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A method is proposed for performing a model-independent amplitude analysis of the reaction w N —wmA, with
the 7o system a superposition of S and P waves and where all moments of the joint-decay-angular distribution
are used. A set of necessary positivity conditions for the moments are presented, and their relation to the
amplitude analysis is discussed. Given data satisfying these conditions, the separation of S- and P-wave cross
sections can be carried out in a model-independent way, although some discrete ambiguities may occur. In
addition, improved upper and lower bounds on the S-wave cross section are derived which employ partial

knowledge of the A decay moments.

I. INTRODUCTION

The production of nm systems of relatively low
mass in the reactions

aN-=7mN (A),
Tp~(r"17)A*" (B),

provides information on the nr elastic scattering
amplitudes. Recent high-statistics studies of re-
action (A) have obtained precise measurements of
the moments of the (77) decay-angular distribution
as functions of momentum transfer and 77 mass.!'?
These results have been employed to perform par-
tial amplitude reconstruction, and to deduce w7
phase shifts.®* However, an unfortunate aspect of
the problem is that a certain amount of theoretical
or phenomenological input is a necessary part of
such analyses. In particular, the six experimental
moments strictly provide only lower and upper
bounds on the total S-wave production as a function
of t and m,,.*> Without additional hypotheses the
separation of 77 production into S and P waves is
not possible. If reaction (A) is studied on a polar-
ized nucleon target, however, the amount of S-
wave production becomes unambiguous, and the
analysis can be carried out without making such
hypotheses.®

Reaction (B) has also been extensively used to
study @7 (and K7) production,”*® but since it is gen-
erally observed in a bubble chamber, the number
of events is typically an order of magnitude less
than for reaction (A). If one compares the merits
of the two reactions for studying 7 exchange, reac-
tion (A) is evasive at £=0, while reaction (B) is
not. On the other hand, t’ effects associated with
the large width of the A are a problem in reaction
(B) absent in (A). Clearly, high statistics are
more easily obtained in (A), although new genera-
tions of large rapid-cycling bubble chambers or
electronic detectors with ~4r efficiency might be
used to obtain large numbers of events in (B). An
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additional aspect which may be advanced in favor
of (B) is that the correlations among the decay-an-
gular distributions provide information on the am-
plitudes not available in (A) (on an unpolarized tar-
get). In principle, these correlation moments pro-
vide a means of measuring the amount of S-wave
production under the p peak (we do not consider the
problem of higher 77 partial waves). By measuring
the amount of S wave, we intend to express the S-
wave cross section in terms of the moments of the
joint-decay-angular distribution without making any
dynamical hypotheses. As we shall see, such an
algorithm can be constructed, but its complicated
form renders the application somewhat problema-
tic. Nonetheless we think it useful to present such
an analysis which also determines the amplitudes.
At the very least the method proposed could be
used in parallel with the more popular model-de-
pendent analyses in order to verify the consistency
of the hypotheses employed. Finally our discussion
relies heavily on the positivity conditions for the
nmA system, which have never been discussed in
the literature, and whose enforcement at this stage
of experimental analysis would certainly improve
the estimates of the joint moments. A weak point
of our method is that we must consider the Aas a
spin-% state, whereas some small interfering
background is probably present. While our analy-
sis could be extended to consider the A as a super-
position of S- and P- (J = 3) wave states, formid-
able technical complications would be encountered.

This paper is organized as follows: In Sec. II,
we discuss the observables, their expression in
terms of amplitudes, and the positivity conditions.
Section III gives an outline of the algorithm for ex-
pressing the amplitudes (modulo a known continu-
um and possible discrete ambiguities) in terms of
the observables. In Sec. IV we present improved
upper and lower bounds on the S-wave cross sec-
tion. Certain numerical studies of our algorithm
using random amplitudes are given in Sec. III and
Sec. IV, bearing on questions of convexity and
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relative advantages of using the full correlation in-
formation rather than the 77 moments alone. Fin-
ally, our conclusions are presented in Sec. V. The
Appendix contains details of the algorithm.

