies. In the
mapped plane the image of the physical region
remains fixed for all energies whereas the image
of the cuts change their shapes with energy, but
they always remain away fram the image of the
physical region. But again such transformations

introduce spurious branch cuts which overlap the
image of the physical region in the mapped plane.
For such simple variables, one of which has been
used for data analysis, there is no problem for
convergence of Laguerre-polynomial expansion. '
From physical grounds Ciulli' has discussed how
to remove such cuts. At present we do not find
any means of removing such cuts from the mapped
plane. Subject to this limitation our conclusion
is that it is possible to have a CPE for all energies
if the amplitude possesses at least one zero on the
physical region in the x plane. A particular case
is considered when the amplitude possesses only
one zero in the backward hemisphere. In such
type of "parabolic" mapping the right-hand cut is
mapped onto the forward portion of the parabola
with focus at the origin in the z, plane even at
moderate energies. " However, the left-hand cut
is mapped onto a curve which approaches the re-
maining portion of the parabola at high energies.
Thus CPE is possible at high energies and at high
energies the CPX goes over to OPE. The approach
from CPE to OPE is faster, the farther the left-
hand cut is than the right-hand cut and the closer
the position of zero is to the backward direction.
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If one ignores the singularities due to the left-
hand cut it is possible to have OPE in terms of z,
even at moderate energies. "

It is believed that scattering at high and low en-
ergies is connected by analyticity properties. We
have been able to develop CPE for all energies us-
ing analyticity properties. Previous works"
are subject to criticism when they are used to fit
the data at all energies because of their validity
in the asymptotic energy range only. But our CPE
has been developed to be valid at all energies and,
therefore, is free of such criticism. 4

Besides the limitation due to the presen'ce of
spurious cuts one of the main objections which
may be raised against this CPE is that it is not
optimized at lower and intermediate energies.
We have some comments regarding this point.
Firstly, the convergence of this series is better
(may be much better) than the convergence of the
series in Legendre polynomials in cos8 even at
lower energies. The domain of convergence in the
latter case is the Lehmann ellipse which forms a
very small part of the entire cut plane of analyti-
city. In the present case the domain of convergence
contains a much larger part of the image of the cut
plane of analyticity by mapping. Secondly, criti-
cisms" have been raised against accelerated con-
vergence of OPE and new types of conformal map-
ping have been proposed' where emphasis upon a
regular figure of convergence has been relaxed.
Thirdly, even if the convergence may be poor in
the worst possible case, it does not affect our
analysis of data near forward directions as the
variables are proportional to ~t ~

in this region.
The proposed CPE in terms of new parabolic vari-
able is bound to be potentially useful in describing
forward scattering data except for the limitation
due to spurious cuts. As it has been pointed out
in Sec. II we could have chosen (c +x)'" instead of
(I + x)'" in the numerator of g„(x), where c is any
real constant. For the present analysis we have
taken e =1 to avoid another free parameter. This
choice would give rise to a peak of the forward
amplitude in the backward direction. Similarly
the backward amplitude expanded in terms of z„
gives a peak in the forward direction. These peaks,
of course, have zero slopes. Strong behaviors of
this kind can be avoided by replacing unity by suit-
able real constants which may be determined by
data analysis.

We have also proposed how to parametrize the
data at backward angles using this type of approach.
It has been shown how to preserve t-u symmetry
explicitly in the case of pp scattering. We have
derived a universal formula for slope parameter
that relates the slope parameter to equations of
boundaries of spectral functions and lines of zeros.

For the first time we have given a formula which
accounts for the world data on shrinkage, anti-
shrinkage, and shrinkage-antishrinkage at all
energies when effective shapes of spectral func-
tions and lines of zeros are taken judiciously.
Thus we have developed a method of obtaining ef-
fective shapes of spectral functions and lines of
zeros using analyticity properties and experimental
data on slope parameters. From the present ap-
proach to the scattering problem we conclude that
the imaginary part of the amplitude, that yields
b(s)-~ for some values of s, must have at least
one zero in the backward hemisphere.

