
PH YSICAL RE VIE% D VOLUME 17, N UMBER 3 1 FEBRUAR Y 1978

Quark-model calculation of charmed-baryon production by neutrinos
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We study the neutrino production of 25 low-lying charmed-baryon resonances in the four-flavor quark
model. The mass difference of ordinary and charmed quarks is explicitly taken into account. The quark
model is used to determine the spectrum of the charmed-baryon resonances and the q

' = 0 values of the
weak-current transition matrix elements. These transition matrix elements are then continued to spacelike q

'
values by a generalized meson-dominance ansatz for a set of suitably chosen invariant form factors. We find
that the production of the L = 0 states Co, C„and C~, is dominant, with the CU produced most
copiously. For L = 1,2 the J = 3/2, 5/2+ charm states are dominant. We discuss the sensitivity of our
results to various input assumptions, e.g. , the ratio of charm-quark mass to ordinary-quark mass. We give
differential cross sections, total cross sections, and energy-integrated total cross sections using experimental
neutrino fluxes. We conclude that the charmed-baryon production rate can be as large as 3-4% of the total
neutrino cross section in a region extending from charm threshold to E 10 GeV.

I. INTRODUCTION

Recently a charmed-baryon candidate with a
mass of 2.26 GeV was found in a photoproduction
experiment at Fermilab. ' Some possible indirect
evidence for charmed-baryon production was also
reported on in neutrino inter'. ctions by the obser-
vation of dilepton events (see e.g. , Ref. 2) and
M = -6Q events. ' Together with the identification
of charmed mesons in e'e production, ' these re-
sults have given strong support to the charm inter-
pretation of the new phenomena observed in high-
energy physics since the discovery of the Z(g) par-
ticle in 1974.

Lee and Shrock (LS) have already shown that the
quasielastic neutrino production of charmed baryon
may constitute a sizable fraction of the total neutrino
cross section (=2% at E = 10 GeV) close to the
charmed-baryon production thresholds' even though
the form of the GIM current' disfavors these by a
sin'8~ suppression factor. At higher energies as
more and more charm channels open up, one ex-
pects the charm-production cross section to in-
crease linearly with energy including contributions
proportional to cos'8~ coming from the excitation
of sea quarks in the low-x region. Since the quasi-
elastic charmed-baryon production cross sections
are expected to level off at higher energies, the
contribution of these channels will become less
important. However, in an intermediate-energy
region one may hope to collect enough data to be
able to study the dynamical mechanisms leading to
weak excitation of charmed-baryon resonances.

Even though there exists now strong evidence
that charmed particles fill up the remaining slots
of SU(4) multiplets confirming the most basic pre-
diction of SU(4) symmetry, the large mass split-
tings between charmed and noncharmed SU(4)-

multiplet members make it clear that the sym-
metry is badly broken. In the quark model SU(4)
breaking basically manifests itself in large quark
mass differences. Within the context of the quark
model the neutrino production of charmed baryons
affords a very nice way to study such a basic
SU(4)-breaking mechanism, since the neutrino cur-
rent induces a transition from a light noncharmed
to a heavy charmed quark.

In the framework of the quark model we shall
study the neutrino excitation of 25 charmed-baryon
states with C=1, $=0 in the lowest radial mode
with the orbital excitations L = 0, 1, and 2 (see
Ref. 7). SU(4)-breaking effects are incorporated
at the quark level by introducing quark mass
breaking. We shall be using quark-model results
only at q'=0, where the quark model has been
quite successful in accounting for the photoexcita-
tion feature of the low-lying baryon resonances.
For q'w 0 the quark-model results become in-
creasingly frame- and model-dependent and tend
to be unreliable. ' Nor do the helicity amplitudes
calculated in the quark model in general exhibit
the correct structure of relativistic kinematics.
We therefore calculate the values of the helicity
amplitudes at general spacelike q' by continuing
instead in terms of invariant form factors via a
generalized-meson-dominance (GMD) q'-depen-
dence. Since the mesons that determine the form-
factor behavior have charm C = 1, the charm mass
scale appropriate for charm-particle production
is included in our form factors. As a technical
aside we give a systematic discussion of the large-
q' behavior of the invariant form factors necessary
to guarantee that production cross sections of
higher-spin particles do not become spuriously
large because of momentum-factor enhancements.

Our paper is planned as follows. In Sec. II we
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discuss the quark-model classification of the low-

lying C=1, S=O charmed baryon states. Since
their mass values are needed in the later cross-
section calculations we also present mass esti-
mates. In Sec. III we set up the kinematics of
baryon-resonance production including a discus-
sion of the large-q' behavior of transition form
factors. As mentioned before, one of the main dy-
namical ingredients of our calculation is the use
of the quark model to obtain the q'=0 values of the
weak-current transition form factors. This is
done in Sec. IV, where we also discuss how the
quark mass difference enters into this evaluation.
In Sec. IV we also discuss how the transition form
factors are continued to general q' using GMD.
Our numerical results are presented in Sec. V.
We give differential cross sections, total cross
sections, and energy-integrated total cross sec-
tions using experimental neutrino fluxes. We dis-
cuss the dependence of our results on (i} the in-
put charmed-baryon mass values, (ii) the ratio
[c-quark mass] /[(d', X)-quark mass], and (iii) the
mass values of the C =1 mesons in the GMD form
factors. Vfe also compare our calculation to two
recent evaluations of the production of L= 0
ground-state charmed baryons. Our results are
summarized in Sec. VI. The more detailed as-
pects of our evaluation have been collected in
Appendixes A-C.

