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A theory of modified quantum chromodynamics is presented in which color is realized as a
global rather than local SU(3) symmetry. Quarks and gluons are then free to exist, but below
a certain energy threshold they are still effectively confined by the same dynamics as in

quantum chromodynamics. In addition to the massive vector-gluon octet, the theory also con-
tains an octet and two singlets of Higgs particles, or scalar gluons. Asymptotic freedom is
maintained by the imposition of eigenvalue conditions on all coupling constants such that only
one of them, say the gauge coupling g, is an independent parameter. This is shown to imply
the existence of extraordinary quarks which are not triplets under color SU(3).

I. INTRODUCTION

In order to understand the totality of particle
physics, it has often been assumed that hadrons
are composed of quarks and that there is an under-
lying field theory of quark interactions which is
ultimately responsible for all strong-interaction
phenomena. This fundamental theory is now be-
lieved to be a non-Abelian generalization of quan-
tum electrodynamics, and is called'quantum
chromodynamics because it is a dynamical real. —

ization of the by-now familiar concept of "color"
as an internal SU(3) symmetry for each quark
species, of which there are at least four: u, d,
s, and c. To be more precise, one assumes that
each quark species (or "flavor" ) is a color SU(3}
triplet and that it interacts with itself and others
via an octet of massless Yang-Mills vector gauge
bosons A," (a= 1, . . . , 8) called gluons. In fact,
the Lagrangian of this theory is very simply given
by

& = —~ E~E,„„+iqy„D"q—mqq,

where

and

F~ = s "A". s"A." gf, A "A",abc b (1 2)

D"q= 9 "q+ & igA,"X,q. (1.3)

In the above, g is the gauge coupling, f,~ the con-
ventional set of SU(3) structure constants, and A,
the corresponding set of 3 && 3 representation
matrices. The summation over quark flavors is
implied.

The Lagrangian (1.1) is constructed to be locally
gauge-invariant with respect to color SU(3), there-
fore the gluons are required to be massless. How-
ever, since neither quarks nor gluons have been
identified as such experimentally, they must some-

how be rather effectively confined and not easily
exist as isolated objects. The mechanism for
achieving this confinement is unknown, except that
it is believed to come from quantum chromodynam-
ics. There are two possible ways for this to
occur. (1}The infrared divergence of this theory
might be so drastic that it is impossible to define
asymptotic states for either quarks or gluons, and
so they simply cannot exist as such. However, a
careful examination of the infrared problem in
non-Abelian gauge theory shows' that, with the
proper presecription, it can be handled order by
order in perturbation theory, and hence cannot
be invoked by itself to show confinement. (2)
Since the gauge fields are self-coupled, and color
is an exact local symmetry, confinement might be
a property of this particular type of dynamics.
There is no rigorous proof of this, only hints that
it might be true; but in the absence of any contra-
diction, it can simply be accepted as a premise.

If gluons are indeed massless as in quantum
chromodynamics, then confinement has to be ab-
solute. This means that isolated quarks of frac-
tion31 charges cannot exist. Experimentally, such
a statement is impossible to prove; it can only
be contradicted. In fact, a recent search for frac-
tional charge on matter has come up with some
positive results. ' Whether or not this should be
taken as evidence for quarks, it is still an im-
portant theoretical. question as to how quantum
chromodynamics can best be modified to incorpo-
rate the existence of physical quarks and gluons.
The subject matter of this paper is a detailed ac-
count of how it can be done.

In Sec. II, the model is described in length. All
essential features are reported; only mathematical
details have been left out, to be presented in the
next two sections. In Sec. III, the Higgs mech-
anism which brings about the local to global color
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transmutation is discussed in detail. In Sec. IV,
the problem of maintaining asymptotic freedom
is solved by imposing eigenvalue conditions on all
coupling constants. This turns out to imply the
existence of extraordinary quarks. Finally in Sec.
V, there are some con, eluding remarks.

