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Low-energy nucleon-nucleon potential from Regge-pole theory
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The results from a potential model for the low-energy NN interaction based on Regge-pole theory are
presented. The forces are due to the dominant parts of the m, q,q', p, ao,$,8,&,S~ trajectories in the
complex J plane, which are the well-known one-boson-exchange forces. Novel features are the dominant

J = 0 parts of the Pomeron, f, f', and A, trajectories. At the Reggeon vertices we use exponential form
factors, as suggested by high-energy fits. The Pomeron, f, and f' trajectories lead essentially to repulsive
central Gaussian potentials. This soft-core, partially nonlocal potential model fits the NN data with
y'/data = 2.09, which is lower than any other model we know of. The NN coupling constants have

reasonable values, and the contributions of the Pomeron and tensor trajectories agree with estimates from
high-energy fits.

I. INTRODUCTION

Recently we derived' the NcV potential based on
Regge-pole theory. In a dispersion-theoretic de-
rivation of the NN potential, the new strip approxi-
mation' has been applied to the double-spectral
functions by saturating them with I;- apd u-channel
Begge poles. The I;- and u-channel partial-wave
projections of these exchanges in the Khuri-Jones
representation' revealed that the lowest-J mesons
on these trajectories dominate strongly, ' thus
leading to one-boson-exchange (OBE) potentials.
Begge-pole fits at high energy suggest that the
residue functions can best be parametrized with
exponential forms. Whereas low-energy ~scat-
tering probes only a region ~t ~

& 0.6 GeV-', in high-
energy scattering ~t

~
extends over several GeV'.

Therefore the behavior of the form factors at the
meson vertices can be established better at high
energy. We consider for the natural-parity trajec-
tories the dominant 0' and 1 mesons and for the
unnatural-parity trajectories only the 0 mesons,
all with exponential form factors.

Next to the traditional boson exchanges
(v, q, q', p, P, ~, 6, e, S*, . . . ) we encountered some
novel features: the potentials due to the Pomeron
and the dominant J=O contributions of the f, f',
and A, trajectories. Because of the needed ghost-
eliminating factors in the residue functions the
"meson propagators" are canceled leading to
Gaussian potentials. Because of the positive inter-
cept the I =0 trajectories produce essentially a
central repulsion, which has been estimated and
which turns out to be quite strong. Therefore this
may be a partial explanation for the phenomenolog-
ical hard or soft cores, which one needed before.

Before we discuss the physical input we would
like to stress that the present calculation is only
a first step. Regge-pole theory has not been fully
exploited yet. To mention a few points: the ne-

gleet of the axial-vector trajectories, no con-
straints from exchange degeneracy, the same ef-
fective "mass" for both the Pomeron and the f, f ',
4, contributions. We merely test in this work
whether exponential form factors at the vertices
and a rather strong repulsion from the diffractive
and tensor trajectories can give a good quantitative
description of the NN data. The y'/data = 2.09 ob-
tained so far shows that this is indeed the ease.

We have done the calculations in configuration
space and neglected all momentum dependence in
the invariant potential forms except in the central
potentials. These are the most important nonlocal
terms. They play a crucial role in obtaining the
proper shapes of the phase shifts as functions of
energy. It turned out to be impossible for us to
construct a soft-core one-boson-exchange or one-
Reggeon-exchange potential model with only local
invariant potential forms. In this respect our po-
tential differs essentially from purely phenomeno-
logical soft-core potentials such as, e.g. , the Reid
potential. " In the latter potentials part of the soft
core has to account for the momentum-dependent
repulsion in the one-boson-exchange potential
(OBEP) models. It is also possible to incorporate
other momentum-dependent terms, but the solution
of the Schrodinger equation gets more involved.
We prefer to calculate in the configuration-space
representation because of its high computer speed
and accuracy, a powerful tool for fitting, and easy
inclusion of Coulomb effects.