II. SPECTRUM OF CHARMED BARYONS

One can easily obtain the spectrum of charmed
baryons from the ordinary baryons with strange-
ness S=-1(A,Z, Y;, . . .) by replacing a X quark
with a c quark. The charmed baryons with C =1,
S=O can then be seen to belong to the 1, 8, and 10
representations of the subgroup SU(3)~c of SU(4},
which has 6', g, and c as a basis representation
just as the C=O, S=1 baryons are members of the
1, 8, and 10 representations of the ordinary
SU(3+&. The L= 0 ground-state charmed baryons
which belong to the SU(8)-symmetric state are de-
scribed by

B', —= (m;8;0; —,
' ), B,'—= (m;8;0; —,

' ),
B', -=(m;8;1;-' ), B,'== (m;8-;1;-' ),
Bg'—= (m;1;0; —' ), B,*'=-(m;1;0;-', ),
B~'—= (m;10;1;-' ), B,*'= (m;1-0;1; —' ),
B"=-(m;8;0;-' ), B"=(m;8;-0;-' ),

(2 2)

B' = (m;8;—0; — ), B,"= (m;-8;1; —,
' ),

B,"=—(m; 8; 1; 2 ), B,' = (m; 8—; 1; 2 ),
where B„=BI and B„* denotes either the isosing-
let of the 1 representation or the isotriplet member
of the 10 representation. All these states have
total quark spin —,'. The other six states B„' trans-
forming as 8 have total quark spin —,'. In the case
of the L= 2 excited charmed baryons one can have
symmetric or mixed-symmetric SU(8) states.
Since there are no indications yet for the exist-
ence of mixed-symmetric states with L=2 in the
case of the ordinary baryon, i.e., for the 2P, A*,
Z*, and =* states, we shall discuss only the sym-
metric states, i.e.,

A,'—= (s; 8; 0; —,"), A,'= (s; 8; 0; —,"),
A,'=—(s; 8; 1;—,"), A,' -=(s; 8; 1;—,"),
A,*'=- (s; 10;1;—,"), A,*'= (s; 10;1; —,"),
A,*'=- (s; 10;1;—,

' "), A,*'=- (s; 10;1; ' ).

(2 3)

Me=Mr+a (2 4)

In Fig. 1 we show the 4, 20, 20, and 4* represen-
tations of SU(4), where we have accented the above
SU(3)sv„representations 3, 8, 10, and 1 with heavy
lines and a heavy dot, respectively. As for the
higher-I-excited states one can easily write down
the different spin states in an analogous fashion.

Recently the observation of a charmed baryon
was reported in a photoproduction experiment. '
The mass of the charmed baryon was given as
2.26+ 0.01 GeV. Following Ref. 9 we identify this
charmed-baryon state with the C,'. Since at pres-
ent there is no definite information on the mass
values of heavier charmed-baryon states, we pro-
pose to evaluate the cha, rmed-baryon mass spec-
trum in the following heuristic way.

C, =- (s; 8; 0; —,"),
C, =- (s; 8; 1;—,

"},
C,*=—(s;10;1;—"),

(2.1)

where M~ is the mass of the charmed-baryon count-
erpart of the strange baryon with mass M~ and 6, },
is a measure of the mass difference of the c and A.

quarks, which we propose to evaluate in the follow-
ing wa, y:

with the notation (symmetry of SU(8) state; repre-
sentation of charmed SU(3)~ I;J' }and s = sym-
metric (m= mixed symmetric).

The first excited charmed baryons with orbital
momentum L=1 belong to a mixed-symmetric
state of SU(8), i.e. ,

n, ~ =Mc+ -M~ = 2.26 —1.12 = 1.14 GeV. (2.5)

Based on Eqs. (2.4) and (2.5) we give the results of
calculating the mass spectrum of the charmed bary-
ons in Table I, where reference masses M„are
also given. " It is interesting to note that, taking
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C=3

C=1

n4
A"(1.405)

{b) 20N] {c) —0s {cI)4"

FIG. 1. SV(4) representations 4, 20&, 20&, and 4*. Heavy lines and a heavy dot denote the SV(3)(p~ representations
3, 8, 10, and 1, respectively. The three-dimensional objects are viewed from below.

the masses of the charmed I =-,'' state [C,'(2.26)]
and its recurrence at J = —,

" [Ao(2.95)], we obtain
for the Regge slope (3.1}

ec —0.54 Gev ', (2.6)

which is about one-half the universal slope and sim-
ilar to the value assumed for the D* trajectory in
our previous paper. '

De Rujula, Georgi, and Glashow" have also given
predictions for the masses of the ground-state
C=1, S=O charmed baryons. Using Mc =2.26 GeV,
one obtains from their predicted mass differences
M~ = 2.42 GeV and Mc* = 2.48 GeV. These masses

1 1
are 0.09 GeV higher and 0.05 GeV lower, respec-
tively, than our mass values. It will be shown in
Sec. IV that the calculated production cross sec-
tions are insensitive to mass variations on this
scale. Finkelstein and Tuan" predict mass values
for the excited states A,', A,', and A,*' by using a
universal Regge slope n'=0. 93 GeV '. They obtain
the following mass values: M„5=2.69, M„5=2.84,
and M„*7=2.90 GeV, where we obtain 2.96, 3.06,Ai
and 3.17 GeV, respectively. Again our cross-sec-
tion results are not very much affected by changing
the charmed-baryon masses on this scale.

q. = ([(M+m)' —q'][(M-m)' —q']] '",
(3.2)

The u and v are functions of q' and the lab energies
E and E' of the initial and final lepton:1, M

u = —E+E'+ —
q2E rpg

2

4M'If'~'=a+ &*,Z'=X Z. + qn'Z, &, &
C

where J, =~(J',+ ij',), and where A and X~ are the
helicities of the initial and final baryon of mass m
and M, respectively. The weak hadron current con-
tains a vector and an axial-vector part J„=J„"+J"„.
q 0 and q, are the zero component and magnitude of
three-momentum of the four-momentum transfer
q in the isobar rest system (q' negative in the
spacelike region)

III. CROSS SECTION
1, Mv= —E+E'-—q,2E m

(3.3)

The neutrino production of charmed baryons and
charmed-baryon resonances is represented by the
process vN- p, C in close analogy to the treatment
of the neutrino production of ordinary baryon states
in Refs. 13 and 14. Using the narrow-resonance
approximation and neglecting the lepton mass one
obtains a simple expression for the differential
cross section da'/dq' in terms of isobar rest-frame
helicity amplitudes. " One has

Finally, G~' gives the strength of the weak-inter-
action coupling, where for the charm-production
processes treated in this paper Gc = G sin8~ with
sin 49~ = 0.235+ 0.005.

The three contributions in Eq. (3.1) arising from
[f,(', )f+ (', and )f [' are commonly referred to as
the scalar (S), left-handed (I}, and right-handed
(R) current contributions, respectively. The scalar
contribution (f, )' and the sum of left- and right-
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TABLE I. Masses of charmed baryons. The total
quark spin is denoted by ~~. There are no C=O, S =-1
candidates for B(2 and Ag'. Therefore we extrapolated
the corresponding charmed-baryon mass value from the

masses of B'i and B'is and &i~3, Ai~s, and Ai~v,

respectively.

