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Relativistic invariance as gauge invariance and high-intensity Compton scattering

Joseph Kupersztych
Commissariat a l'Energie Atomique, Centre d'Etudes de Limeil, Boite Postale 27, 94190 Villeneuve-Saint-Georges, France

(Received 1 November 1976; revised manuscript received 18 August 1977)

The problem of an electron interacting with the classical external field of a plane electromagnetic wave is
reexamined. An explicit connection between symmetry properties of the free field and the behavior of an
electron in the external field is exhibited. A new group of transformations leaving the electromagnetic field
tensor unaltered is constructed and is used to derive the classical and quantum (semiclassical) evolution
operators of an electron in the wave. The classical operator is shown to describe both the evolution of the
electron and the evolution of its spin in the external field. The quantum operator is used to define a
representation which seems well adapted to the calculation of scattering processes that occur in a laser beam.
However, diAiculties of uniqueness of this representation appear in the case; of a monochromatic wave. The
high-intensity Compton scattering amplitude is derived as a simple application of the new formalism.

INTRODUCTION

During the last decade, the Volkov states, ' which
are exact solutions of the Dirac equation for an
electron in the external field of a plane electro-
magnetic wave, have received considerable atten-
tion. This attention is justified by the fact that
they make it possible to calculate the cross section
of various scattering processes that occur in the
interaction between free or weakly bound electrons
and the intense fields produced by powerful lasers.

The Volkov states have been used to calculate
modifications of the photoelectric cross section
induced by an intense maser field, ' to calculate the
relativistic cross section of the multiphotonic in-
verse bremsstrahlung process, ' and to obtain a
generalization of the Klein-Nishina cross section
of the Compton effect to include an explicit depen-
dence on the external field intensity. ' ' However,
their use is quite controversial. ' Actually, diffi-
culties of decoupling the electron from the beam
are encountered when Volkov states are assumed
to represent the incident and outgoing electron
states in the intense field. As has been shown by
Kibble, ' the condition +tn~ q&«« for the nonlin-
ear Compton effect to exist lies in the electron
representation by free states before and after its
interaction with the light beam.

Furthermore, it is known that Volkov states ex-
hibit a classical character. Nonlinear effects ob-
tained by using Volkov states can be explained in
purely classical arguments. The origin of the in-
tensity-dependent frequency shift in Compton scat-
tering can merely be seen as a Doppler shift aris-
ing from the nonzero average velocity of the elec-
tron in the beam, while Compton scattering is, as
is well known, a purely quantum effect. For these
reasons, we felt the necessity of reexamining the

electron behavior in the classical external field of
a plane wave.

The purpose of this paper is to present some
new features of the electron behavior in such a
field and to propose a new method of treating las-
er-electron scattering problems. This method
consists in using a representation in which the
electron behaves as a free particle and which is
obtained by transforming the original Dirac equa-
tion by means of the evolution operator of the par-
ticle in the field. This operator will be derived by
using the quite remarkable properties of symmetry
which exist in the problem and which do not seem
to have been shown before. In fact, the symme-
tries of the free field will play a leading part. This
is easy to understand remembering the basic as-
sumption of the theory of the external field.

As is well known, in this theory it is assumed
that the fj.eld is acting on the particle without re-
action of the particle on the field. Let us now sup-
pose that, for a given field, we exactly know the
operator which transforms the state of a free elec-
tron into the state of the particle coupled to the ex-
ternal field, that is, the evolution operator of the
particle. Since this operator shows the particle
behavior without reacting on the field, it is reason-
able to expect this operator to leave the electro-
magnetic field unaltered. Hence, when one aims
at studying the behavior of a charged particle in a
given external field, the investigation of symme-
tries of the free field is often worthwhile. Plane
waves are a type of field for which the symmetries
will appear as most simple space-time symme-
tries.

In the first part of the paper, we shall recall the
form of the most general operator of the proper
Lorentz group which leaves both the electric and
magnetic fields of a plane wave unaltered. Then,
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we shall see that this operator can be generalized
as a Lorentz-type operator having the same space-
time dependence as the fields. We shall show that
the set of such space-time-dependent operators is
an invariance group of Maxwell equations for plane
waves.

The second part will be devoted to the derivation
of the classical evolution operator as an element
of the new invariance group. We shall point out
that the classical evolution operator shows not only
the motion of the particle but also the motion of
spin of a Dirac particle in the field. This question
was the subject of a previous paper' concerning
only a linearly polarized plane wave.