In this model we consider the dominant contribu-
tions of those trajectories which belong to the fol-
lowing mesons:

(i) The pseudoscalar mesons v, q, q'. The coup-
ling constants are related via SU(3) and singlet-
octet mixing. The value o.~ =0.361 from the com-
pilation of coupling constants4 has been used for
the calculation of f„. For the singlet-octet mixing8
angle we use the value of the linear Gell-Mann-
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Okubo mass formula 8& = -23'. The octet coupling

f, and the singlet coupling f„are searched.
1

(ii) The vector mesons p, p, &u. We assume
SU(3) relations for the electric and magnetic type
of couplings (see, e.g. , Ref. 4, p. 86). For the
electric coupling g» =g» we assume o.» = l, thus
coupling the p universally to the isospin current.
The singlet-octet mixing angle is taken to be +
= 37.5' from the linear Gell-Mann-Okubo mass
formula. The fitted coupling constants g~ and g,
determine the physical coupling constants g~, g~,
g . For the magnetic couplings g =g+f we have
no sound theoretical value for a&. On the other
hand, we cannot determine f~ and so g& =(g& f+&)

in the fit because of the insensitivity to variations
of f&. We put f&=-0, leading to g~=g~. From the
values of g~, g&, g we infer a~ =0.449, which is
rather close to the SU(6) prediction n» =0.4.

(iii) The scalar mesons 6, S*, c The. status of
the scalar nonet is still controversial. We prefer
tousethe 6(970), S*(990), e(760) mesons, because
they fit rather nicely in the bag model' as crypto-
exotic states. Since the singlet-octet mixing angle
is still an unsettIed problem, "the assumption of a
value for oz (Ref. 6) does not constrain the three
couplings. Therefore all three couplings are
searched.

(iv) The Pomeron P and the J = 0 tensor contribu-
tions. In Ref. 1 we have estimated that the "effec-
tive masses" are in the range of 250 to 400 MeV
depending on the various high-energy models both
for the Pomeron and the tensor trajectories. For
simplicity we take here a single mass parameter
m& for P, f, f', and A„which is a search para-
meter. Furthermore, we use two coupling con-
stants: One for the total J=0 contribution of the
I = 0 trajectories (P,f,f '), and one for the I = l
contribution due to the A, trajectory.

Summarizing the search parameters, we fit 11
coupling constants, the Pomeron mass m&, and the
universal cutoff parameter A for the 0 & 1, and
0' exchanges.

TABLE I. Values for the parameters of Eq. {23) in
Ref. 7 in the bvo-poles approximation for the broad
mesons ~ and p. Masses and widths are in MeV.

Finally, we mention that we treat the p and c as
broad mesons with mass distributions as given in
Ref. 7. For technical reasons we can approximate
the potentials by a sum of two stable mesons ex-
cellently, just as in Ref. 7. Fitting from 0.0-1.5
fm yields the values for the coefficients of Table I
(for definitions see Ref. 7). The approximation to
the exact forms is better than 1/0 everywhere.

In Sec. II we give the potentials in the momen-
tum-space representation and in configuration
space. Furthermore the solution of the Schrodin-
ger equation with a nonlocal central potential is
briefly reviewed. The results from the fit to NN
are presented in Sec. III and a discussion is given
in Sec. IV.

II. THE POTENTIAL MODEL

A. The potentials in momentum space

&(qf q)=g&i(qi q q 'q~)P. .

Here the operators P; in spin space are

P, =(o, ~ k)(o2 ~ k), P, = —(o, +o,) ~ n, (3)

P, =(o, n)(o, ~ n) .

In the calculation of the invariant potential forms
g;, we have made the following approximations
for making the Fourier transformation to config-
uration space easier (notice that the high-k' con-
tributions are suppressed drastically):

(i) the energy factors

In this section we review only briefly the poten-
tials which were obtained in Ref. I. These are the
OBE potentials with momentum-dependent central
terms and exponential form factors, and the Pom-
eron-type ~potentials, where the meson (ghost)
propagator has been eliminated.