Particles J+ I. S~ I
Masses Reference

{GeV) masses

Co

C*i
Bo

B1

Bgi
0

Bgii
B'i

0

i

Bo

Bg

B2'
3

B$3

Bc3
0

B 3
i

~f5

Bi 5

A*'
i

A3i

Af

Ao

A,'
A g5

A)7

1+
2 0 $ 0

0 $ 1

0 $1
1 1 1

1
2 1 2 1
1 1 1 0
1
2

1 $ 0

1 $ 1

1 — 0

0

1 2 1

1 $ 0

5
2 03

1 $ 1

2 2 0

o

2 — 1

2: 1

2.26

2.33

2.53

2.81

2.76

2.55

2.89

1.116 (A)

1.189 (Z)

1.383 (Fj*)

1.6 7

1.62

1.41

1.V5

(2.81) (1.67)

2.89

2.81

2.65

3.08

1.75

1.69

1.6V

1.52

1.94

(2.83) (1.69)

2.90

2.9V

2.91

3.23

3.03

2.98

3.22

2.96

3.06

3.21

1.83

1.7V

1.89

1.84

2.08

1.82

1.92

2.07

2.03

handed contributions (~f+ (2+ [f [2) obtain contribu-
tions from VVand ~ terms, whereas the differ-
ence (~f+(' —(f (') obtains contributions from VA

interference terms. From the definition of u and
v it is evident that the contribution of the parity-
violating VA interference term is down by one po-
wer of E.

The appropriate asymptotic q' dependence of the

helicity form factors will be determined by appeal-
ing to the Drell- Yan threshold relation. If one has
for x-1 vW2cc (1 —x)" ' and cs/orcc (q') ' one finds
for the helicity form factors

(3 4)

f &Z(q2)C1/2

On integrating dc/dq' from q;„' to q,„' one has
for the integrated cross section c(E) = crs(E) + rrt, (E)
+|)s(E)=-gs(E)+Or(E)

era r-const —(const(E '+ 0(E ') (3.5)

IV. CURRENT MATRIX ELEMENTS

Having dealt with the charmed-baryon spectrum
and the production kinematics, we shall now turn
to the calculation of the weak-current matrix ele-
ments (CME's) that appear in the cross-section
formula Etl. (3.1) and which constitute the dy-
namical content of the production process. First
we calculate their q' = 0 values using the quark
model as dynamical input.

(for c~ 1).
Using the relations between the helicity and in-

variant form factors given in Appendix A, one can
easily determine the asymptotic q' power of the in-
variant form factors necessary to ensure the be-
havior given in Etl. (3.4). For example, for the
case —,

"
—,", one would have

G„G„G,oc (q') ' ',
(3.6)

G2~(q') ' ' .
The dangerous role of the q'-dependent momentum
factors that can lead to spuriously large cross
sections can already be appreciated in this case
If one were to naively choose dipole forms for all
the invariant form factors, i.e. , G, tc(q') ', one
would then have vW, cc (1 —x)' and as/crccq', as
well as

0's fx lnE
(3.7)

&r ~ const —~const)E '

for the q' integrated cross sections. Apart from
the fact that such a choice is not in agreement with
the Drell- Yan threshold relation, a logarithmic
growth of the total cross section for single-reso-
nance production does not seem to be realistic
from what is known in the corresponding electro-
production cases or from qugsielastic neutrino
scattering, which all show a flat energy depenence.

Current matrix element (CME) at q2 = 0 in the quark model

The internal wave function of baryons composed of three quarks is written in momentum space as follows:
3c„,, e&= g (sc, , ;klC., ;J,J, ) Qc k, k' 2 'k) C, {t„k„k2„'„;k&
=1

(4.1)
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where P and y, respectively, represent the internal space and the spin-unitary-spin wave functions,

C(S, S, ; I, I„;Z, Z,) is a Clebsch-Gordan coefficient, and k,. (i = 1, 2, 3) is the three-momentum of the ith

quark. Note that the spin-unitary-spin wave function can easily be obtained from those of baryons with

C =0 by the replacement A. -c.
The current matrix elements of charmed-particle production are calculated according to Fig. 2. In the

isobar rest frame one has

fk(f, ZS) (PE) )( ( )@I(k/2, ZS ) (Pf )
3 3

C*(SS,; L, L, ;,ZZ) J 114'k 4' — k,. 4', ,(k„k„k}k"„;)'„"*„,"„'; '4„,(k„k„k,— )
sg, g i =1 =1

3

(S(L, .L; S S))f (lkk I}' k, —gk, ;„,S(k„k„krak„., t)4„k„k,—4)k

(kyar,

"" „(k,-i(), (4 2)
Lg g =1 i =1

where the relevant charm-changing current operator is I'~v+ 1 „"=y~(1 —iy, )sin8c with sin8c= 0.235+ 0.05.
(8(L,, I;;Z,J,)) is a Clebsch-Gordan coefficient factor.

In the nonrelativistic model the k dependence of the Dirac spinor is neglected and instead the Pauli spin-
ors are used. Such an approximation is reliable only if ((I~ and the cutoff momentum for the k's in p are
small. In the present case, however, the mass difference between the g and c quarks is so large that

~(I~ is very large even at q'=0. Therefore, one may neglect the k dependence of the Dirac spinors, but not
their (I dependence. In ttfe above approximation one reduces E(I. (4.2) as follows:

+ L, I, ;J,J, u, 0 I'&'"uz -q
z

3 3
x d'k, 5' p„- k, p~«L &(k„k„k @r&» k„k„k,-q

I, =1 $ =1

charmed baryon

c qua

—m quarki k iE )k

k) kg k3

nucleon

y, f

FIG. 2. Quark-model diagram of the neutrino produc-
tion of charmed baryons.

The dependence of the CME on the quark masses
m~ and m, is explicitly contained in the Dirac spin-
ors u~ and u, . The overlap integral in (4.3) is a
function of q', which is normalized to 1 at q' =0 in
the case of the ground-state charmed-baryon
(C„C„C,*) production.