In the third part of the paper we shall derive the
quantum (semiclassical) evolution operator by us-
ing a method essentially based on an analogy with
the classical case. This method is founded upon
the obvious remark that in the proper frame of the
electron interacting with the external field, the
electron behaves as a free particle, the evolution
of which is therefore described by the field-free
Dirac equation. This method will single out the
part played by the above-mentioned symmetries of
the free field.

By means of the evolution operator we shall then
define a representation' which seems well adapted
to laser-electron scattering problems but which
is not uniquely determined in the case of a mono-
chromatic wave. We shall examine this difficulty
by considering high-intensity Compton scattering
as an example of the application of the new formal-
ism.

I. SYMMETRY PROPERTIES OF THE FIELD OF
AN ARBITRARY PLANE ELECTROMAGNETIC WAVE

Let us consider a plane electromagnetic wave,
traveling along the x axis of coordinates (whose

unit vector is n), the four-potential of which is
A(7) .The relativistic invariant 7=n ~ r=t —x is
the scalar product of the four-vector r = (&) by the
null four-vector

1

0

0

(Throughout the paper we shall use a unit system
where K=c = 1.)

As is known, ' an operator of the proper Lorentz
group which leaves both the electric field E(v) and
the magnetic field H(7) of a plane wave unaltered
exists. This operator is the product of an opera-
tor of Lorentz transformation (without rotation) Z,
whose associated velocity P verifies the relation

(1 P2) z/a

by an operator 8, of rotation in space around the
unit vector

(2)

and of angle

a=v —2cos '(P '[1 —(1 —P')'i ]}.
Let

v2 = 2 [(1 P2} ~~2 1]

In the above-mentioned reference, ' we chose the
velocity P in the (x, y) plane. More generally, if
we call 8 the angle between the projection p~ of p
on the ( y, z) plane and the y axis, the operator of
Lorentz transformation g(v, 8) and the operator of
rotation iit(v, 8) can be written in the following ma-
trix forms:

Z(v, 8) =

1+2
2-2 V

2-2 V

1+z(1+4v') 'v'

-v cos8

4(1+-,' v'} 'v'cos8

-v sin8

~ (1+~ v') 'v' sin8

-v sln8 &(1+~v) 'v'sin8 ~(1+~ v') 'v'sin(28)

-vcos8 ~(1+~v') 'v'cos8 1+z(1+~v') 'v'cosz8 ~(1+~ v ) 'v'sin(28}

1+z (1+4 v') 'v' sin'8

$(v, 8) =

1+4 V

1 21 4V -vcos8 -v sin8
(1 + ~~ vz)

v cos8 1 —~ v' cos(28) -4 vz sin(28)

v sin8 -& v' sin(28} 1+-, v' cos(28)

and are easily obtained using the operators Z(v, 8=0) and dt(v, 8=0) of the above-mentioned reference by
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means of the relations

Z(v, 8) =6'(8)S(v, 0)5' '(8), $(v, 8) =6'(8)$(v, 0)6' '(8),

where 6'(8) is a 4X 4 rotation matrix of angle 8 around the x axis.
The most general operator of Lorentz transformation K(v, 8), which leaves both the electric and mag-

netic fields of a plane wave unaltered, can thus be w'ritten in the following form:

K(v, 8) =e(v, 8)Z(v, 8) =

1+2 v

pv

-~ v' -vcos8 -v sin8 '

1 —
& v -v cos8 -v sin8

-v cos8 u cos8

-v sin8 v sin8

The operators dt(v, 8), $(v, 8), and K(v, 8) can
be easily written in tensor form. In order to do
so, we define the following four-vectors:

0

6t".(v, 8) = (1+-,' v') '[(1 ,' v'—)5—",+2 v'0" h, av'I—"1,
—vg" e,„skl8], (7)

K" (v j)=61" 2'
=g~ + v(n"& -jan )+& v nun~,

f" =(1+-'v') "

h" = (1+-,'v') '~'

u~= 0

cos8

sin8

0

g vcos8

~ vsin8

0

where E
p 8 is the completely antisymmetric unit

four-tensor (we have c,», =-e '"=-1) and g" ~ is
the metric tensor (g~= -g"= -g2~= -g ~= I).
cidentally, we can verify that 61 '(v, 8) =61(-v, 8)
and that K '(v, j) = K(-v, j).