II. DESCRIPTION OF MODEL

If gluons are massive, then there is no reason
to believe that they have to be permanently con-
fined. However, an explicit mass term for A,"
cannot be added to the quantum chromodynamics
Lagrangian (1.1), because it destroys the local
gauge invariance, and hence the renormalizability
of the field theory. The only proven way of cir-
cumventing this difficulty is to make use of the
Higgs mechanism. ' Therefore, I propose to in-
troduce three color SU(3) triplets of scalar parti-
cles, such that their interaction results in a com-
plete spontaneous breakdown of the local SU(3)
gauge symmetry, thereby endowing all gluons with
mass, but at the same time allowing an exact
global SU(3) symmetry to survive. ' The resulting
Lagrangian in the U gauge (where all unphysical
degrees of freedom have been eliminated) will be
globally SU(3)-invariant, and in atidition to the
vector-gluon octet, there will be one octet and two
singlets of physical Higgs particles. Details of
this local to global color tx'ansmutation will be
given in Sec. III.

Since the vector gauge fields A," in the present
theory are still self-coupled in the same way as
in quantum chromodynamics, and color remains
an exact non-Abelian symmetry, the dynamics of
confinement is evidently the same for both at short
distances. Thus, for example, the effective inter-
action between a quark and an antiquark separated
by a distance of the order of fermis could very
well be described in both theories by a linearly
rising potential as is often assumed. The dif-
ference is that in the present theory, the potential
will not be absolutely confining, and given enough
energy, quarks will be able to get out; in other
words, instead of forever rising, the potential
will turn over at some point.

However, the theory has a serious drawback as
it stands, because unlike a purely non-Abelian
gauge theory, it is not asymptotically free. ' The
trouble comes about because of the quartic scalar
couplings. ' Fortunately, there is a way to get
around this, and that i.s to impose eigenvalue
conditions on all coupling constants. ' This means
that only one coupling, say g, is assumed indepen-
dent, while all others are taken to be functions of
g. Even so, there is no guarantee that for a
particular model, asymptotically free solutions

III. THE LOCAL TO GLOBAL COLOR TRANSMUTATION

Let 4= (P„P„4,) be a global SU(3) triplet of
scalar fields, each one of which-is also a local
color SU(3) triplet. Then the most general re-
normalizable Higgs potential invariant under
SU(3) a,~ x SU(3)~be is given by'

V= p'Tr4 4+ & q (Tr4 4)'+ & p TrC '44'4
—v 6 (5 det 4+ H. c.), (3.1)

where the quartic scalar couplings g and p must
satisfy

g+ p&0, Sq+ p&0, (3.2)

in order that V be bounded from below. The coupl-
ing 6 (which has the dimension of mass) can be

exist. They depend crucially on the ability of the
Yukawa couplings to alter the behavior of the
quartic scalar couplings in a significant way. In

the present theory, it is in fact necessary to in-
troduce additional quarks which are not triplets
under color SU(3), in order to find asymptotically
free solutions. Together with the requirement
that the theory remains globally SU(3)-invariant
after spontaneous symmetry breakdown, this re-
sults in only two possible solutions. In the quark
sector, one solution has two color octets and one
color singlet; the other has two 6's and one 3*.
Details will be given in Sec. IV.

To summarize, the theory of modified quantum

chromodynamics has the following notable fea-
tures. (1) It is a renormaiizable field theory (.2)
It has normal behavior in the infrared limit, i.e. ,
massive asymptotic states can be defined. (3)
There is an exact global SU(3) symmetry identifi-
able with color. (4) For the purpose of confine-
ment, its short-distance behavior is the same as
quantum chromodynamics. (5) It is asymptotically
free by virtue of the imposition of eigenvalue con-
ditions on all coupling constants. (6) Because of
(5), there is only one independent coupling g. All
others are calculable in terms of it in the ultra-
violet limit. (7) In addition to having a massive
vector-gluon octet, and the usual quark triplets,
the theory also contains one octet and two singlets
of Higgs particles (or scalar gluons), as well as
extraordinary quarks which are not color triplets.
(8) The requirement of both (3) and (5) allows only
two solutions: one has two octets and one singlet
of quarks, the other two 6's and one 3*. Each of
these groups must have common flavor quantum
numbers, and they interact directly with the scalar
gluons, whereas the usual quark triplets only do so
with the vector gluons.