II. OBSERVABLES AND POSITIVITY CONDITIONS
A. Amplitudes and observables

The joint-decay-angular distribution of the sys-
tem 77A may be written, assuming only Z=0and 1
partial waves for 7w, as

W(Gl’ (p1) 92’ (Pz)

& < & My M2y yHT
=; ﬁ 2 Z <YL1Y1/§>YL1 (6, @)
170 Lp=0 M1==-L) M2==1p

*
XY‘IZ(Bz’ @), (2.1)

where (6, ¢,) and (6,, ¢,) are decay angles, in their
rest frames, of the 77 and A, respectively. The
quantities

(YY)

are the expectation values of the spherical harmon-
ics, and are functions of energy s, momentum
transfer /, and the invariant masses of the (77) and
(7N) final states. The problem we pose is to ex-
tract all possible dynamical information from these
joint moments, in particular, the total amount of
S-wave production. Even given arbitrarily precise
moments there exists a four-parameter continuous
ambiguity in the amplitudes,® but this ambiguity
does not mix the relative amount of S- and P- wave
77 production. If the moments are averaged over
some interval, either in mass or in momentum
transfer, there is no guaranteed solution, and a
set of discrete values for the average S-wave pro-
duction will generally be found.

The joint moments may be obtained using any co-
ordinate system, but two popular choices are as
follows:

1. Helicitylike systems.'°'! The z axes lie in
the production plane, and the y axes are perpen-
dicular to the plane. For the Jacob-Wick conven-
tion, the y axis in the A rest frame is antiparallel
to that in the 77 rest frame.

2. Transversity system.'?'**> The z axes in both
frames are parallel and perpendicular to the pro-
duction plane (using the convention of Doncel et?
al.’®),

In a helicitylike system the joint moments are
real, and satisfy

(YRYTD) =(-1)“r ¥y ysiz) (2.2)

There are 30 independent real moments, and their
expression in terms of the joint-density matrix and
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the helicity amplitudes is given by Irving,'* to which
which we refer the reader for details. Our discus-
sion of the problem is based on transversity ampli-
tudes, for which the task of expressing the ampli-
tudes in terms of observables (modulo the four-
parameter ambiguity) is more easily executed. A
standard rotation to the helicity amplitudes may be
performed to obtain the latter. In the transversity
basis, the (Y71Y%2) are generally complex, satisfy
the relation

(T ytel = (~1)t(y oy 2.3)

and are nonvanishing only when L, +L, +M, +M, is
even. (This behavior follows from symmetry under
reflection in the production plane; all odd moments
of the normal must be zero, since it is a pseudo-
vector.) For our purposes, it is useful to intro-
duce certain linear combinations of these transver-
sity observables, and to group them in such a way
as to facilitate the amplitude analysis.

The combinations of transversity moments we
use are

AP = 30 D Ly, L) CLEh CYa 2 Y2y vis) |
L1L2 Mi1M2
even

(2.4a)
where

f(Ly, L,) =m(2L, +1)(2L, +1)(6V3 Chbirc¥2/zlzy=1

0,0,0 1/2,-1/2,0

(2.4b)
=2 D FL)CYERY Y ve), (2.52)
oz Mz
where
F(L,) ==m(2L, +1)(4CY23/3 1)1, (2.5b)

The quantities A are simply related to the joint-
density matrix in a transversity basis, namely

N =3[R+ (=1 p o 4 (1) p

nn -n’-n
H(=1)nmnp T o
30 e is +(=1)"" 055, ], (2.6)
A =5[p i +(=1)"p e 4 (=1 poml
+(=1)™ = pIms (2.7

We then group these quantities, weighted by the
differential cross section according to

0,0 X
H= 2@ < A1/2.1/2 "A(l)/oz.-3/2> (2.8a)
'Ag'/ozf- 3/2 Agfz.a/ 2
do. Al.l Al,l
A =4_( 3/2,3/2 3/2.-1/2> s (2.8b)
Ayolysz Mo
1,-1 -
B:g.Z_(t’<A3/z.3/z A;/z.l—x/z») , (2.8¢)
Al-' 1_/12.3/2 Ai./;,lllz
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c=4%0 [ Az Asjatya (2.8d)
$,-1 A-"-l
-1/2,3/2 1/2,1/2
do
Z) =4—dTA;./02'1/2 y (2.86)
do
2, = =4 Aoy (2.8f)
do s,
2, =47 Ajousa - (2.8g)

The transversity amplitudes for the P wave are de-
noted by T,,,,, Wwhere m denotes the spin-1 meson,
n denotes the A, and u denotes the initial nucleon
transversity, with Ty, , , =0 whenever m +n - u is
odd. Let us group them into