As the operator of Lorentz transformation SR is
given in the form (8), it is immediate to see that
it leaves the four-vector n unaltered:

n'" =-9R" np =n" . (8P

Acting on the four-potential A(7') of the plane
wave (which is submitted to the condition n.A=0)
it makes a gauge transformation:

0

-sin8

cos8

A'" = K"v4'=—A" + v(j A)n" =A" + 8"x

with

(10)

which are unit four-vectors (0'= f'= -h'= --I'= 1)
orthogonal to each other (f h = 0 f=f I =h
=h ~ l =0 I =0). We also define the two following
spacelike four-vectors:

cos8

sin8

no+a 1
cos8

sin8

2 q(v, 8) = (1+-,' v') 5p + p v'h ' h ~
+ g v' I I

p

+ (1+-' v') '~'vg' e Sh"I' (8)

which are such that j =a'=-1 and j ~ n=a n=0.
By means of these definitions, the operators 8, ,

Z, and % can be rewritten in the following forms:

y(r) = v[j A(r')]dr'
a CO

It follows from relations (9) and (10) and from
the relativistic invariance of the retarded time ~
that the operator K(v, j) leaves the tensor of the
plane-wave field E = 8~A~ —8~A™= (d/dv)(n~A~
-n~A ) unchanged K(v, j) is. the most general
operator of thegroper Lorentz group which leaves
both the fields E(v) and H(r) of a plane wave un-
altered.

The operator K(v, j) depends on two arbitrary
and independent parameters v and j (that is, a).
The parameter a is related to the direction of the
Lorentz transformation (a= 8, 'P,), while the pa-
rameter v characterizes its amplitude [1+~ v
= (1 —p'} ' 2]. In the following, we shall see that it
is sufficient to choose conveniently these param-
eters to get the classical and quantum evolution
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operators of an electron interacting with the clas-
sical external field of a plane wave. The param-
eters v and j will then become operators and func-
tions of r. Thus the operator K(v, j}will no longer
be a mere Lorentz transformation. Nevertheless,
it will still satisfy the following conditions (which
are those of the proper Lorentz group):

The parameters v and j are now generalized and
assumed to depend on v =n r. The Lorentz-type
operators K(v(r), j(r)) still show other noticeable
properties. At once, it is evident that the set of
operators K(v(r), j(r)) is a commutative group.
As a matter of fact, if we remember that K'(v, j)
=K(- v, j), we can easily check that

II. THE CLASSICAL EVOLUTION OPERATOR

In classical electrodynamics, the equation which
describes the evolution of a charged particle in a
given external field is, of course, the Lorentz
force equation. In the case of plane waves, it is
well known that it can be solved exactly. Our prob-
blem is to find the classical evolution operator of
an electron interacting with the external field of a
plane electromagnetic wave. We shall show that
this operator is an element of the above-mentioned
group.

Let p be the four-momentum of a particle of
charge-e (e &0) and of mass m, interacting with the
external field, and let p; be its four momentum be-
fore the field was switched on. The Lorentz force
equation written in covariant form is

K ",(v'(r), f'(r))K',(v(r), j(r)) = K' (v"(r) j"(r))

where v "(r)= [- (vj —v'j')'] ' ' and j "'(r) = v" '(vj '
—v'j"). When v(r) and j(r} are constant, this
group obviously reduces to the set of Lorentz
transformations which leaves the fields of a plane
wave unaltered. However, in the general case this
group is no longer a subgroup of the proper Lor-
entz group.

Furthermore, the operators K(r} obeys the fol-
lowing relations:

s'K', (v(r},j(r)) = 0,

a gg (~(~),j(~3)=o

since s'v(r) = n'dv(r)/dr and s'j"(r) = n'&j "(r)/&r
These relations allow us to define in an unequivo-

cal way the operator "s=K(r)', ' &Let A".
= K(r)'P'(r). It can be easily checked that we have

Fry P 8 r&g rP gtPgtP gfs~P gpgfs Ffsp

Hence, the electromagnetic field tensor is still
left unaltered by the group of transformations
K(r).

Furthermore, we have the following equations:

8"F""= e 8PF'" = 0Q PfyOl P PWd

gl F/QP g FgP P

That is to say, the Maxwell equations for plane
waves conserve their form under the transforma-
tions K(r).