The production of excited states is proportional
to the overalp integral between the orbital wave
functions of the ground state and excited state and
is thus proportional to )(I,„„„,„,„„, ( =-q, . The

actual value of the overlap is model-dependent but
can be calculated once a particular quark model is
specified. Here we shall be treating the following
two cases:

ModelI: z r =
g g

0'oc
Q(M'+m')

L
Model II:

2 =0 M 2=0

(4.4)

The first case corresponds to the relativistic quark
model introduced by Feynman, Kisslinger, and
Ravndal, "and the second case is abstracted from
the models of Refs. 16 and 17.

In the case of model I, 0 denotes the spring con-
stant of the harmonic-oscillator potential and is
set equal to 0= 1.05 GeV' for the noncharmed-par-
ticle spectrum. In the case of the b,C=1 transi-
tions treated here one would possibly have to con-
sider larger values of A. This shall be discussed
in the next section when we present the numerical
results.

In the case of model II, the large value of q, at
q'=0, i.e. , q, =(M'-m')/2M is scaled to the large
mass M, and thus one avoids that the orbital over-
lap increases with the mass of the higher states.
The appearance of M as scaling mass is due to a
Lorentz-contraction effect of the spatial wave



AyILEZ, g. KOBAYASHI, AND J. G. KORNER

function, as can be seen in the following two mod-
els. One is the relativistic quark model proposed
by Fujimura, Kobayashi, and Namiki (FKN},' and
the other is a model proposed by Cocho, Fronsdal,
Grodsky, and White (CFGW)" based on the U(3.1)
group as a relativistic generalization of the non-
relativistic harmonic oscillator. One obtains the
following results:

Jp~pr = C(I};,~, 1(q') (FKN),

L
=C'(L)( ' I'(q') (CFGW),

(4 5)

where 2n =1 GeV',

y = (m'+M' —q')/2mM,

and I and I' stand for the overlap integral between
ground states. The factor y

L is due to the I or-
entz contraction of the spatial wave function. At
q'=0 Eq. (4.5) reads

a(B,*') =-,' (B,'),
o(B,")= ,' g—(B,'),
o(B,*') = —.'o(B,'),

(4.V)

o(B,*') = ro(Bl) .
These relations should hold exactly when the two
masses of the two charmed baryons are equal.

In addition to the relations Eq. (4.7} one has

(B*(c=1,s=o),x*iz," "i B(c=o,s=o), ~) =o

(4.8)

for the six charmed baryons belonging to the
mixed-symmetric representation of SU(8) with
total quark spin —,'. This is a typical quark-model
selection rule foQowing from the internal quark
wave-function structure.

For some app1ications it is also instructive to
refer to the q'=0 values of transition form factors
that result from our quark-model calculation.
These are given in Appendix C for the three cases

~2 2

P~y, = C'(f.}, , I'!0) (CFGW} .
(4.6)

If we take I (0}= I'(0) = 1 for the normalization of
the ground-state wave function, "both expressions
Eq. (4.6} behave as constants for large M, similar
to the behavior of model II. The constant factors
C(I,} and C'(L) in the two models have an I. de-
pendence, which is model dependent. For I.= 1
and 2 one obtains

1
3 p

I —2

(FKN),

I/~ — (CFGW)

In the limit of M»m the orbital overlap corre-
sponding to model II reduces to

(-', )~ (model II) .
For I.=1 and 2 the above value is quite close to
the results of the above two models for M»m. Vs-
ing explicit masses fop l.= 1,2 excited charm
states, one finds that the values for the orbital
overlap functions at q' = 0 are quite close to one
another in the three cases.

Returning to Eq. (4.3) one can now explicitly
calculate the q' = 0 values of the current matrix
elements using quark-model Clebsch-Gordan fac-
tors as specified in Eq. (4.3}. The results of this
calculation are listed in Appendix B in terms of the
q" =0 values of the helicity form factors. Note that
one has the relations

Continuation of CUE to q2 4 0

In the quark model the q' dependence of CME is
determined by (4.3}. The q' dependence of the
overlap integral, however, is quite model-depen-
dent. Furthermore, it is well known that naive
quark-model calculations of the remaining spin
part tend to be unreliable for q'w 0. For example,
for the electroproduction of D»(1520) the simple
harmonic-oscillator symmetric-quark-model pre-
diction for the q' dependence of the ratio of the —,

'

to —,
' helicity amplitude does not agree with experi-

ment. " On the other hand, it was shown that the
q'c0 data of the electroproduction of ¹ can be
accounted for quite well if a generalized-vector-
dominance-model (GVDM) type q2 dependence is as-
sumed for the constraint-free invariant form fac-
tors."We therefore take the quark-model results
seriously only at q'=0 and continue to q'&0 in
terms of suitable kinematical singularity- and con-
straint-free invariant amplitudes for which we
shall specify a form-factor behavior in terms of
charmed mesons in the timelike region in the
spirit of the generalized meson-dominance model
(GMDM).

For the invariant form factor we shall make a
GMDM ansatz in the form of a product of meson
poles as predicted by the dual current model" for
leading baryon-resonance excitation. " We write

(4.9)

where m„ is the lowest meson mass, a' is the
Regge slope, and the number of poles N(c, Z) is
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determined by the desired large-q' behavior as
discussed above.

The form factors G~~ "will in general obtain con-
tributionS from vector mesons (J~c= 1 ), axial-
vector mes one (1"and 1 ), pseudoscalar mesons
(0 '), and scalar mesons (0").In the case of charm
production, the mesons appearing in Eq. (4.9) have
C =1. Since little is yet known about the details of
the mass spectrum of charmed mesons, we shall
use one common set of mass values for the
charmed mesons. We take this to be the charmed-
vector meson D*, for which we choose m, + =2.0
GeV. ' Similarly one lacks information on the
Regge slope a' of the C=1 mesons which deter-
mines the masses of the D* recurrences. We
shall consider two representative values:

e'=0.5 GeV ', n'=1.0 GeV '.
The latter corresponds to the universal slope as

determined by the noncharmed-mass spectrum and
the former Lies between the universal slope a'= 1
and the slope e'=0.25 GeV ' of the g, g' sequence
[see also Eq. (2.6)]. The number of poles IV(c,J)
that enter in Eq. (4.9) for each individual case can
easily be determined using the required q' depen-
dence of the helicity amplitudes as specified in
Eq. (3.4). Thus one has for G„G„and G, %=3,
3, and 3 in the case of —,