Our formula provides a good fit to the data on
slopes of pp scattering with a constant value of
slope at high energies with elastic boundaries and

the Odorico"'~ line of zero. We find that it is
not possible to explain the data for pp scattering
at all energies with the Odorico or Pinsky" type
of zeros. Qn the other hand we find a good fit to
the data at all energies accounting for large val-
ues of slope near threshold with a fixed u line of
zero. A still better fit is obtained with a curved
line of zeros, one of whose asymptotes is the line
u = -0.68~ GeV'. The presence of such zeros can
be verified by backward pp scattering experiments
at high energies. The presence of dips in the
backward hemisphere is indicated in the experi-
mental data on differential cross sections. A
good account of shrinkage in K+p scattering' "has
been obtained with elastic boundaries of spectral
functions and a fixed u line of zero. Reasonably
good fits to the data with shrinkage, antishrinkage,
and oscillations at lower energies have been ob-
tained for K p and n'p scattering. Introducing
curved lines of zeros eliminates infinities in slope
parameters for n'p scattering, but visually wors-
ens the fit for m+p scattering although it improves
the fit for m p scattering. However, one of the
asymptotes to such curved line of zero is very
close to the line of zero due to Odorico. '

We find that a line of zeros of the Krisch type
introduces spurious branch points in the s plane.
On the other hand fixed g or other types of curved
M lines of zeros taken for various fits introduce
poles in b(s) and hence zeros in the near forward
amplitude in the s plane. One of the reasons for
relatively larger values of y'/ND„obtained by our
fits for m'p and K p scattering is due to the fact
that the effect of resonances has not been included
explicitly in our formula. For scattering of spin-
less particles the Veneziano model predicts the
zero trajectories to be straight lines with u =const
passing through the intersections of a pair of reso-
nances. That the lines of zeros are straight lines
described in the real Mandelstam plane can be de-
rived on the assumption'4 that the amplitude has
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the same residues at each of the two resonances
which have zero widths. But in practice the resi-
dues are not equal and the resonances have finite
widths, thus the zero trajectories are neither real
nor linear and they have imaginary parts. A meth-
od of analysis of two-body reactions by conformal
mapping and by using zero trajectories has been
proposed by Barrelet, "who has pointed out that
the trajectories are complex and curved. We feel
that the imaginary parts of the zero trajectories
may be used to eliminate infinities which appear at
unwanted values of s for w'p scattering.

To summarize our results on effective shapes of
spectral functions we find that elastic boundaries
computed from box diagrams could account for the
slopes of pp, pp, and K+p scattering at aQ ener-
gies. The values of ) computed for the effective
shapes p„and p„, in the case of nN scattering are
found to be larger, and that of p„, in the case of
KN scattering is found to be smaller than the one
given by the box diagrams. In the data analysis
presented here theoretical boundaries of p for
n'N and an assumed form of p for KN scattering
have been taken for the fits with the assumption
that they do not contribute to scattering in the re-
gion far away from them. Thus their effective
shapes could not be determined by the present
analyses. We suggest that the experimental data
on the backward slopes for w'p(w p) and K'p PC p)
scattering be used to compute effective shapes of

p using the formula for slope parameters as sug-
gested. '0 Similarly the forward scattering data on
m+n -pp, and K+K -pp may be used to obtain in-
formation about p,„ for mN and KN scattering.

We notice that our formula gives constant slope
parameter at very high energies. In particular
the data for pp scattering" show a -lns type of in-
crease consistent with the exchange of a nearly
flat Pomeron. The absence of such energy de-
pendence in our formula may be due to the fact
that we have not taken into account the analyticity
properties in the s plane. Scattering amplitude
is a function of two independent variables and anal-
yticity properties in the planes of both the vari-

ables should be exploited. But while using analyti-
city properties in the s plane one should also be
cautious about the introduction of spurious branch
points by the Krisch type of lines of zeros.

One of the most interesting applications of the
CPE proposed here would be to search for zeros
of scattering amplitudes from differential-cross-
section data at various energies and obtain the en-
ergy dependence of their positions. As we have
pointed out earlier, Qdorico' has extracted lines
of zeros for the nondiffractive part of amplitudes.
This technique as described here can be further
developed to parametrize differential cross sec-
tions with dips in the diffraction region. But be-
fore using our representations it is better to re-
move strong behaviors at points not far away in
the z, and z, planes and the spurious branch points.

Our analysis and conclusions in this paper are
based upon CPE by conformal mapping and experi-
mental data. But the experimental data are not
enough to justify the correctness of the representa-
tions and many other representations, different
from those used here, are possible. Still then our
analysis reveals how simple considerations of
Mandelstam analyticity and the hypothesis of the
existence of zeros of scattering amplitude may
yield a global understanding of diffraction scatter--
mg.
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