The interesting points of the mathematical trans-
formations 3g(v ) will appear in the following sec-
tions. We shall see that the behavior of an elec-
tron in the external field of a plane wave is con-
nected to the above-mentioned symmetries of the
electromagnetic field.

where s is the proper time of the particle. Let 9g
be the sought-after classical evolution operator.
By definition, we let

& ="8&» ~

If we use the fact that the four quantities p; are
arbitrary, Eq. (11) yields

K „K' p= — F(r)"
p (12)

Now, from Eq. (11) we have immediately (d/ds)
(n p) = 0; that is, n p = n p, . Since, by definition,
P" =mdr "/ds it follows that ds =(n p) 'mdr,
whence, using Eq. (12) and the obvious fact that
F(r) commutes with ) E(r)dr, the operator K can
be written in the following form:

I

K(r) =exp —e(n P) ' F(r')dr'

(n p) (v(r)[n"j~(r) —n~j "(r}])d

=-e [n"A (r) -n A "(r)]P P

whence it follows that

v, (r) =-e(n p) '[-A'(r)]'~',
j'(r) = [-A'(r)]'~'A ~(r),

and consequently

(13)

(143

Since F is an antisymmetric tensor the oper-
ator is a Lorentz-type operator. " Furthermore,
it obviously commutes with F. Therefore, the Lo-
rentz-type operator 3g leaves the fields of the plane
wave unaltered. It follows that it can be written in
the form (8), whence, if we use Eqs. (8) and (12),
we obtain
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8(~) = tan-'[A, (~)A„-'(7)].
The relations (8), (13), and (14) determines com-

pletely the evolution operator 9K. The four-mo-
mentum of the particle in the field" follows im-
mediately:

(15)

p "(7) = 3}I"~(v, (~),j (~))p~

=pI'+eA "(v) —(n p) '[eA(t) ~ p, + ,'I,"—A'(r}]n".

The construction of operator 3g as the product of
the two operators g and g leads to an interesting
result.

From the relation 3}I(v;j ) = A(v, 8)g(v, 8) it fol-
lows that

%(v,j)=J}I '(-v, j ) =2 '(- v, 8)(R '(-v, 8}

= g, '(- v, 8)(R(v, 8) .

(R 8 =[1+-,'v, '(7)] '

x([1 —avo (T)]bn e + zb„bs —E„s)by'},

where c 8 is the Levi-Civita symbol and where P„
is the o. .component (o. =1, 2, 3) of the three-vector

b =v, (r)I(r)= — nxA(~)

or in matrix form, by the matrix (4) where the
first line and the first column are obviously omit-
ted.

The equation which describes the evolution of the
spin vector & of a charged particle (whose gyro-
magnetic ratio is g) classically moving in the fields
E(7) and H(7) is the Thomas equation" ".

dt 2m [g —2+2m(p') ']gxH

Now, let us assume that the particle was at rest
before the field was switched on. The initial four-
momentum of the particle is then p; = (-, ) and the
parameter v(7 ) becomes

(g —2)p'(p'+m) '(v ~ H)vxg
2m

[g —2po(p'+ m) '])x (E xv) . (18)
2m

v, (v ) = — [-A'(r)]'t' .

Relation (16) then becomes

p(~) =3}I(v.(7),j(7))(-.)

= z-'(- v, (~), 8(~)) 81(v,(7 ), 8(7))(-, )

= 2-'(- v, (~), 8(7))(-, ) .

(17) In this equation p' and v are, respectively, the
energy and the velocity of the particle (which has
been assumed to be at rest before the field was
switched on) given by the solution of the Lorentz
force equation. In the case of plane electromagnet-
ic waves, we have from (16}, here with p; = (-, ),

p"(7 ) = m[1+-,'v, '(v) ],
Therefore, the operator dt(vo(7'), 8(r)) appears to,

be unnecessary to transform the state of a free
particle (whose state would uniquely be determined
by its four-momentum p, ) into the state of the par-
ticle coupled to the external field of a plane wave.
However, the operator 4, is an operator which de-
pends on the characteristics of the particle (e and
m) and on the external field through A(r). Thus, it
is clear that b1(v, (7); 8(r)) shows an interaction be-
tween the particle and the field. Now, since g acts
in the three-dimensional space, it shows the evo-
lution of a dynamic quantity represented by a
spacelike four-vector. That is precisely the case
of the intrinsic angular moment of the particle,
that is, its spin (&) which is defined in the "instan-
taneous rest frame" of the particle. We are thus
led to expect the operator Qv, (7), 8(r)) to be the
evolution operator of the spin of the particle which
is at rest in the frame that is transformed from
the initial frame by the operator 2(v, (7), 8(v)).

If 61 is the restriction of operator 61 given by (4)
or (7) [taking into account (15) and (17)] in the ordi
nary three-dimensional space, this operator can
be written in the following form:

v(7) =, = [I+,'v, '(r)]--'[v, (~)a+-,'v, '(7)n] .