'' -—,
'' transitions, if c has

the canonical value c =2. For —,
'' - —,

"one finds
N = 3, 3, 3, 4 for G, G„G„G,if c = 2, and for —,

"- —,
"

one finds N= 4, 4, 4, 5. The general rule is that for
J~ —, excitations every additional spin unit requires
one additional, pole in order to compensate for the

q dependence of the additional multiplicative mo-
mentum factor q, -q'. We shall always assume
canonical form-factor behavior c = 2 except for
C,*"excitation (-,''--,"), where we use c= 3. The
reason is that the transition form factor of the
SU(4) partner of the Cf", the 6(1236), shows a
faster than canonical falloff behavior in electro-
production experiments. " We should mention here
that the results of the q'&0 multipole analysis of
Devenish and Lyth" can be adequately described
by the above choice of form factors. " Continua-
tion to spacelike q' is not unique, but our formu-
lation presented here involves the simplest form
factors and works for N-N~."

V. NUMERICAL RESULTS AND DISCUSSION

The model has four parameters —the mass M of
the produced charmed baryon, the ratio R, of c-
quark mass to ((P, 3I)-quark mass, the charmed-
meson slope, and the effective mass m~+ of the
set of C = 1 mesons that determine the form factor
behavior. As central values for these we use the
charmed-baryon mass estimates of Sec. II, R,
=—m, /m&~ » ™—,

'
m&/-,'m„= 1.6/0. 313= 5.11 as dis-

cussed in Sec. II, and a'=0.5 GeV ' and m~ =2.0
GeV as discussed in Sec. IV. We also investigate
the effect of varying these parameters around their
central values.

Using the central values we first show the re-
sults of using either model I or model II described
in the last section for the orbital overlap for three
representative charmed baryons with I.= 0, 1, and
2 in Fig. 3. One has for model I using 0=1.05

(10 cm }

100— r
/

/
I

/

I

-----M00f L I
MOOELX

I

a,"(2.96)

Bo (2.83)

)p', (2.26)

10—
g++ (2.33)

B3o (2.83)

I

I

I

I
I

I

I
I
I

(2.81)

FIG. 3. Production cross sections for seven prominent charmed baryons and resonances using model II (solid lines);
production cross sections for I =0 states with J =2+, 2, ~' using model I (dashed lines).
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(10 cm')

B". (2.65)
8' (2.81)

B,'(2.55)
— 8~ (2.76)

B«, 3(3.0e)
A& (3.03)

=p~ (2.98)
&B")(2.89)

0.1 — r

I

!
Lr'

20 30 40

J-- A" (3.17)
A')'(3. 21)

A, '(3.22)

—A" (3.23)

00 E (GeV)

FIG. 4. P roduction cross sections for 12 charmed-baryon resonances using model II.

GeV~

c(ground state) & g(excited state),
whereas model II gives

c(ground state) &a(excited state) .

(5.1)

(5.2)

If one were to argue that the harmonic-oscillator
constant could be larger in eases where charmed-
particle production is involved, the behavior, Eq.
(5.1), would prevail even for values up to 0=2
Ge V'. That the production of higher - L, states
should dominate over lower L states is not rea-
sonable in view of the fact that resonance electro-
production shows the opposite behavior, namely
that of model II. Henceforth we shall only be using
the results of model II.

In Figs. 3 and 4 we show the cross-section re-
sults for all of those 19 charmed-baryon states
that ean be excited, where the cross sections are
for proton and neutron targets in the case of I= 1
and I= 0 charmed-baryon states, respectively.
Among the 19 produced states, the largest four
cross sections occur for C' C" C*" d B"

o ~ x ) I. &
an o

Among the L, =1 and 2 states the J =-,' and -"
2

states are most prominently produced as in the
case in electroproduction experiments. The small
deviations from the quark-model sum rules, Eq.
(4.6), for the production of Bg', Bf', B,*', and
B,*' are due to the particle mass differences.

%e shall now discuss the effects of varying the
input parameters using the four most prominentl
produced states C,', C,", C,*",and Bo In Fig 5
we vary the effective form-factor parameters n'
and m~~. One has

c(small a') & c(large a'),

o(smallmDy) & cr(largemD~),

which can be understood from the explicit form of
the form factor, Eq. (4.9). The effects of varying
these parameters in the ranges 0.5 ~ 0. ' ~ 1 and
2.0 &m~* & 2.2 are weak. The dependence on vary-
ing the charmed-baryon mass M is given in Table
II for E=50 GeV. Again, the results are not very
sensitive to mass changes AM=+0. 2 GeV. The
systematic trend

o(small M) & o(large M)

cannot be traced to a single factor.
One can see that using the slightly different mass

values of De Rujula, Georgi, and Glashow" for C,
and C,* (see Sec. II} has little effect on the cross-
section results. For the production of the excited
states, e.g. Ao', one obtains v=1.00 and @=1.29
x 10 "cm' at E = 50 GeV using either our mass
estimate M=2.96 GeV or the estimate of Ref. 12,
M=2.69. This difference is not very significant.
From now on we shall always be using the mass
estimates of Table I.

In Fig. 6 we shoe the R, dependence for cross
sections at E =50 GeV. For large values of R,
one has approximately

(E fixed} ~R, ,

which is due to the fact that the helicity amplitudes
in our model are proportional to (R,)' ' at large
values of R, (see Table IV)." Note that our calcula-
tion cannot be extrapolated to the zero-quark-
mass limit.

In order to obtain an estimate of the contribution
of single-charmed-baryon production to total neu-
trino cross sections, we have to fold the sum of
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(1(f cm')

100-

L'o ('~I;0, 2.26)
(a'p«, («(p«l

{0.5, 2 2)
{0.5, 2.0)
{ 1,

'
2. 0)

(1&1,1,2.53(

,"(Iy, 0, 2.03(

0.5, 2.2)
0.5 2.0)

1 20)
~('0.5 2.2)
~,'0.5, 2.0)
&{ 1, 2.0)

10 20 30 40 50 E (Gev)

FIG. 5. Dependence of production cross sections onthe Regge slope n' and ~p4 (in GeV} for Cp, C~&++ and B3+
~ ~

the 19 cross-section contributions into experi-
mental neutrino fluxes. The fluxes at CERN used
by the Gargamelle group and at BNL peak at such
low energies (E = 1.6 GeV) that the single-
charmed-baryon production considered here can
be expected to be the dominant mechanism of
charm production. For the BNL flux we use the
parametrization given in Ref. 27. The Gargamelle

28 ~flux is parametrized in the following normalized
was (E in GeV):

dN," = 0.20E[(E —1.54)'+ 0.42E] ', 0.5 «E 2.4,

o"... (cm') =0.88xl0 "(GeV) .
The single-charmed-baryon production rate rises
to =4% with a neutrino beam that peaks at =10
Ge V and is =1/~ at 50 GeV.