Introducing the definitions

q =(qa+qy)/3,

k =@~-q;,
n=q, . xqf =qxk,

where q; and q& denote the initial and final three-
momenta, we expand the potential'

I'

Pg
BZ f

P2
m2

0
760
640
0.18719
500.45
0.601 05
1047.14

1
770
146
0.190 68
647.44
0 ~ 796 49
898.17

E=(k2/4+q2+M')' '=M+k'/8M+q'/2M (4)

(ii) we keep only terms up to first order in k'/
M' and q'/M'.
Using these approximations we find the '0; for

(i) pseudoscalar-meson exchange,
eg(P) f 2n/~ 2 .
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(ii} vector-meson exchange,

= {gv'(I —k '/BMM' + Bq '/2MM')

—g„fvk '/[25II(MM')' ']
+fv2k 4/(165)1'MM ))n, ,

(V) k 2so (V)
2 3

= ([gv +fv (MM') +'/gR)'

fvs k—'/BMM') D/4MM',

'g v =-[~g '+2gvf„(MM')' '/5)I

—8fv' k '/85}I']6/MM',

[gv'+Bgvfv(MM')" /5g

(6)

-g,' replaced by g~' and

6= e ~4"& /MM'. (9)

B. Transformation to configuration space

The method of transforming the potentials to the
configuration-space representation is well known. '
We shall only mention the Fourier transformation
of the form

In Eqs. 5-9 M and M' denote the proton and/or the
neutron mass and m denotes the meson mass. The
scaling mass m, in (5) is the positive-pion mass,
and the scaling mass X in (6) is chosen to be the
proton mass.

+ Bf 'MM'/ll'] n,/161IPM";

(iii) scalar-meson exchange,
U(k, q) = &(k)q'.

Qne obtains for the action on the wave function

(10)

= -g '(1+k'/BMM' —q'/2MM')n,

&(s& g 2&/2MM

'0 = g ' n,/163(PM"

where everywhere n = e /(k'+m'); (8)
(iv} Pomeron exchange, the same as ('I) but with

( r i'0$) =[—', [O'U(r}] ——,'(V U(r) + &(r) V ))g(r),

where s(r) denotes the Fourier transform of 8(k).
Next we list the Fourier transforms we need:

(i) Central potentials,

J
ik. r

, (k')"e —= (-m')"(f(c(r) =(-V')" Joe(r) . (12)

Explicitly, we have

Q (r}=exp(m' /A') e™erfc— + ——e "erfc + /2 mrC

0'(&(=('( ( — ~ (
—

) w —( 2 )

:('=-'"(.( .' (=') —:-") - -(")
(14)

(15)

(ii) Tensor potentials,

d3p A ~ 1' m3
( m')"[y",(r)S„+,'y", '"(r)(&r, ~ (x—,)]

m3
=-4—([(-V')"y', (r)]S„[(V')"y', (r)]-,'(&, o,)).

The functions /or(r) and pz(r} read as follows:

1 8 1 8

(16)

exp w A 1 + PÃQ + 3 PPgg g erfc +™1 /pe+ + 3

pygmy'

e erfc2 A 2 A

1 + 3 exp —— 2 PB'Y

(. ( ; ( (, ( (( '~)'(=A)* ~—e—'x,"( )* . (18)



LO%-ENERG Y N UC LEON-N UC LEON POTENTIAL FROM. . . 771

(iii) Spin-orbit potentials,

-2 2 m3 m3
eik ~ r

' ( I )
(k 2)ne-k lA = ( m2)n4 s (r)1 .S [( ~2)n4 o (r)]L (19)

In this case we have

1 1 &
p Ar m Ar m

&go(r) =,— Qc(r) = exP(m'/A') (1+mr)e 'erfc — + ——(1 —mr)e "erfc +-

exp — 2 mr (20}

A' Ar'
4p(r) = &4)(r) — —exp-

4vm m 2

(iv) Quadratic spin-orbit potentials,

(21)

(22)

Only terms proportional to Q'» are kept. Other contributions are neglected here.
In Eqs. (13), (17), and (20) erfc denotes the complementary error function,

erfc(x} = ~ g2dte
x

Note that we have defined the functions p"„(t}&, and tII}so such that these are dimensionless and positive
for large values of r.