In the following two sections, it will be shown
in detail how all of the preceding comes about.



17 MODIFIED Q UANT UM CHROMOD YNAMICS: EXACT G LOBAL. . . 625

+k(I Q (0'.4. )(4g4, )+a PQ((I.'4g)(4g4, )
atb aPb

chosen to be real and positive without loss of gen-
erality by a suitable redefinition of the phase of
4. Notice also that if 5=0, then V has an addition-
al U(1) symmetry, and an unwanted Goldstone
boson will appear. ' To facilitate certain calcula-
tions, V can also be written aq follows':

3 3

&= p'g4.'(t. + ~(n+ p)g (0,'0, )'
m =35@ )

m, '= (q+-,' p)v' —,
'

m, ',
2 1 2 2 2m-„=3' + —,m,

(3.6)

which is manifestly invariant under SU(3). There-
fore, in breaking the original SU(3) && SU(3) sym-
metry down to just SU(3), the three scalar triplets
of local color SU(3) have rearranged themselves to
produce an octet and two singlets of global color
SU(3). In the tree approximation, their masses
are given by

1
(5e,(,e ((( P,(P(( P,(+ H. c.) .

&5
(3.3) where

1
iE ' x+ (xo+ (yo)f,

ve
(3.4)

where (x,) = v 40. [The fact that (4() is proportion-
al to the identity matrix I could be easily shown. ']
The Higgs potential V of Eq. (3.1) now becomes

I('=-,' (('(x,'+y, '+x x) +-,'(q+ 3 p)(x, '+y, ')'

+ g (q+ p)xo (x ' x) + g ('g+ 3 p)yo (x ' x)

+ 8 ((I+ -," p)(x .x)' ——,
'

5xo(x,' —3yo' —-', x x)

1
+ ~»"p- &~d.bc Xa~ b "c

M6
(3.5)

Given the present Higgs structure, there are only
two possible patterns of spontaneous symmetry
breaking. (1) Only one component of one /acquires
a vacuum expectation value. This breaks the
original SU(3) && SU(3) symmetry into SU(2) x SU(2)
x U(l). (2) All three (t('s acquire vacuum expecta-
tion values, but in. different components. Then the
residual symmetry is SU(3). The parameter p is
crucial in determining which of these two is in fact
chosen. In the limit 5=0, the condition for spon-
taneous symmetry breakdown of V is simply p,

'
&0; and depending on whether p is negative or
positive, either (1) or (2) will occur. If 5o0, the
situation is somewhat more complicated. How-
ever, if we assume 5'«j —(('(i~, so that the tree
approximation ean be used in calculating the vac-
uum expectation values of 4, then the condition
for (1) simply becomes p& —2v 65[@/(-i( )]' 'i
whereas for (2) it is changed to p&-3M25[(I/
( p2)] (/2

The case of interest is obviously (2) since it has
a residual global SU(3) symmetry which can be
identified as color in place of the original local
symmetry. After spontaneous breakdown, 8 out
of 18 degrees of freedom contained in 4 are lost to
the vector gluons, but the other 10 remain physical
scalar particles, and they can be grouped to-
gether to form one octet x and two singlets xp
and yp. In the U gauge,

-6p, '+2m~ '
V

3'g+ p
(3.7)

Notice of course that if 5=0, yp becomes a truly
massless Goldstone boson, which is clearly unde-
sirable.

Now we turn to the part of the Lagrangian which
describes the vector- scalar interactions,

Z, , = Tr(D'4)'(n„C),

where

D„C = (8„+z igA ~ X)4.