In Fig. 7 we show the individual cross sections
oL, , o„, and e~ due to left-handed, right-handed,
and scalar excitations (see Sec. III) for the two
states Co and C,

". At most energies except for a
region close to threshold &~ dominates due to the
contribution of the nonconserved-current part
which has a maximum at q;„'. In the case of the

dN„" =0 20exp[-0. 72(E —2.8.0)), E& 2.4 .

The results are given in Table III. Summing up
all 19 contributions to the neutrino scattering on
isoscalar nuclear targets, we obtain o =3.3x10 ~
cm' for BNL and 0'= 3«4x 10 ~ cm' for Gargamelle.
This gives a =2% charm-production rate for these
experiments. We have taken

TABLE II. Resonance-mass dependence of the pro-
duction cress sections for Cp, C&, C~&, and Bp.

o.(E=50 GeV)

(~0 4'cm~)—

100

10

(;+(2.26)

53}

( 2.33)

go3+ ( 2.83)

Resonances
(M (GeV))

fT(E=50 GeV) (10 4 cm )
M- 0.2 M I+ 0.2

c(I (2.26)

C+q+ (2.33)

C+(+ (2.53)

Bp~ (2.83)

53

8.8
11.5
6.0

8.4
9.7
5.1

8.1
8.4
4.6

10

Rp=mc /m
15

FIG. 6. Dependence of production cross section at
& =50 Gev on the ratio R = «aJ«a((p, et) for G+ G++
C'II++, and Bp~.

tf ~ pp f



C. AVII EZ, T. KOBAYASHI, AND J. G. KORNER 17

Par ticles
(M (Gev))

x flux(&)0(&) (10 cm )
Gargamelle BNL

Cp(2.26)

C g (2.33)

C ~+
++ (2.53)

B p+ (2.81)

B g+ (2.76)

(2.55)

B,*"'(2.89)

B3+ (2.83)

B1 +(2.81)

Bp+ +(2.65)

B*3++(3.08)

A + 1++ (3 23)

A 3p {3.03)

A 1++ (2.98)

A (*~ (3.22)

A p (2.96)

Ag~ +(3.06)

A g5 +(3 21)

A )+
+ (3.17)

Sum over reso-
nances for I=O
target

4.27

0.68

0.67

0.062

0.025

0.067

0.0084

0.12

0.039

0.11

0.0081

0.0004

0.0085

0.0041

0.0029

0.016

0.0063

0.0026

0.0019

4 ~ 12

0.65

0.64

0.066

0.028

0.066

0.010

0.14

O.Q45

0 ~ 11

0.011

0.0006

0.011

0.0059

0.0036

O.Q20

0.0094

0.0034

0.0026

0
(10 cm'}

TABLE III. Energy-integrated cross section. C,
' the left-handed-current contribution oL is al-

most as strong as o~ and dominates over the right-
handed contribution, whereas for C,

"both &L and

oR are small and approach each other for larger

In Fig. 8 we show differential cross sections
do/dq' for C,', C,*", and Bo at two energy values
E = 5 GeV and 20 GeV. The differential cross sec-
tion peaks quite strongly at q' = 0 for C,', whereas
the peak is somewhat flatter for the other two
cases. Above E = 20 GeV there is practically no

change in do/dq', except, of course, that q,„' be-
comes larger. From the fact that the dominant
production mode at lower energies is C,' one con-
cludes that the production of charmed baryons will
center around q' = 0.

In Fig. 9 we show the effect of renormalizing the
axial quark current by a factor 1.23 x —,

' for the
three cases C,', C,", and C,*".This change has
quite a strong effect on the C,*"cross section,
which gets reduced approximately by a factor of
0.6, whereas the reduction in the case of the C,

'
and C,

' ' is not so large. The large reduction of
the C,*"cross section can be understood from the
fact that C,*"production is dominated by the axial
contribution. The amount of reduction in the other
two cases r eflects the importance of the axial con-
tribution in each case. In the same figure we also
show the effect of enhancing the transverse vector
parts of the same three transitions by a factor
(M+m)((m&' ~&+m,). Such a possible enhance-
ment is motivated by the observation that rela-
tivistic quark models predict magnetic moments

10.
&s

0.1 .—

/
I

I
I
I

I
I

I

I

I

I

I

I

I/
II
Il
II
II

Ill

10

p', (&g2'; 0, 2.26}

--- L'I &g2', 1, 2 33}

20
E (GeV}

&R

OL

&R

FIG. 7. Scalar, left-handed, and right-handed cross sections (& 0. d 8 ) f ' '+.s& L an R) or Cp ~dCf
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dq2
( 1D cm GeV

'
)

25

20

15

10

i 5 6 7 a

q2 [tGeV/c)~j

FIG. 8. Differential cross sectionsions for the production

p &, and & at 8=5 GeV and 20 GeV.

and M1 transition moment th ts a are too small by
a factor of approximately 3. Thisa f . s is usually reme-
ie y either introducing an anomalous uark

coupling or b intr
orna ous quark

or y introducing a mass rescaling factor

m„/m, for the magnetic transitions. With m,
= —,'m„or an anomalous quark moment of suitable
strength one then obtains the correct magnetic
coupling strengths. In the hC =1 transition case

b the
we replace the magnetic-moment re li fesca ng actor

y the corresponding rescaling factor (M+m)/

m&~ ~~+m, ). The strongest effect of this cha
occurs for C' w

is c ange
or 0 which is enhanced by a factor =1.5

whereas the effect on C" d C,*"
stron . It is

an,* is not so
g. is not clear at present whether thep, which are clearly important in theprediction whi

noncharm secsec or, are necessary when transitions
to heavy charm states are involved.