The Fourier transforms of Pomeron-type potentials can be read off from the above formulas by the
substitutions

2A ™~»
Explicitly we find

ik. r -k /4 2 ~ 4 3 2

( ), e e " = ~m~exp(-mar),

(23)

(24)

(25)

, e'"'"k'e 4"~ = me'(3 —2m''r') exp(-m~'r'),
2 v)' 4n vm

(26)

~ ~

~ ~, e'"'iS ~ (qxk)e "~'"~ = mp'exp(-m~'r')L ~ S,2 v)' 4m vm

2

~

~?
3

iI
I

I«f ~
I ~

I ~ «
~

I ~ ~ ~~
4 ~ ~ P

7
p

2 2» I3
e' '[a~ . (q x k )][v2 (q x k)] = ~— ~ m&7 exp(-m&2r2)Q,

Finally, we mention the Fourier transform of the momentum-dependent central potential
e-k IA

g 2/(k 2 ym2)

Using (11), we get

(2'I)

(29)

4,( ) ——,'(v 40( )+yoc( )~2)). (30)

C. The potentials in configuration space

Combining the results of the preceding subsections we end up with the following potentials in the con-
figuration- space representation for I= 0 exchanges.

(i) P seudoscalar-meson exchange,

2 2

V'r(r) = 4', , m[-'(c, o.}4h+S,.A];

(ii) Vector-meson exchange,

(31}
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2 2 4
'I

m 2 0 1 —g2 0 0 2 m 2

4MM c+ c +
23)l(MM ) I4m (

(MM')'i2 ~, 2 m~' f" 8MM' ~c '( '

m2 —
(MMi }&/»'

0 2
m2 's—

4MMi gv+fv'3tl &r+fv 8MMi &r i2

(MM')'i'
0 ) 2

m'
ag v + Wvfv ~ 4'so+8 fv ~2 &so

4 (MM')'i'
2

MM' 3
16M'M" "

m,
i m' ( )* ~ ") '

(iii) Scalar -meson exchange,
2 2 2 4

4M ' ~" 4MM' ~"~c )' 2MM' ~K' ' ' 16M'M"
0

4g 4MM' 4MM' 2MM' 16M M' mr

(iv) Pomeron-type exchange,
2

4g yg MM' ~ 2MM' MM' M'M"+, (V'exp(-mp'r')+ exp(-mv'r')V'
I
.

For I = 1 exchanges these potentials have to be multiplied with the operator 7', '7'2 in isospin space.

(32)

(33)

(34)

D. The Schrodinger equation with a nonlocal central potential

The Schrodinger equation with a potential of the
form

V. 4(r) A(r) V.
2M ~

(35)

can be solved easily by a method invented by
Green. ' Here M,~ denotes the reduced mass. The
radial Schrodinger equation

goes with the substitution

B,i = (1+2$) Vi

formally over into the radial equation for v„
vf +[k' —2M„~W —l(l+1)/r']vg ——0. (38)

'The "potential" W in this equation is energy de-

(1+ 2$)Qi + 2Q Qi

+ [k' —2M,~V —(1+2$)l(l+ 1)/r '+ P']u, = 0 (36)

TABLE Q. Meson-nucleon coupling constants from the NN fit. As input we use f~ and
all masses except m& and A. The underlined couplings are constrained via SU(3). Figures
between parentheses give information equivalent to the ones of neighboring columns.

m (MeV}

E

I', f, f'
A2
A

138.041
548.8
957.5

770, I'= 146
1019.5
783.9
962
993

760, I'=640

307.81

964.52

(13.676)
(3.433)
(3.759)
0.795
0.099
8.683
1.632
0.704

22.731
8.778
0.197

7.566x10 2

1.899x10 2

2.080 x 10 2

14.157
0

0.960

(4.221)
(0)

{0.333)
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TABLE ID. Nuclear-bar Pp and np shifts in degrees.