A quite long but elementary calculation shows
that

g(r) =61(v,(v), 8(~))g,

(where g, is the spin vector of the free particle) is
the exact' solution of Eq. (18) if tbe particte gyro-
magnetic ratio g =2; that is, in the case of a Dirac
particle. It is a result that has already been shown
in the above-mentioned previous paper in the
special case of a linearly polarized plane wave. '

In conclusion, the evolution operator 3R(v„j)
=$(v„8)Z(v„8)which is an element of the above-
mentioned group, shows the motion of an electron
and the motion of its spin in the plane-wave field.

The result seems restricted to the case of a weak
and slowly varying plane wave so that the Thomas
equation can be valid. Actually, we shall see that
this is not so. The evolution operator 3g will be the
same in the quantum (semiclassical) case for which
the evolution of the electron (and its spin) is de-
scribed by the Dirac equation.
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III. THE QUANTUM (SEMICLASSICAL) EVOLUTION
OPERATOR

[8',%',] = o,
[A', %",] = 0.

(21)

(22)

(y, [je"+ eA" (~)] —m jP = 0. (19)

A solution of this equation, due to Volkov, ' is

g~ = T~(r) exp[-ieX~(r)]q&~,

where

We consider now the case of a quantum particle
with spin-, interacting with the classical external
field of a plane wave. The evolution of the state
of such a particle is, of course, described by the
Dirac equation

We shall also use gauge invariance. 'The Dirac
equation is, of course, invariant under the gauge
transformations A" -A" + 8 "X(r), g-exp[ieX(r)]g
More generally, if A is now an operator which de-
pends on t and on operators r and ~", the Dirac
equation (19) is still invariant under the "general-
ized" gauge transformations

A" -A" +[8",X], g-exp(ieA)g

if A is such that

T~(r) = [1+,'e(n p-) 'y Ay. n], [R A']=o

[R, [8",i]]= o.
(23)

~,( r) (n= ~ f )-'-[p A(r') + —,'eA'(r')] dr',

and

y =(2p') "'e "'"u

(u~ being a normalized bispinor: u~u~=u~y'u~= 2m)
is the "plane-wave" solution of the Dirac equation
for a free electron.

Our aim is now to derive the quantum (semi-
classical) evolution operator U; that is, the opera-
tor which will transform an arbitrary solution p
of the field-free Dirac equation

(iy 8 —m)p = 0 (20)

into the corresponding solution g= Uy of Eq (19)..
Arguing from analogy with the classical case,

we shall now look for a Lorentz-type operator
3tf which will allow us to write the Dirac equation
in the proper frame of the electron interacting with
the plane-wave field. Relativistic invariance of
the problem is therefore needed but in a somewhat
generalized manner. Besides, the sought-after
operator 3R will be assumed to depend on the mo-
mentum operator i& since the quantum particle is
not generally in a pure state of given four-momen-
tum p.

To use the relativistic invariance of the Dirac
equation, we shall use the relativistic invariance
of the products y„e"and y,A" (r). If 2 is a matrix
of Lorentz transformation, we have, of course,
y„(ie"+eA") =y'(ie" +eA"), where y' =2 'y„
=X,e', and A" =g'„A". However, the present
situation is more complicated in that the sought-
after Lorentz-type operator 3R will, a priori, de-
pend on t and on operators r and &". It follows
that we can generally have 3R"~8'& 8'3R", and
3R' A 4A 3R' . To use explicitly the relativistic
invariance of the Dirac equation, we are therefore
led to require, for a Lorentz-type operator which
depends on r and on i&, the following additional
conditions:

and consequently

(24)

Furthermore, since for plane waves, A'(v')
=A, (r), A„(r), and A, (r) are three independent func-
tions of r, it follows from Eq. (22) that

[3)I",+%"„&]= [3)I"„r]= [%"„r]=0. (25)

Equations (24) and (25) obviously show that%",
+ 3R

y
3R 2 and 3R", do not depend on the operator

8/Br and that

3R", + 3R", = C" (26)

Finally, taking into account that 3R,g&, =%,' and

a relation between 3)I~„%",[which are connected
by Eq. (26)] and%"„%",which are operators which
do not depend on 8/Br. Consequently,

[%" v]=[%" r]=0.
All the elements of the matrix 3R commute with

r and depend only on r, 8/Bu, 8/By, 8/Bz, which
commute with r In short, .the operators A(r),

gli, X, and [8",2] = n" [8/Br, 2) commute.