(3.8)

(3.9)

Using Eq. (3.4) for 4, we find

v-a =2('" 0)( . 0)+ k(8 "y.)(8„y,)+-.' (8 "x) ~ (8„X)

+ ~ gf, ~ A,"(8„x~)x,

+ gA„~ [(8"y,)x- (8'x)y, ]
M6

+ —,', g'(X.'+ y.') (A, ~ A") + —,",, g'(x x) (A„A")

2 6
(3.10)

which is again manifestly invariant under global
SU(3). The vector gluons are, of course, no longer
massless, but they still transform as an octet with
a common mass given by

mg'= —' g'v' (3.11)

In conclusion, we have managed to modify the
quantum ehromodynamics Lagrangian of Eq. (1.1)
by the introduction of a scalar multiplet 4, in
such a way that the new Lagrangian which is the
sum of Eqs. (1.1), (3.5), and (3.10) retains an exact
(albeit global) color SU(3) symmetry. Since the
vector gluons become massive via the Higgs mech-
anism, this theory is certainly renormaiizable;
it is at the same time free of infrared divergences,
so there is no reason why quarks and gluons should
not exist as bona fide physical states. Exactly how
a free quark should behave is an open question, and
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models have been proposed"'" to explain the recent
report' that fractional charge on matter has been
found. However, the only difference between quan-
turn chromodynamics and the present theory, dis-
regarding the scalar interactions for the time
being, is the appearance of a mass term for A„,
so if the former leads to a confinement potential
of infinite range, that due to the latter must be of
finite range. To make sure that this result holds
even in the presence of scalar interactions, we
must insist that they do not alter significantly the
short-distance behavior of quantum chromodynam-
ics. Now it is well known that a purely non-Abelian
gauge theory is asymptotically free, ' but in the
present theory, there are quartic scalar couplings
(q and p) as well, and the statement of asymptotic
freedom becomes much more complicated. " The
next section will deal with this problem in detail.

IV. ASYMPTOTIC FREEDOM AND EXTRAORDINARY
QUARKS

Given a Lagrangian which is the sum of Eqs.
(1.1), (3.1), and (3.8), and using the renormaliza-
tion- group technique, the following differential
equations for g, ri, and p (considered as effective,
or running, couplings) can be obtained".

16v2 —„=-[—",(3) ——,
' S,(F) —-'(-')(3)]g'

= --; [—", —S,(F)]g' -=- -,
' &.g', (4.1)

In the absence of contributions from Yukawa
couplings (which would be the ease if all quarks are
color triplets), Eqs. (4.2) and (4.3) do not admit
any asymptotically free solution, even if q and p
are assumed to be functions of g' alone. ' This
means that it is necessary to have quark multiplets
which couple to 4. However, we must do it in such
a way as to retain the global color SU(3) symmetry
of the Lagrangian in the U gauge. It turns out that
there are only two possible solutions to be dis-
cussed below.

Let 4= (g„g„g,) be a global SU(3) triplet of
quark fields, each one of which is a,iso a local
color SU(3) triplet, in exact analogy to C. Let $
be another quark multiplet which is a global singlet
but q, local octet. Then

g „=—~ n (Tr 4X, 4) t', + H. c. , (4.6)

provided that both 0 and $ have the same flavor
quantum numbers, such as electr ic charge, etc.
Again using the technique of the renormalization
group, we find

dQ
16m' = n (" n' —13g') . (4.6)

If a is independent of g, then the only asymptotical-
ly free solution is @=0, which means that it is
forced to vanish in the ultraviolet limit faster than
g. However, assuming that an eigenvalue con-
dition exists for n as a function of g, we can look
for a sot.ution of the form

8v' —= 13@'+12qp+ 3p' —Sing + —"g, (4.2) n' =Kg'+ 0(g') (4.7)

and

Bar' —= 6p'+ 6gp 3pg'+ ' g .
dt (4.3)

for small g, where E is a nonzero constant in-
dependent of t. Under this assumption, Eqs. (4.1)
and (4.6) must be identical, and so