773

T).b (MeV) 25 50 95 142 210 330

$()
3$

E'i

3PO

3Pi
iPi
3p

3Di

iD

3D

E'3

3+
3Q

ip
'I'4

E'4

3G

3G

'G4

3G5

E5
3H4

3H5

H)

E'6

49.28
78.98
1.88
8.80

-4.95
—6.04

2.45
-0.82
—2.88

3.92
0.67
0.08
0.57
0.10

-0.23
—0.43

0.02
—0.05
—0.06

0.18
0.04

—0.01
0.04
0.00

-0.01
—0.03

0.00
—0.00

39.59
60.37
2.27

11.80
-8.37
—8.65

5.79
—1.77
—6.61

9.77
1.63
0.47
1.67
0.34

—0.69
—1.16

0.11
-0,19
—0.27

0.75
0.15

-0.05
0.21
0.03

-0.08
-0.17

0.01
-0.03

26.73
41.39
2.69
9.78

—12.87
—11.33

10.61
-2.78

—11.99
18.99
3.50
2.00
3.50
0.76

-1.51
-2.18

Q.41
-0.52
—0.91

2.12
0.39

-0.16
0.69
0,10

-0.29
-0,52

0.04
—0.11

16.63
28.42
3.18
4.71

—16.81
—13.60

13.73
—3.11

—16.06
25.57
5.47
4.15
4.94
1.10

-2.20
-2.86

Q.88
-0.84
-1.75

3.63
0.63

—0.24
1.24
0.20

-0.52
-0.87

0.09
-0.22

5.21
14.91
3.99

—3.45
-21.92
-16.63

16.14
-2.88

—20.05
30.35
7.94
7.32
6.30
1.27

-3.02
—3.55

1.68
—1.23
—3.03

5.73
1.01

-0.25
1.99
0.36

—0.85
—1.28

0.21
—0.38

-10.Q5
—1.84

5.60
—16.86
—29.83
-20.87

17.70
-1.63

-23.60
31.13
10.51
11.43
7.36
0.50

-4.35
-4.71

3.02
-1.74
—5.05

8.96
1.73

-0.04
3.08
0.63

-1.32
-1.

,77
0.52

-0.64

pendent, reading

y 1 y ' 2'8'=
1+ 2Q 2M~ 1+2Q 1+2Q 2M~

+

(39)

For Q )0, which turns out to be the case here,
we therefore get suppression of the wave function
at small distances r( 1 fm [P(0)=1.8 for I=1 and
P(0) = 1.2 for 1 = 0]. Furthermore, we notice in
(39) that for positive P the energy-dependent re-
pulsive term increases with energy.

unitary-singlet couplings, SU(3) input, and singlet
octet mixing. In Table III we have listed the re-
sulting nuclear-bar phase shifts. 'The low-energy
parameters for s and p waves of Eqs. (30) and (32)
of Ref. 7 are given in Table IV and the deuteron
parameters in Table V. Table VI displays the
'Ll, , Lc3 Lr~ and Ll.s phase shifts for L=1, 2,
which are useful for low-energy analyses. Figure
1 compares the deuteron wave functions with those
from the Reid soft-core potential. "

III. RESULTS

The values of the 13 free parameters are
searched in a fit to the NX data using the X' sec-
ond-derivative matrices of the Livermore phase-
shift analysis'0 up to 330 MeV, the 'S, (pp) and
'S, (np) scattering lengths, and the deuteron pa-
rameters. The fit is very satisfactory, yielding
y. '/data= 2.09 compared to the 1128 data used in the
Livermore analysis up to 330 MeV.

The obtained values for the coupling constants
and searched masses are given in Table II. For
I=0 particles we give the couplings of the physical
particles, also when these result from the fitted

+exp & exp

1$

3$

Spp

Sp
3p
ip

-7.797
5.468

-3,095
1.883

-0.290
2.501

2.697
1.818 b

3.289
—7.124

5.780
—6.665

-7.823+ 0.01
5.424 + 0.004

-2.6 + 2.0
2.8 + 1.3

-0.45 + 0.2S

2.794 + 0.015
1.760 + 0.005
4.3 + 2.0

-9.0 + 1.0
15+10

'P= 0.034.
P= -0.014.