(To.-l/z.-l/z ‘To.slz.-1/2> s

P= (2.92)
T:.1/2.1/2 “Tt’)k,-a/z.xlz
T T. -
Q= ( -1,-3/2,~-1/2 1,+1/2, 1/2) , (2.9b)
Ti*.s/z.xlz Ti.:—l/z.l/z
<T1.—3/2.-1/2 T1.1/2.-1/2 )
R= . (2.9¢)
fo.a/z.llz T2, 12002

The transversity amplitudes T, , for the S-wave nn
system are zero unless 7 = is odd, and may be
grouped into

S = <‘T-s/2.-1/2 "le2.—1/2>
’

T:?}z.]/z Ttl/2.1/2
and we shall introduce also the 2 X 2 matrix, de-
pending on S,
M =[det(STS))(STS). (2.11)
The transversity observables may now be written
in terms of the transversity amplitudes as

(2.10)

H=P'P+iM, (2.12a)
A=Q"Q+R'R+%5's, (2.12b)
B=Q'R, (2.12¢)
c=S"R-Q's, (2.12d)
2, =Tr(Q"P), (2.12¢)
z,=Tr(R"P), (2.12f)
z,=Tr(StP). (2.12g)

Having written the observables in this way, we see
that if the transversity amplitudes represented by
P, @, R, and S are a solution, then so are those
represented by UP, UQ, UR, and US, with U any

2 X 2 unitary matrix. This four-parameter ambi-
guity is an inescapable part of a model-independent
amplitude analysis.® However, this ambiguity does
not mix S and P waves, hence one may attempt to
separate them. We remark that while there are 30
real observables, there are only 28 real parame-
ters among the amplitudes, hence two constraints

must exist. As these constraints are certainly not
linear, any data averaged over some mass or ¢ in-
terval need not satisfy them, and hence need not
be analyzable.

B. Positivity constraints and the equal-phase hypothesis

Given the experimental moments, one may ask
whether they are consistent with the general re-
quirements of positivity of the combined n7A spin-
density matrix. In a previous work it was found
that data on the reactions 7" p—p°A**, 7*p—wA**,
and KN-K*A** were at slight variance with cer-
tain necessary conditions of positivity for the vec-
tor-meson A system.’® It seems thus advisable to
extend these conditions to the case of 77A (or K7A)
production. The key ingredients are the Eberhard-
Good theorem®® on the rank of the density matrix
and the fact that the experimental joint moments in
a helicity basis do not depend on the initial nucleon
polarization if they are all in phase.

Let us consider the reaction 7N-(nm)A**, and
suppose that in its rest frame the 77 system decays
along a direction (f,, ¢,). The spin-density matrix
for the A when this happens may be denoted by

91¢1p nn'
and its corresponding multipole parameters be
01911 M.
W,

The joint-decay-angular distribution may then by
written as

2
W(b,, @,, 6, @;) = ; &(L,)
=0 M2

even

*
a2y 126, ¢;),

(2.13)
with
&(L,) =(4m) V3 (-1)2/2, (2.14)
From Eq. (2.1) it then follows that
1 2 L *
O 01 My =~ 2 Yz y i
L, g(Lz) ;o ”1__L1< Ly L2> L ( 19 901)-
(2.15)
Positivity then implies
0191£9>0, (2.16a)
2
(OP11Q2 =5 D [Pwidep >0, (2.16b)

Ma= -2
for all values of (6,, ¢,).
If we replace %12 by its definition, we may

express the requirements of positivity as
L

2
,Z 2 (YRY9riie, ¢)>o, (2:17)
1=0 M1=-1L)
4 § .
D5X(¢,, 6,,0)CS >0, (2.18)
8§=0 0==§

for all (6,, ¢,), where we have defined
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C$= 2 (2L, +1)(2L, +1)V2CHHS > C,fif,i,fa(-l)"i<<Y’{}Ygf(l/{{.Yg)- 5;<Y"L'1Y;'>*(Y‘L'§Y;‘>>, (2.19)

L1 U

and where D$, is the usual Wigner rotation func-
tion. These inequalities involve only the raw ex-
perimental moments, and may well prove quite
constraining in practice. Since there are odd as
well as even spherical harmonics, we cannot elim-
inate the (6,, ¢,) dependence in an algebraic man-
ner. We further note that the Eberhard-Good theo-
rem implies that the left-hand side of (2.18) must
be proportional to (1 - P2) where P is the initial
nucleon polarization vector. If all helicity ampli-
tudes were in phase, the moments would not depend

on P, and hence the é,f would all be zero. This
provides an extension to the nm system of the tests

of the equal-phase hypothesis proposed in Ref. 17.
We note that if one uses a helicity system, then the
value of the expression (2.18) at =0, 7 is sensi-
tive only to phase difference in the helicity zero
P-wave and S-wave amplitudes. However, such
tests are sensitive to averaging, and as one ex-
pects phase differences to arise from the final
state phase shifts, it would be necessary to have
copious data in small m,, and f intervals in order
to perform the tests.