Finall we disy cuss the relation of our work with
two recent calculations of the neutrino d t'ino pro uction

s sections of L=O charmed bar o
an Ravndal's calculation is also based on

tain th
the quark model however th f
ain the mass parameters of the electromagnetic

current instead of the cha
priate for th

c rm mass scale appro-
the charm-changing current. As re-

marked air cad y by LS their cross-section esti-
mates are thus unrealistically small. The ap-
proach of LS is closer to ours, since the also

q = using invariant form factors. As
already remarked in Ref. 7, the result' t tal-

-sectxon predictions for the C' d h
zng o

are not very differen
, an teC 1

the d
y ent from ours indi*cating that

ominant form factors and their
lo e o q are similar in the two m d l H

ever a
o es. ow-

the various fo
, a detailed comparison of the '=0e q = values of

various form factors reveals that there are

0 l

(1p +cmt): UHREHDRMALIZED
——.—- —REHORMALlZEO AXlAL VECTOR

——--—EHHAHCEO TRANSVERSE VEI,"T
L', (2.26'I

1O—

f,
""

(r.ssj

10
E (Gqv)

20

FIG. 9. Produduction cross sections for C+, C"+
d hd d nhe anced transverse vector part (dashed)

a case (solid line), renormalized axial-vector
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considerable differences in the two models which
would show up in differing polarization predic-
tions. However, such detailed tests will have to
be relegated to the distant future. In the case of
the C,*"production cross section the results of
the two calculations are not very different for a
region close to the energy threshold (see Ref. '1).
However, the form factors of LS do not fall off
strongly enough to dampen the effect of the q'-de-
pendent momentum factors in the cross-section
calculation in this case, and consequently they ob-
tain spuriously large cross-section result;s for
larger energies. As discussed in Sec. III this
problem does not occur in our calculation. We do
not want to convey the impression that LS pre-
sented the isobar -model calculation seriously.

VI. SUMMARY

%e have presented a "hybrid" quark-model cal-
culation of the neutrino production of charmed
baryons which uses quark-model results at q'= 0
and continues these to q'& 0 via a generalized-me-
son-dominance continuation. The main results of
this calculation can be summarized in the following
statements:

1. In the region close to charm-production
threshold (E = 2.5 GeV), where single-charmed-
baryon production is expected to dominate charm
production in neutrino reactions, the C,' is pro-
duced most copiously, followed by C,*"and C,".
At a somewhat reduced rate one should also see
the production of other conjectured charmed-
baryon resonances. Of these the most prominent
is 8,"(2.83).

2. Even though single-charmed-baryon produc-
tion is suppressed by sin'9c, the charm-production
rate near threshold can be as large as =4/p of the
total neutrino cross section.

3. There are a number of parameters in our
model calculation that affect the numerical re-
sults. Of these, the dependence on the masses of
the conjectured charmed-baryon resonances and

the dependence oa the hvo form-factor parameters,
i.e. , the effective meson mass and the trajectory
slope, is not very strong. The dependence on the
quark mass ratio is stronger and we find approxi-
mately

0'oc g

for R,~ 2.
The calculated cross sections for exclusive

charmed-baryon production are large enough to al-
low one to probe the internal structure of baryons
using the charm-changing weak current as a probe.
Vice versa, such experiments may be very useful
in testing the basic structure of the weak charm-
ehanging current. Our calculation indicates that
the cross-section results are quite sensitive to the
quark mass ratio. Such a basic symmetry-break-
ing mechanism could lead to very interesting con-
sequences if there exist more flavored quarks
with even heavier masses. Such additional degrees
of freedom have been invoked recently as an ex-
planation of the y anomaly in v reactions and the
anomalous behavior of o(up)lo(vp) above E = 30
GeV. If new flavored baryons are produced ac-
cording to theabove rule 0 ~ R„ their production
cross section could be quite large in v and v in-
teractions, depending of course on the details of
the weak-current structure.
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Note ad'ded. Kopp etal."discuss the decay of
the charmed baryon C, as a test of charm-changing
currents. Their production mechanism is identical
to that of LS.

APPENDIX A: FORM FACTORS AND HELICITY AMPLITUDES

For the abnormal-parity transitions —,
''-

—,",—,', .. . we define invariant form factors according to
(q =p*-p)

Gc-(a,*„,i, lJ'„(0)IB)= ~ u . . . , {p*)q . q. . . r, iy, u(p), (Al)

where

1
gsll (GO ~'rsGo ) +

iaaf
'(q sr' —

ques~ ){G,"-iy, G,")

+ M. (qsp~ p*qgsd(G2' ir, -G.")+ M, (qsq-&-q'gsdG. "-ir,G".), (A2)
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and where Gc is the weak-coupling constant of Eq. (3.1).
In order to remain close to the treatment of electromagnetic excitation of baryon resonances" we have

chosen the latter three of the four independent covariants to be divergence-free, i.e., one has for these
q„l'~~ =0. The four vector and axial-vector invariants are free of kinematical zeros and constraints (see
e.g. Refs. 21 and 31).

We define four independent helicity amplitudes (also referred to as helicity form factors) in the isobar
rest frame:

F, =&! *=-;I-,'(z,. z,)I! =-,'&,
F =&~ =--, I-, P, -iz, }I!=-,&,
F,=&! + =-,'Iz, Ix =-,'&,

F, =&a* =-,'Iz, I~ =-,'&,

where X* and A. are the helicities of the isobar and the initial baryon. The helicity amplitudes and invariant
form factors are related by

(T )1/2F V

a (~i.i)"'F."/qo. ~Q')"* (M }

M(M+m) —,'(o+q')

-M' M(M+m) —Q —,'(o+ q')

-M /q~

q'

Gv
0

G,

(A3}

l (&i.z}"'Fo /q. 1-M — (o+ q

M and m are the final and initial baryon masses. The inverse of (A3), including the factor in front of the
matrix, is given by

-2Q

2qOAc 2qOAC

0 0

M(M-m) —Q M(M-m) -2Mqo, ' -2Mq, ' (A4)

We have used the abbreviations Q'= (Ma m)' -q' and o=M'-m'. The corresponding relation for the axial-
vector transition can be obtained from (A3) and (A4) by changing M -M and multiplying by (-1}. For the
contributions of the three conserved invariants G„G„and G, one has the current-conservation condition
q Fz+qo F, =O. 7', is the leading power coefficient of the Legendre polynomial P, (x), i.e. , T( =
(2i)!2-'(f!)-'.