TABLE IV. s- and P-wave effective-range parameters
in units of fm. Experimental values are taken from
Ref. 4.
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TABLE V. Calculated deuteron parameters. For def-
initions see Ref. 20.

0.5

Pd

p(-B, M)
Ng2

A

5.39%
0.2775 fm2

1.822 fm
0.8015 fm
0.0255 0.3

IV. DISCUSSION

A. Coupling constants

The value for f,'/4v = 0.0757 or equivalently g, '/
4m= 13.68 is a. little small compared to determina-
tions of this coupling constant at the pion pole in
wN scattering, where values of about 0.0'79 are ob-
tained. ' The same applies to a comparison with
values from NN phase-shift analyses. 4 It is also
reflected in the rather small value for the quad-
rupole moment of the deuteron (see below) The.

main reason for this rather low value is that we
have approximated here (f,'/m, ')(M/E)(Pj, ' k)(o, k)
in the derivation of OPEP by (f,' m/, ')(o', k)(o, k)
in order to avoid the additional complications in the
solution of the Schrodinger equation when M/E is
expanded according to Eq. (4). Neglecting this ef-
fective reduction of the pion potential at higher
energies has, of course, as a consequence a small
reduction of the coupling constant in the fit.

For the unitary-singlet coupling f„,/(4v)'~' we
obtain the value 0.1866. Applying the Okubo-
Zweig-fizuka (OZI) rule"

(40)f„=W „,
].cade to 0.0997 for f„ /(4v)'~' from our value for
f, and the used value for az from Ref. 4. There-
fore we have here either a considerable violation of the
OZI rule or that nJ is too small. A larger value
for a~ produces via the singlet-octet mixing the
same physical p coupling with a smaller singlet
coupling, thus reducing the violation of the OZI
rule. The same happens when the w coupling is
enlarged. Furthermore, the mixing angle is still
a problem.

02

12 r[fm]

FIG. 1. The deuteron wave functions u and u. For
comparison, Reid's (soft core) (Ref. 11) deuteron wave
functions are also drawn.

The obtained value 3.18 for 4(g, '/4v) is a
little higher than the estimated value 2.54 from
p-7t'w, based on the assumption of universal
coupling of the p to the isospin current and in-
volving an extrapolation to zero energy. '" An
analysis of the pNN vertex from analytically con-
tinued vN amplitudes" giving, at f = 0, g,/g,
= 0.52 combined with g, '/4w = 2.&4 s 0.50 (Ref. 4)
leads to 4(g, '/4v) =3.07+0.54. The value of f,/g,
=4.22 is considerably smaller than in most NN
analyses. '" It is even not far away from the va-
lue 3.7 from naive p-meson dominance of the iso-
vector electromagnetic form factors of the nu-
cleon. In the aforementioned analysis of the pNN
vertex" one obtained at t = 0, f,/g, = 6.06. Although a
reduction of g, by about 10' would improve the
agreement with the p couplings from other deter-
minations, the ratio f,/g, would still remain rather
small.

A satisfactory value g„'/4w= 8.68 has been ob-
tained in the fit. This value is considerably small-
er than in most NN analyses'" and implies only
a small violation of the OZI rule. " In fact this
rule yields analogously to (40) that g„ /~w= 2.18
from g, and a'„= 1, whereas we have found in the

TABLE VI. Low-energy L1„3Lt(.-, Lz, and 3LL& phase shifts in degrees for L=1,2.