III. DETERMINATION OF THE AMPLITUDES
Given a set of observables
(Y{1yy2)

which satisfy the positivity conditions (2.17) and
(2.18), one may attempt to determine the ampli-
tudes. The observables must be grouped into the
matrices H, A, B, C and the complex numbers z,,
Z,, 25 of (2.8). The problem is then to solve the
set of equations (2.12) for the transversity ampli-
tudes. Our method relies on certain techniques
for solving algebraic matrix equations.!® Since the
equations are fourth order in the unknown matrix,
this implies the solution of an eighth-order ordin-
ary algebraic equation, which can only be done nu-
merically. In consequence, we are not able to
prove rigorously some results which are suggested
by our numerical studies.

The first step is to study the unnatural-parity-
exchange sector, represented by the amplitudes
@, R of Egs. (2.9b) and (2.9¢), S of Eq. (2.10), and
by the observables A, B, and C of Egs. (2.8b),
(2.8¢c), and (2.8d). The relevant equations are
(2.12b), (2.12¢), and (2.12d), and while we show in
the appendix how and under which conditions these
equations may be solved, we give here a brief dis-
cussion of our results. The basic conclusion is
that if the 2 X 2 matrix N(¢), where

N@) =A +(3)V2Ce' +(3)V2CT e
- Be? _ BT g2 (3.1)

is positive for all values of ¢, then there exist 16
sets of matrices @, R, and S such that Eqs.
(2.12b), (2.12¢), and (2.12d) are satisfied. We can-
not prove rigorously this result; it would appear
to be a generalization of the Fejer-Riesz theorem
on positive trigonometric polyomials (as discussed
for example in Ref. 19) to the case of 2 X 2 Hermi-
tian matrices. However, the positivity of M)
turns out to be just the positivity of the A density
matrix when the 77 system decay occurs in the
production plane with some azimuthal angle ¢.
Thus a subset of the positivity conditions (2.18)
suffices to ensure 16 discrete solutions for @, R,
and S.

Next the determination of the natural-parity
amplitudes grouped in the matrix P may be carried
out using Eq. (2.12a). For each of the 16 candi-
dates found in the preceding step, one forms the
2 X 2 matrix M of Eq. (2.11), and writes

P'P=H-M. (3.2)

Clearly the right-hand side of this equality must
be a positive matrix, but there is no reason for
this to be true for all 16 values of M. What is sug-
gested by numerical studies using randomly gener-
ated amplitudes and observables is that if the posi-
tivity condition (2.18) is satisfied for all (6, @),
then at least one of the 16 possible matrices M will
be such that H-M is positive. Thus positivity im-
plies that there exists at least one solution. At
this point, if P, @, R, and S form a solution, then
so also do UP, U'Q, U’R, and U’'S, where U and
U’ are two arbitrary unitary matrices.

The final step is to use Eqgs. (2.12e), (2.12f), and
(2.12¢g) to find the relative unitary matrix between
the natural-parity amplitude matrix P, and the un-
natural parity @, R, and S. For each of the candi-
dates P, @, R, and S surviving the previous selec-
tion, we can write

2, =Tr(UPQ"), (3.32)
z,=Tr(UPR"), (3.3b)
z, =Tr(UPS"). (3.3¢)

Choosing any two of z,, z,, 24, one can solve for
the unitary matrix U, as was shown in Ref. 18. In
order for a solution to exist, a rather complicated
inequality among the observables given in Ref. 18
must be satisfied. Finally the constraint that the
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third z; be given by the matrix U found from the
other two z;’s can be used to make a final selection
among the candidates. On the basis of numerical
studies we conjecture that given perfect data, there
is only one solution for the amplitudes. In support
of this hypothesis, we present the following evi-
dence: Using randomly generated amplitudes, we
have calculatéd the observables, andthenfedthese
observables into a computer program which carries
out the amplitude analysis. Theprogramalways
found (in 1000 attempts) the input solution, and inno
cases found that any of the 15 other candidates
were acceptable; the final constraint always elim-
inated them. However, this result depends essen-
tially on the error-free nature of our generated
observables. When errors are included the dis-
crete solutions become bands, and hence will tend
to overlap. Furthermore, the constraints will not
be exactly satisfied by any of the solutions, and it
would be hard to choose the “best” solution.