Hence, if we call u=f z+, the operators 5tI, X, A
depend generally on u, 7', y, z. In addition, the
operators 3R and X depend generally on 8/Bu
= —,'(8/ef + 8/ez) = —,'n ~ 8, 8/Br = —,'(8/ef 8/ex}, 8/ey,
8/Bz. Now, we deal with plane waves A(r). Opera. —

tors 3R and X depend only on w. We will show now
that they do not depend on 8/Br.

Since A" is an arbitrary function of &, it follows
from Eqs. (23) that [X, r]=0, and therefore X(r,
8/Bu, 8/By, 8/Bz). Furthermore, it follows from
Eq. (21}that
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Then, let us use the relativistic invariance of
the Dirac equation. If we use the fact that the
operator 3R sought is of the Lorentz type, we
can rewrite Eq. (20) in the following form:

(y,3R„'jR"ia -m)y =0. (27)

Now, if we introduce the spinor operator T which
corresponds to the Lorentz-type operator 3R, that
is, the operator T such that":

3g„'y,=T 'y„T,
T~1 QOTtf0

whence

If we let

2"(r) = A" (v')dr',

B(&)= A'(r')d7',

the solution of Eq. (37) is

(38)

and which does not depend on s/sr, Eq. (27) be-
comes

(y„sR',is —m)Tq =iy„[3R",s', T]p (30)

If we now use the "generalized" gauge invariance
of the Dirac equation, Eq. (19) can be written in
the following form:

~

~y„iS" +eA (v)+en", X —m exp[ieX]/=0.

(31)

Equation (30) will be identical to
have, simultaneously,

8
3R" is'=is'+ eA" (7) + en"

Eq. (31) if we

(32)

a
y ia" ( eA" (7')+en" —,A. , T =0. (33)

However, T, which does not depend on s/Sr,
commutes with A" (7) and [8/Sr, X). Thus, Eq. (33)
reduces to

y„[s",T] = 0.

X = (n -S) '[Z(~) S ——,'ieB(&)] . (39)

[The operator (n a) ' is well defined on the plane-
wave basis y~ and we have (n ~ a) 'y~ = i(n p) 'y~.
Since the electron is a nonzero mass particle,
n.P is always different from zero. ]

Hence, Eq. (32) becomes

3R" pis(' =is" +eA" (~)

-n"[eA(7) a 2ie A-(7)](n a) '. (40)

We shall now see that the symmetries of the free
field are extremely useful to find the evolution op-
erator. As a matter of fact, Eq. (40) involves

n„SR"piep=npiap,

whence it follows immediately that 3R" pn„=np
and, consequently,

R"pn' =n" . (41)

Thus, the sought-after Lorentz-type operator %
must leave the null four-vector n unchanged. Fur-
thermore, Eq. (40) involves the following relation:

APSlt p piep = Apiep+eA'
The Dirac conjugation of Eq. (34) leads to

[s",i-']y„=o. (35)
whence

= [A~ —i(n a) 'eA'nz]is',

Now, if we take into account Eq. (28) and the li-
near independence of the y matrices, Eqs. (34)
and (35) are equivalent to

A&3R" z =A& —i(n ~ 8) 'eA'nz,

whence, using (41) it follows that

Then, from Eqs. (32) and (36), we have

Ai~' =%„'i ~" + eA" + en"

(36) 3R'~A('(7) = A '(~)+i(n ~ a) 'eA'(r) n'

=A (r)+ [a, Xl

where

X = i(n 8) 'eB (~) .

(42)

Qi8" +eA" +en"

and therefore,

(;a'((;a, (=;a'+aa(" ~ e ' —,a
)

j&„+eA +en„—,A.

Therefore, the Lorentz-type operator K is equiv-
alent to a "generalized gauge transformation"
whose "generalized gauge function" is X. It fol-
lows from (41) and (42) that 3R leaves the tensor
F"p of the field unaltered. Consequently, it can be
written in the form (8) where v and j are now op-
erators. In order to determine them, it is suffi-
cient to use Eqs. (8) and (40). We easily find
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v = (n ~ 8) 'ie[ A-'(r)]'~', (43)

j& (r) = [-A'(r)]-'"A" (r) .
It remains now to find the spinor operator T

which corresponds to the Lorentz-type operator
3R and which is defined by relations (28) and (29).
It is simpler to use the construction of operator
% as the product of the two operators N, and 2
[defined by relations (1), (2), and (3)], than to use
the general methods of spinor calculus. As is
known, "the spinor operator corresponding to an
operator of Lorentz transformation il (without ro-
tation), whose associated velocity is p, is

(44)

(45)

From (6) and (45) we easily obtain

p=(1+2v') '(va. +—'v n).
Therefore, the spinor operator which corresponds

A
to operator Z is

A

S(2) = (1+—,
' v')'~'[1 ——,

' v(l+-' v') '

x (yoy ~ a+ 2 vyoy ~ n)] .