In the above, the parameter t is minus the logar-
ithm of the scale by which the renormalization
point is changed, and S~(F) is defined in terms of
the representation matrices t, of the total fermion
(quark) multiplet as follows:

(4.8)

In the presence of Zr, Eqs. (4.2) and (4.3) must
now include additiona, l contributions, and they
become

Tr(t, t,) =S,(F)6,~. (4.4) Bm —= 13''+ 12' p+ 3p —Bqgdt

In order that the theory be asymptotically free,
b, in Eq. (4.1) must be positive', therefore S,
must be less then —", . For a given irreducible
SU(3) representation of dimension N, S, = ,'NS„—
where S, is the value of the quadratic Casimir
operator for that representation. Specifically, for
the representation D(p, q), S, = ,' [p'+q'+ pq-
+ 3(P+q)), therefore the value of S, increases
rapidly with increasing N, and so we need only
consider ferm ion representation. s of the lowest
dimensions, such as 3, 6, and 8. If quarks only
come in color triplets and there are n of them, then
83= &n, implying that n~15.

+ —(kg + —g ——016 2 2 11 4 1 4
3 12 36 (4.9)

and

8w'
dt

——6p'+ 6rtp —8pg'+ —"n'g'+ —' g' — ' n'.
3

(4.10)

Now using Eq. (4.8), and making the corresponding
assumption that q/g' and p/g' are constants for
small g, we find that in order for Eqs. (4.9) and
(4.10) to be identical to Eqs. (4.1) and (4.6), we
must have the following numerical solutions:



17 MODIFIED QUANTUM CHROMODYNAMICS: EXACT GLOBAL. . . 627

-' b, K p/g' r}/g'

0.396 —0.091
(4.11)

0 357 -0 091
6 49

0.318 -0.092
6 49

The value of —,
' b, is determined by how many addit-

ional quark multiplets are put in besides 4 and (.
The minimum value of & corresponds to six
triplets, but since we know that there are at least
four triplets (u, d, s, and c}, the maximum value
zs —.11

To show that exact global color SU(3) symmetry
is retained by Z ~ in the U gauge, we decompose 4
into an octet g and a singlet g, as follows:

1 1
O'= X ~ g+ $ I;

2 43
then

(4.12)

Z „= Pg»I (Tr@S»4), - (4.14)

where S» (k= 1, . . . , 6) is a set of 3 x 3 real sym-
metric matrices, normalized to TrS~S~ = 5»..
Proceeding as before, we find

16w' —= P(—"P' —ling'), (4.15)

+ (')'~'(d, +if, )g, $ x, ]+H.c. ,

(4.13)
which is manifestly invariant under SU(3) as ex-
pected. The term i Tr@'y"D„C which also appears
in the total Lagrangian can be written in a sim-
ilar way. Notice the similarity between Eqs. (3.4)
and (4.12) for 4 and 4, respectively. In both
cases, three local color triplets have rearranged
themselves to form global color octets and sing-
lets. The physical quark sector of this model has
therefore two octets (linear combinations of P and
$) and one singlet g„plus up to six triplets. Pre-
sent strong-interaction phenomenology establishes
only four triplets (u, d, s, and c), so there is
room for two more. These "ordinary" quarks do
not interact directly with the scalr gluons x, x„
or yo so their hadron spectrum is not expected
to be much different from that of usual quantum
chromodynamics. On the other hand, the "ex-
traordinary" quarks P, $, and g, have much more
complicated direct interactions, which can be the
case of significant change in their hadron dynam-
ics. This problem will be dealt with in a separate
paper.

The only other possible solution with exact global
color symmetry and asymptotic freedom is as
follows. Let $' be a quark multiplet which is a
global singlet but a local sextet. Then

so that

K= —' (14 ——bo) .