A curious result is that if one had a set of ex-
perimental moments such that the 10 S-P interfer-
ence terms were zero, there would exist discrete
solutions for which the S-wave amplitudes would
not be zero (but which in general would not satisfy
the constraints at the final stage of the analysis).

From the analysis outlined here, we conclude
that it is feasible to determine @, R, and S up to
one arbitrary unitary matrix, with P determined
up to another matrix, since positivity conditions
allow one to proceed thus far. The amplitudes in
P correspond to natural-parity exchange such as
A,, while those in @, R, and S correspond to un-
natural-parity exchange, n, B, A,, etc. There
will in general be some discrete ambiguities, the
number not exceeding 16.

IV. BOUNDS ON S-WAVE PRODUCTION

The amplitude analysis outlined in the preceding
section is quite complicated, involving the numeri-
cal solution of an eighth-order ordinary equation,
and the testing of a large number of candidates. If
the positivity conditions are (2.18) even slightly
violated the procedure will break down, and if
some averaging over either n7 or 7N masses or ¢
is carried out there is but little chance that a
unique solution will emerge. Since there exist no
published data on the full set of joint moments, we
cannot put our method of analysis to a practical
test. In order to show the interest it may present,
we discuss the problem of bounds on the amount of
S-wave production. The reactions 7*p—-7*7-A**
and K*p—~K*n~A** have been studied by various
experimental groups, and diverse methods of anal-
ysis have been used to estimate the nm and K7
phase shifts.””® In these analyses, however, only

those moments with L, =0 are used, which amounts
to summing over all spin states of the A. The
analysis then reduces, essentially, to that of 77p

- 7" 7"n on an unpolarized target. In this case the
positivity requirements on the (77) moments are
known®>!3; they imply that a cubic equation, whose
coefficients are functions of the experimental mo-
ments, should have two positive roots 7,, 7, less
than a certain upper limit furnished by the roots

of a certain quadratic equation. When this happens,
the S wave may be assigned an arbitrary value in
the interval (7,, 7,) and a consistent amplitude anal-
ysis will result. Thus if one sums over the A spin,
upper and lower estimates of the amount of S-wave

production result. Clearly the use of our analysis,
even if the final step, the linking of natural- and

unnatural-parity exchange amplitudes, cannot be
carried out, would provide tighter estimates of
the S-wave production. In our opinion, our method
provides a means to critically examine the results
of those analyses which do not use the A decay mo-
ments. Our method is not in itself a replacement
for model-dependent analyses, since the latter
yield results which, although they depend on vari-
ous hypotheses, are more readily interpreted in
terms of dynamics. Ideally, our method furnishes
a means to judge the validity of the hypotheses em-
ployed, since any acceptable model-dependent
analysis should be roughly consistent with at least
one solution found by the model-independent means.
It is interesting to note that even if our full anal-
ysis is not employed, better estimates of the S-
wave production can still be obtained by using the
moments

(YYD
as well as the

(YZys)
Using these additional moments, one may form the
quantities

A%, AR, ALY, AR

nn nn »

where 7 is 3 or 3. Using these observable quanti-
ties, one can derive from positivity requirements
upper and lower bounds on the amount of S-wave
production when the A is either +; or +3 transver-
sity states. The prescription for calculating these
bounds is given in the Appendix; the important re-
sult is that tighter bounds on the total amount of S-
wave production are obtained than those which one
finds by using only moments with L, =0. Noting
for example that the hypotheses used in Ref. 3 to
analyze the reaction 7N— 77N require the S-wave
production to saturate its upper or lower bounds,
it would be interesting to see whether 7mA would be
consistent with such hypotheses.
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The family of discrete solutions obtained by our
full analysis, minus the last step, is assured to
have S-wave cross sections lying between these
bounds. Since no published data exist, we have
attempted to see how the interval provided by the
S-wave bounds compares to the smallest and lar-
gest S-wave cross sections found by our detailed
analysis. Using randomly generated amplitudes,
we have generated observables, found the various
candidates for the S-wave cross section, and com-
puted the bounds. In most cases the acceptable
solutions were grouped in an interval smaller, typ-
ically by a factor of 2, than the interval given by
the bounds. Of course there is no reason that our
random amplitudes should mimic the true situa-
tion; but we nonetheless feel that the complications
inherent in our method may well be worth the trou-
ble.