Thb (MeV

iP

3P

'Pcs
1D

3D

'Dms

-0.481
—0.0 10
—0.110

0,010
0.005
0.005
0.013
0.001

-1.149
-0.011
-0.309
0.032
0.025
0.023
0.062
0.006

-1.815
0.006

-0.534
0.061
0.059
0.056
0.143
0.013

-2.439
0.041

-0.766
0.100
0.104
0.100
0.251
0.021

10

-3.013
0.090

—0.995
0.148
0.158
0.154
0.378
0.031

12

-3.537
0.151

-1.217
0.205
0.217
0.216
0.522
0,041

14

-4.015
0.220

-1.431
0.271
0.280
0.284
0.677
0.051
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fit g„,/~w= 2.53. This rather small value is
clearly a consequence of the inclusion of the re-
pulsive Pomeron and J =0 contributions of the f
and f' trajectories. The physical coupling go'/
4v = 0.10, which is a consequence of the SU(3)
constraints, is close to zero. From the magnetic
couplings g, , g~, and g„we infer &~=0.449,
which is close to the SU(6) prediction o.'v=0.4. In

this case the OZI rule predicts g „/~v= 3.03 using

g, and a„, whereas we have g"„,/P4i=3. 31, again
only a small violation. We notice that f /g„= 0.33
is quite different from zero, in contrast to what
many authors claim from naive vector-meson
dominance of the isoscalar electromagnetic form-
factors of the nucleon. We would like to stress
here that it is impossible to determine g„or f„
in an analysis of the electromagnetic formfactors.
'The photon belongs to an octet. Therefore the
singlet part of the &o enters only in the SU(3)-break-
ing part. In exact SU(3) symmetry it would de-
couple completely. So claims about g„or f„are
in fact claims about the breaking of SU(3). Fur-
thermore, the g meson contributes essentially to
the isoscalar electromagnetic current. "

'There exists little information about the couplings
of the scalar mesons. The values for g, seem to
be widely spread. ' " However, this is essentially
a consequence of the different treatments of the
broad-meson problem. Our value g, '/4v = 22.73
is about 10%%uo lower than in earlier hard-core mod-
els."'

For the mass parameter in the Pomeron-type
potentials we estimated in Ref. 1 from the Regge-
pole model of Ref. 17 for m~ =250 MeV and m~.
=240 MeV. A more recent fit" leads to m~ =290
MeV and m&. =360 MeV, the latter one represen-
ting an effective trajectory. The searched value
m~ =307.8 MeV agrees well with these estimates.
As to the couplings we note that the I =0 contribu-
tion is much larger than the I =1 contribution.
This is consistent with high-energy fits, where it

is well known that the &, trajectory couples much
weaker than the P, f, f ' trajectories. For the
strength of the total I =0 potential we have esti-
mated in Ref. 1 from the results of Ref. 17 that
the central potential at ~ =0 is about 600 MeV.
From our fitted values we arrive at

Vc ' (r =0) =655 MeV, (41)

indicating that the coupling constants we found have
the correct order of magnitude.

8. Phase shifts and low-energy parameters

The 'D, phase shift poses a serious problem in
most of the theoretical models by growing too
large at high energies. The present model having
a phase shift & =31.13' at T~b =330 MeV is already
quite reasonable. Inclusion of the momentum-de-
pendent terms in the pion potential, which we have
neglected here, depresses the phase shift to about
27' at TL,b =330 MeV. Therefore we conclude that
the inclusion of the Pomeron-type potentia's helps
to solve the problem in the 'D, wave.

With respect to the scattering lengths and effec-
tive ranges (Table IV) we mention that we have
fixed the binding energy of the deuteron at its ex-
perimental value. This way the 'S, scattering
length deviates a little from its experimental value.
However, a more refined treatment is necessary"
for getting all low-energy parameters in the differ-
ent charge modes consistent with experiment. The
rather low value of the quadrupole moment Q of the
deuteron is a consequence of the low pion coupling,
which essentially determines Q. A coupling of
about f„'/4w =0.0785 or g, '/4m =14.2 is necessary
to bring Q to its experimental value. 4 We note
that although our value for Q is close to the one
from Reid's soft-core potential" the d-state proba-
bility is considerably lower in our model. The low-
energy parameters for the P waves resemble very
much those from the hard-core models. "
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