For the normal-parity series —,
''-

—,', —,",. . . one defines invariants G,'. in analogy to Eq. (A2} by multiply-
ing I'e„by iy, from the left. The corresponding relation between the helicity amplitudes and form factors
can again be obtained from Eq. (A3) by making the substitution M- -M.

For the transition —,"--,", we define invariants by writing

&B*IZ&(0)IB}= ~ u(P*) y&(G iOy, Gt )+ o»q„(G,' —iy, G,'")+ —,(q'y~-gqg(G2 —iy, G' ) u(P) .

(A5)

The three vector and axial-vector invariants are free of kinematical constraints and zeros. In this case
one has only three independent helicity amplitudes. Their relation to the form factors is given by [defining
F, =&-,'I!(~..~) I

--,')I

r,"/q„

F,"/q,

M

M
qoc

2M'

M(M+m)

——M1
2

2M

-(M+m)

Go

(A6)
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TABLE IV. CME at q2=0 in the quark model.

Particles

C 0

g 7)5++
i

B+0

B 34 +
i

~ pi++
i

&3+
0

(~)" Q7

Qi

Qi

(v) Qi

-(-, )
3 i/2

( 8)1/3Q

(-, )

( 3) i/2Q

Q2

Q2

(~)"'Q,
0

-(T)"'Q2

( s) i/2Q

—(5)
(3 )1/2Q

(~)

(v)

0

0

-(y)' 'Q2

0

(3)1/2Q

-(y)
Q2

-(A)"'Q

-(P)" Q2

(-', )"Q2

( s)i/2Q

-(„')"'Q2

FA
0

-(&)'"Q2

gQ2
(8)i/2Q

-Q2

(
2 )2/VQ

( )/Q
(3 )i/2Q

(2) i/2Q

(
i

) i/2Q

-(I)
iQ

( 8) i/2Q

—Qi

(2)t/2Q

(-', )' 'Q3

—(—„)S i/2

—(-)2 i/2

F

(
3

)
7/ 2Q

i
Q

( 2) i/2Q

0

0

-(p)" Q3

F

—(~3) i/2Q

i
Q

(-,)'/'Qg

—Qi

(A) '/'Q7

(-')"'Q

-(T)"'Qi
-(-„)S i/2

(2) i/2Q
45

(
i )i/2Q

The inverse of (A6), including the factor in front of the matrix, is given by

2m
(e-)'"Q' (M+ m)

qoc
(M-m) '

2
qoc

(BM'+m' -q')
4(M-m)

(M- m)

2q,
M

2(M-m)

(A7)

Similar to the case J &-,' the corresponding relations for the axial-vector quantities and for the —,
"--,'

transitions can be obtained from Eq. (A6) by substitution.

~V, A(f)1) (1)1/2gpV, A(g )

~ V, A (f)1) ( 1)1/2)„F V A (g )

f)1. y V, A(f)1) (1)1/2) p V, A(( )

~Y, A(foal) (l)1/2yy v, A(C )

f)11. P V, A(f)l 1) (1)1/2~ Y, A(f)l)

f)81. P V, A(F51) (1 )1/2P V, A(f)1)

fl5 3. P V, A(f)53) (1 )1/2P V, A(f)3)

f)83. . FyA($)53) (1)I/2y V, A(f)3)

(2=+,z, 0),

(i =+,z, 0),

APPENDIX B: CME AT q2 = 0 IN THE QUARK MODEL

We can evaluate the helicity amplitudes at q' = 0
in the quark model from Eq. (4.2). Evaluations are
performed in the isobar rest frame (uu = 2m). We
obtain the following relations among the helicity
amplitudes:

A83' Ev A(A53) = —( )1/2) 2~v'A(g5, ) ( = —z 0)

P V, A (A 8 3) (
1
)1/2) 2p V, A (C lc)

A85. y vA(A85) ( 3)1/2) 2p Y, A(C5) (2 z ())

P Y, A(A85) (~l )1/2g2~ V, A(C5)

PV, A(A85) ( 3)1/2) FV2, A(g8)

A57. P v, A(A57) (18)1/2)„2~v, A(g8) ( z ())

~ V, A(A5 7) (2 )1/2) 2~ V A(C5, )

where X = fig~zg, is defined in Eq. (4.4). The results
are given in Table IV, where the contribution of
the overlap integral X is dropped and we define

APPENDIX C: FORM FACTORS AT q2 = 0

The q'= 0 values of the invariant form factor can be calculated from the relations written down in Ap-
pendixes A and B. We shall give results for transitions to the three ground-state charmed baryons C,',
C,", and C,*".
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C+ + ~

1 ' "-(-"-"')
IV 3m -M mM

G,
' (0) = — (m~+m, ) —(m, -m~)

M VM2+2Mm+3m2- mM
G,'"(0) = — (, ,

)
(m~, +m, ) —(m, -m~) ~, ,)

M+m mM
,'"(0}=

~ {m +m,}—(m, -m

Co: ' ' =(l "'(-"-";)"'

0,"(0)=-(2 ) (m m. ) ~ (m. -m„) ( )
3 1/2 M

-
5M 2 2Mm+ m2 mM 1/2

:* ~=-(l)"'(=.;)'"
3 &/2 y M +m mM

G,'"(0) = — — (m~+m, ) —(m, -m~, )M+m ' ' M-m m m,

C*". G,"(0) = 0,
4 (m, -m )M' mM~ (0+m)(M'-m'} m~m,

G,"(0)= -G, (0}

G,"(0)= 0

Z/2'""'= ~ gg. )(nr ', )
G"(0) = 0

4 M mMG"(0}= - ~ ( — ~}
( .m)( ) m„,

G3(0) =0 .

Note from the cross-section formula Eq. (3.1) that in the forward direction at q' = 0 only the "nonconserved"
invariants G, contribute. 'The fact that one has nonconserved vector contributions for Co and C,

"in these
hC =1 transitions is related to the mass differences of initial and final baryons. The nonvanishinI of the
nonconserved axial invariants is expected from partial conservation of axial-vector current (PCAC).
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