Finally we have studied, again numerically, what
happens when the observables are found by super-
posing two sets of observables each generated by
amplitudes. The nonlinear constraints are in gen-
eral not satisfied, hence no exact amplitudes exist.
However, omitting the final step, one obtains dis-
crete candidates, the number varying from 1 to
16. In no case did our approach fail to yield ac-
ceptable candidates, which is consistent with our
conjecture that our positivity conditions are suffi-
cient to ensure an analysis, up to the final step.

Let us mention that in the limit of production in
the forward direction, a restricted amplitude anal-
ysis can be carried out using those helicity ampli-
tudes which are nonzero there. This has been done
in Ref. 20. Our general method employs transver-
sity amplitudes, for which the limiting behavior as
t’—0 is rather complicated. Among the solutions
generated by our procedure, some may not have
the correct ¢’ behavior, and could in principle be
ruled out. In addition, the full four-parameter
ambiguity reduces to one overall phase. We have
studied this aspect of the problem using observ-
ables generated from helicity amplitudes having
the correct ¢’ behavior. Indeed certain solutions
did have unreasonable behavior as ¢~ 0, but even
at quite small ¢’ it would be difficult, in practice,
to rule them out. In our opinion exceedingly pre-
cise data in very small ¢’ intervals would be re-
quired to eliminate certain solutions on grounds of
incorrect ¢’ behavior (Of course, all the observ-
ables furnished by the false solutions do have the
correct ¢’ behavior.)

V. SUMMARY AND CONCLUSIONS

In this paper we have presented a method for
performing a model-independent analysis of the
reaction

mK) +p—~an(Km) +4A,

in which the 77 system is assumed to be in S and P
waves. A set of necessary positivity conditions on
the moments of the joint-decay-angular distribution
have been presented, and their relation to tests of
the equal-phase hypothesis have been discussed.
The proposed method yields transversity ampli-
tudes up to a four-parameter ambiguity and given
perfect data, there are no discrete ambiguities.

If any averaging of experiment quantities is done

(as is inevitable) there will no longer be a unique
solution, but rather separate four-parameter am-

biguities for both natural- and unnatural-parity ex-
change amplitudes. In addition, between one and 16
discrete solutions may be found. One quantity
which is not affected by the continuous ambiguities
is the total S-wave cross section; only the discrete
ambiguities occur.

A set of refined bounds on the total S-wave pro-
duction have also been discussed which employ
partial knowledge of the A decay moments. Their
use may provide a means of testing hypotheses
used in analyses which neglect the A moments.

We remark that the positivity conditions we de-
rive are valid even if there is some S-wave 7N
background under the A peak. If there is some P-
wave J =3 background, however, the conditions
could be violated by correct data.

Finally we note that our method can be extended
to other spin-0-spin-1 superposition problems
(such as 7p in both 0~ and 1* states) provided the
correlation moments are available. Similarly, the
restriction to S- and P-wave states could be lifted,
although the method would involve considerably
greater numerical complexity.

Let us close with the plea that experimental
groups analyzing n7A and K7A final states publish
the full joint-moment analysis, as it contains con-
siderable dynamical information.

APPENDIX
1. Amplitude analysis

The problem is: Given (2 X 2) matrices, A, B,
and C, find matrices @, R, and S such that

Q'Q+R'R+25"s=4, (A1)

Q'R=B, (A2)

S'/R-Q@'s=cC. (A3)
Let X be a matrix such that

-QX +RX ' +(3)V25 =0, (A4)

(This quadratic matrix equation always has a solu-
tion, given @, R, and S.) In order to obtain an
equation for X in which only the known mdtrices A4,
B, and C occur, we may carry out the following
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steps:

(a) Multiply Eq. (A4) on the left by - " and on
the right by X7

(b) Multiply Eq. (A4) on the left by R' and on the
right by X;

(c) Multiply Eq. (A4) by (2)¥2S" on the left side
and add to this the results of steps (a) and (b).