The space rotation 61 is defined by relations (2)
and (3). We obtain immediately the corresponding
spinor operator

S(6t) = (1+-,' v') ' '[1+-,' v(y n)(y a)] .
Consequently, the spinor operator T corresponding
to the operator SR=(RZ is

T = $((R)S(P,) = 1 + ~ v y ~ n y j . (46)

lf we now compare Eqs. (30) and (31), using the
fact that the conditions (32) and (33) are satisfied,
we obtain the general solution of the Dirac equation
(19) in the following form:

g= T exp(-ie X)cp —= Uy,
A

where the operators T and A. are defined by re-
lations (38), (39), (43), (44), and (46).

If y is an eigenstate of operator iB, that is, if
y=y~. Eq. (27) shows that the operator v given
by (43) is then diagonal and reduces to its clas-
sical eigenvalue v~ given by (13). The operator

S(Z) =cosh(& tanh 'p) —y'(y p)p 'sinh(2 tanh 'p)

and the spinor operator S(Q) corresponding to a
rotation operator S of angle g around the unit vec-
tor u is

S(at) = cos( —,
'
u) + i Z ~ u sin( 2 o,),

where Z =&iy&y. The velocity P which is associ-
ated with the operator 4 can be easily found by cal-
culating the following four-vector:

IV. APPLICATION TO HIGH-INTENSITY COMPTON

SCATTERING

We consider now an electron which is simul-
taneously interacting with the intense external
field of a plane wave whose four-potential is A(r)
and with a second field (which will be supposed
to be weak) whose four-potential is A, (r) As is.
known, the hypothesis of an intense plane wave
allows us to consider the operator A(r) as a clas-
sical potential. " The Dirac equation which de-
scribes the evolution of the electron state is

(ygia" +eA "(r) +eA,"(r)] —m}g = 0. (47)

If we perform the unitary transformation

t/r'=y'U yap= 0 'p= (1 —2 vy. ny. j) exp(ieX)g,

Eq. (47) becomes, in the new representation,

~T 'y, t(i8"~ eA" en' —,X

-m+U 'y„eA;(r)U p' =0. (48)

%(v,j) becomes identical to the classical evolution
operator %(v» j). We can say that the electron is
moving according to the Lorentz force equation
while its spin is moving according to the Thomas
equation. Thus, the Thomas equation is rigorously
valid in the case of plane waves. Furthermore,
the operators T(r) and X(r) reduce to their diagonal
form and we find Volkov's solution again:
These remarks exhibit the "classical character"
of the Polkov states.

It is to be noted that the classical operator
3K(v» j), which allows us to transform a "plane-
wave" solution cp~ into a Volkov solution g~, was
given about 30 years ago by Taub" who took the
form of the spinor operator T~ of the Volkov so-
lution as the starting point of the derivation.

Hence, the operator U=T exp( ieR-), which is a
unitary operator (on the y' Dirac metric: U '
=y'Ury'), is the "variable spinor image" of the
Lorentz-type operator SK. Since it is the quantum
(semiclassical) evolution operator of an electron
interacting with the external field of a plane wave,
it allows us to obtain a representation in which
the electron behaves as a free particle. In a cer-
tain sense, we may roughly say that the change of
representation by means of operator U ' physi-
cally corresponds to a "variable Lorentz trans-
formation" by means of the "quantum" Lorentz-

A

type operator 3R '. In the "transformed frame"
the electron is no longer interacting with the ex-
ternal field and behaves like a free Dirac particle.
Furthermore, in this frame the fields are the
same as in the initial frame.
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Taking into account Eqs. (28), (29), and (32),
Eq. (48) can be written in the form

(49)

g, = ( 2(() ~*(ef i((q(r)U,.'(' ~ ~'

[y„is" m—+ U 'y,eA;(r)U]q'=0

The interest of the unitary transformation U
stands out in Eq. (49}. In the new representation,
the unperturbed states (by the operator A, ) are
obviously free states and the propagator of the
electron is merely a free electron propagator.

We are here interested in the simplest process:
the emission of a photon (whose four-momentum
is &o' and whose four-polarization is e') by the
electron interacting with the intense field of a
plane wave. Thus, the operator A, corresponds
to radiation reaction. In the new representation,
this process can be represented by the diagram
shown in Fig. 1.

