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We present a simplified version of the three-body unitary (K-matrix) formalisms proposed by Cahill, by
Kowalski, and by Sasakawa.

Kowalski' has shown that the alternative three-
body unitary formalisms proposed by Cahill' and
by Kowalski' are equivalent, the difference coming
essentially from the order in which the various
singularities are removed from the three-body
transition amplitudes. The demonstration of this
fact involved a simplification of Cahill's formalism,
in that one intermediate set of equations was el-
iminated, leaving one set of equations for the three
-body E matrices and a hierarchy of two sets of
Heitler-type integral equations for the three-body
transition amplitudes in terms of the K matrices.

The simple rederivation of the formalisms to be
presented in this comment shows that the two sets
of Heitler-type equations can be replaced by one
single set, corresponding to a simultaneous (rath-
er than stepwise) removal of the two-and three-
body singularities from the three-body transition
amplitude.

Using the notation of Ref. 1, we recall that all
three-body transition amplitudes can be obtained
from one single (matrix of) operator(s) F(+) which
satisfies the matrix equations

F(~) = 5G,(~) +5G (+) t(~) F(+)
= KG,(+)+F (~) t (*)FG,(+).

Here

t(+) = V+ VG, (+) t (+)

=V+t(s)G, (+) V

is a diagonal 3x3 matrix with elements t, ~ =1, 2,
3 Gp(+) (E + i0 -Hp) ', and

o i s)
1 0 1

1 1 Ot

M(+) =t (+) F (+) t (+),

M"(+) = t (+) F (+) VP,
M~(+) =P VF(~) t (~),

M (+) =P VF(+) VP,

(2)

where P is a diagonal matrix with channel eigen-
state projectors

P. = 2 l 0 (n. , E))(0.(n. , E)l

as elements.
The three-body K matrices on the on the other

hand are obtained from the operator C satisfying
the equation

C = 5G + 5G kC = 5G + Ck 5G, (3)

where G is the real part of G,(+), G,(+) =G + iD„
andk is atwo-bodyk operator definedby[Eqs. (4.4)
and (4.13) of Ref. I]

t(+) = kv ikD, t(+) v i VDV. (4)

In Eq. (4), D is the diagonal matrix with elements

More specifically, the physical amplitudes are ob-
tained as on-shell matrix elements of the operators
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so that the last term in (4) accounts for the imag-
inary part of t(x) due to two-body bound states. In

analogy with (2) we now define the three-body K
matrix to be the on-shell matrix elements of the
operators

K=M 0,

ion for the M's of Eq. (2) in terms of the K's of Eq.
(5). Dropping tern)s that will vanish upon taking
on-shell matrix elements we get

M(~) +t(~) =K+k+K"iDMi(+)

+ (K+k)(I +F)iDO[M(+) +t(+)],

K = 9CVP,

E' =PICk,

K =PVC VP.

(5)
M~(*) =K~+ K~iDM~ (+)

+ K'(1+5)iDJM(~)+I(*)],

M't(~) =K"+K iDi~~) (9}

Z(+) = [1 —5G,(~)f(+)] -'5G, (~). (6)

Multiplying the numerator and denominator of this
expression by (1+ iD+) and making use of relation
(4) we obtain

E(+) = (1+ iDp)[1 —5Gk+[(1+5)iDok+5G tVDV])

x g(;0(+).

Expanding the inverse operator, we can also
write Eq. (7) as

E(~) = (I + iDP)(1 —5G k) '5G, (~)

+ (1+ iDP)(l —5Gk} '

x[(1+5)iD,f (*)F(~)+5GiVDVr(~)]. (8)

From this expression it is only a matter of iden-
tifying terms in order to obtain the final express-

These on-shell matrix elements coincide with the
on-shell matrix elements of the operator C of Ref.
1 [cf. Eq. (4.22)].

In the Cahill version of the unitary formalism
the transition amplitudes are obtained from the g
matrices by solving the two sets of Heitler-type
equations (4.'I), (4.18)-(4.20), and (4.24)-(4.2'I) of
Ref. 1, while in the Kowalski version one has to
solve the sets of Heitler-type equations (5.5)-(5.8}
and (5.11)-(5.14).

In order to demonstrate that the unitary formal-
ism naturally involves only one set of Heitler-type
equations, we proceed with a simple rederivation
of the K-matrixequations. We first write Eq. (1)as

+ (K+k)(1+5)gDPg (s),

M {s)=K v K iDM (+}

v K~(1 + 6)iDDM"(z),

where the = sign has been used to indicate that the
equalities are true only after on-shell matrix el-
ements have been taken.

The set of (pairwise coupled) equations (9}is the
main result of this paper. These equations cert-
ainly have the form to be expected from three-body
Heitler-type equations and together with Eqs. (8)
and (5) they define the three-body unitary formal-
ism.

The previously obtained Heitler-type equations
follow in a simple manner from Eq. (9). The sim-
plification in form obtained here is therefore not en-
tailed by any reduction in the computational work
required to actually solve these equations.

The general motivation for and possible useful-
ness of unitary three-body formalisms has been
discussed previously' "and will not be repeated
here.

To conclude, we have obtained a three-body uni-
tary formalism that only involves one set of equa-
tions for the three-body K matrix, and one set of
Heitler-type equations for the three-body 7 ma-
trix in terms of this K matrix. This latter set of
equations replaces the hierarchy of Heitler-type
equations proposed by Cahill and by Kowalski.

We finally remark that the unitary formalism
constructed by Sasakawa4 is identical to the formal-
ism developed here. '
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zerland.

K. L. Kowalski, Phys. Rev. D 10, 1271 (1974).
2R. T. Cahill, Nucl. Phys. A194, 599 (1972).
K. L. Kowalski, Phys. Rev. D 5, 395 (1972).

4 . Sasakawa, Nucl. Phys. A203, 496 (1973).
~This follows from the fact that Eqs. (79) and (86) of

Ref. 4 are equivalent to our Eq. (3). See also the ref-
erence to Sasakawa's paper in Ref. 1.