The corresponding differential equations for q and

p are now

(4.16)

and

Bw' = 13''+ 12gp+ 3p' —Bqg'+ BP'g'
dt

+ —g --P11 4 1 4
12 4 (4.17)

U. CONCLUDING REMARKS

In the present theory of modified quantum chro-
modynamics, color appears as an exact global
SU(3) symmetry, but confinement is only effective
below a certain energy threshold as discussed in
Ref. 8. There it was found that within a "bag"
formalism, the mass of an isolated quark or gluon
is inversely proportional to the vacuum expecta-
tion value v of 4. This means that the symmetry
breaking may in fact be very soft, and the necess-

Bm' —= 6p'+ 6gp- Bpg'+ Bp'g'+ -'g --' p4.
dt 4 4

(4.18}

From these, we obtain the following numerical
solutions:

-' b, K p/g' ri/g'

0.369 —0.019

0.334 -0.022

0.300 -0.026

0.265 0.030

This time, & b, =
& corresponds to seven "ordinary"

triplets. In the U gauge, instt:ad of turning into
an octet and a singlet, 4 now becomes 6 and a 3*,
so that Z„of Eq. (4.14} remains invariant under
global color SU(3). The physical quark sector of
this model has therefore two sextets (linear com-
binations of $' and g&) and one 3*, plus up to
seven 3's.

In conclusion, the theoryof modified quantum
chromodynamics has two asymptotically free solu-
tions with exact global color SU(3) symmetry. Al-
though there are four dimensionless coupling cons-
tants, only one (the gauge coupling g) is indepen-
dent, so that at least conceptually, simplicity has
been maintained. Moreover, it predicts the ex-
istence of "extraordinary" quarks not belonging to
the triplet representation of color SU(3), and the
form of their fundamental dynamics. The number
of "ordinary" quark flavors is also more severely
limited. In the next section, I will discuss some
of this theory's many possible implications.
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ity to introduce nontriplet quarks to obtain eigen-
value solutions for the quartic scalar couplings
may be eliminated, if only "temporary" asymptotic
freedom is desired. "

The idea that quarks may come in color non-
triplets is not new, "but only in the context of
the present theory (and other related ones given
in Ref. 7) is it seen to be necessary. Further-
more, definite predictions are made as to the
number and type of these quarks, together with
the form of their basic interactions. Let us con-
sider the first case presented in Sec. IV, where
there are two quark octets g and $, and one
quark singlet P,. Assuming that they do combine
with quark triplets to form hadrons, then a color-
singlet hadron state such as qqg, where q is a
usual quark triplet, will have whatever ele'ctric
charge $ has. The existence of fractionally
charged hadrons cannot therefore be rufed out.
Notice also that although P, is a color singlet, it
can interact with $ through the scalar-gluon octet
x. The statement that color singlets can only in-
teract through some kind of residual color Van
der Waals force applies only to bound states in

this theory.
Finally, let me speculate on a possibl. e inter-

pretation, within the present context, of the re-
cent observation" of a dimuon resonance at 9.5
GeV. This state could very well be a quark-anti-
quark bound state, similar to the J/g. The ques-
tion is whether this fifth quark is "ordinary" (i.e. ,
a color triplet) or something else. If the former,
then we expect it to mix with the other four known

quarks (u, d, s, and c) in their weak interactions.
But since the standard four-quark model works
so well in this area, the mixing must be very
small or even zero. This could be an accident, but
then on the other hand, ii we assume that there are
only four "ordinary" quarks, and the 9.5-QeV ob-
ject is, say, a $$ bound state, the zero mixing
is ea.sily understood. In fact, a state such as qq(
will be stable (unless there are quark-lepton trans-
itions as in superunification gauge models) if
it is the lightest particle of its kind. Therefore,
instead of finding more and more quark flavors
of the usual type, something really new and dif-
ferent may be awaiting the next generation of
accelerators.
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