The $ matrix element $& corresponding to this
diagram is

ton scattering. ' Thus, the scattering amplitude
(51) in which the incident and outgoing electron
states are two nonstationary Volkov states is equi-
valent to the scattering amplitude (50) in which
the unperturbed electron states are nothing more
than free states.

Hitherto, we have assumed that the plane-wave
potential A(r) was zero when v' =~, thus assuming
that the light was somehow switched on and off.
Obviously, when the laser beam is described by a
monochromatic wave, this condition cannot be re-
quired. It follows that the evolution operator U
cannot be uniquely determined in the monochro-
matic case.

Explicitly, if we let 8"(7) = JAR (7')dr+K" and
B(r) = JA'(r)dr +B„where B, is a constant and K
a constant four-vector such that n K =0 [as follows
from Eqs. (23)], the general solution of Eq. (37)
reads

xexp(i~'r)U4)&~ &&(r)d r. (50)

Now, the states Uy&~ &&
and p~~t, ~~~U

' are nothing
other than the Volkov states g&~, &~

and g&~, &i~ so
that the scattering amplitude (50) is strictly equi-
valent to

Sly = (2~") 'ie V&r. cq(r)y ' e

x exp(i ~' r)g(p ~) (r)d4r .
We find again the matrix element which is the
starting point of most of the works devoted to the
calculation of the cross section of nonlinear Comp-

FIG. 1. Diagram of high-intensity |"ompton scatter-
ing. p, $ andp', $' are, respectively, the four-mo-
mentum and four-polarization of the ingoing and out-
going free-electron states. The crossed dashed line
means that the emerging photon is emitted in the
electron 'groper frame". The blob emphasizes vertex
modification.

and

X, = (n s ) '(K ~ 9 ,'i B,) .--

The operator U can then be written in factorized
form: U =T exp( ie&, ) e-xp(-ie&, ) Now, . since &,
commutes with (iy 9 - m) it follows that the field-
free electron state q cannot be defined in an un-
equivocal way. In mathematical form this diffi-
culty exhibits the impossibility of decoupling the
particle from the field of a monochromatic wave
which has, of course, an infinite extent in space-
time.

Hence, the present method is an alternative to
the use of (nonmonochromatic) Polkov states in
scattering theory, provided an adiabatic switching
of the field is assumed in order to satisfy the ne-
cessary requirement A(~) =0 that ensures unique-
ness for the evolution operator U.

In the new representation, that is, in the new
frame, the initial and final electron states are
then free-electron states; the unperturbed propa-
gator is, therefore, a free-electron propagator,
while the perturbation operator is the following
operator.

eU 'y.A, (r)U =ey'A, (U 'rU)

with

y'~ =-U-~y~U= m~ y"

=y" —(n ~ s) 'ie(y nA" —y An" )

+ ,'(n ~ s) 'e'Aay -~ nn"
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0 'r"U=r~-(n ~ 8) 'ie(Z" +4")

+~(n 8) miey ny An&

Obviously, since U is a unitary operator, scat-
tering amplitudes which are calculated in the or-
dinary representation or in the new representation
are rigorously identical.

CONCLUDING REMARKS

The interest of the formalism presented here is
that it allows calculation of scattering processes
that occur in a laser beam without using Volkov
states. The ingoing and outgoing electron states
are here free states and the unperturbed propa-
gator is merely a free electron propagator. More-
over, the representation in question in this paper
is quite analogous to the Furry representation, "
valid when the external field is a static one, which
is known to be very useful for bound-state prob-
lems. We must, however, take notice of the fact
that the method cannot apply when the laser is
roughly represented by a monochromatic wave.
Therefore, we may be reasonably doubtful about
the physical meaning of the results obtained by

using monochromatic Volkov states in the tradi-
tional formalism.

The symmetries of the free field have played an
essential part in this paper. In particular, the
quantum evolution operator has been derived by
using explicitly those symmetries and the relati-
vistic invariance of the Dirac equation in a some-
what generalized manner. The natural question is
whether our method is valid for arbitrary electro-
magnetic fields.

It is our opinion that the symmetries of the free
field are always intimately connected with the be-
havior of an electron interacting with the external
field. However, it is only in a few cases that we

may expect the classical evolution operator to be
a Lorentz-type operator and, therefore, the Dirac
equation to be transformed into the field-free Di-
rac equation by an operator of the Lorentz type.
Nevertheless, the present method can be consi-
dered as a helpful model upon which a more gen-
eral theory can be carried out.
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