This yields

A-Bx2-B'x2+(3)V2CX +(5)¥2C"X=0. (AD)

This fourth-order matrix equation, following the
discussion of Gantmacher,?' may be converted into
an eighth-order ordinary equation, which requires
numerical solution. From the roots of this alge-
braic equation, one can construct all solutions of
Eq. (A5). For each possible value of X, one must
carry out the following steps in order to determine
@, R, and S. Assuming that X is known, it follows
from Eq. (A4) that

S=(5"2@xXx-RX™). (A6)
Left-multiplying this equation by @, and adding to
it the adjoint of Eq. (A6) right-multiplied by R
yields

(%)1/2(: :XTB +BX" 1~ X—lTRTR _ QTQX. (A7)
By appropriate multiplications Eq. (A7) may be re-
cast into two forms,

Q'Q +(RX™)(RX™) =X"BX! + BX™2 - (2)V2CX ™!,
(A8)
or
(@X)(@X) +R'R=(X"2B+X"Bx™1 - (2)V2xTC.
(A9)

Clearly the left-hand sides of Eqs. (A8) and (A9)
are positive Hermitian matrices, whereas the
right-hand sides are not manifestly so. For those
values of X such that the right-hand sides are posi-
tive and Hermitian, one may continue the analysis.
In Ref. 18, it was shown that the system of (2 x 2)
matrix equations

E'E+F'F=A, (A10)
E'F=B (A11)

can be solved for E and F provided that A +¢*’B
+e B iga positive matrix for all ¢. It is then

Ag'no - %Snn 0 0 0
Bnn = 0 Snn _A:r;—l * A:r;_l
0 _A:r;_l A:'l'nl - %Snn Arlt;r_l
0 AT AT A =38,

possible to rewrite Eq. (A2) in the form
(@X'R=X"'B (A12)

so that Eqs. (A9) and (A12) can be solved for @X
and R up to a unitary transformation, and four dis-
crete solutions.

Given @, R, and S, we may write
M) =[-Qe* + Re™™ +(2)V2s)"
X [-Qe' + Re™* +(%)V28], (A13)

where N is given by Eq. (3.1). Clearly, it is a nec-
essary condition for an amplitude analysis that
Mg) be positive, but our numerical studies suggest
that it is also sufficient. If M) is positive we find
that the procedure yields 16 different sets of ma-
trices @, R, and S.

The possibility of determining the matrix P via
Eq. (2.12a) provides a selection among the 16 can-
didates for solutions. Using each candidate S, one
forms M, Eq. (2.11), and asks whether

H-M

is positive-semidefinite. If not, the candidate is
eliminated. We have no proof that the full positiv-
ity conditions (2.18) imply that at least one succes-
sful candidate exists, but we believe it to be true,
on the basis of our numerical studies.

2. Bounds on S-Wave production when the A is
in a definite transversity state

Let the (S-P) A joint-density matrix be denoted
by
Pu, 1n=s,0,£1, n=1} b,

In order to obtain bounds directly from the obser-
vables, it is necessary to choose certain linear
combinations of the joint-density matrix. For this
we introduce the 4 X 4 unitary matrix I" whose only
nonvanishing elements are

Ps.s:r0.0=_rl.'1=_r\—l,1:l’ (A14)
and we consider, for » either } or 3,
Pun=5(Pun+P _pn-n+Tp,,T+Tp_,_,T). (A15)

This 4 X 4 matrix may be expressed in terms of the
observables A together with the total amount of
S-wave production when the A has transversity »,
which we call S,,. Explicitly,

(A16)
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The positivity condition is that there must exist at least one value of S,, such that p,, is a non-negative ma-

trix. Obviously one must have

0 <S,, <3 min{A%, ALL}.

Next, by considering 2 X 2 minors, one improves this to

A - [(ARF - LA <5,

<min{3(AL! -

The strongest condition is that the determinant be
positive,

Sun® +DSpn +4S,, +7 20, (A19)
where

p=-6A%", (A20)

g =9[(A3)? = [ART'R] +6]AS T, (A21)

:_18{A1.1 -1|2 +Re[A1 1* s -1 2]} (A22)

The requirement of positivity is that the roots of
Eq. (A19), considered as an equation, be real and
positive, and that the two smallest roots lie inside
the interval in S,, given by Eq. (A18). Then any
value of S,, between these two roots is a possible
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