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Nonrenormalizable interactions and an eigenvalue condition
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It is pointed out that a certain class of nonrenormalizable theories can be made renormalizable if a theory
possesses an ultraviolet-stable fixed point. As an example, four-fermion theories of the Nambu-Jona-Lasinio-

type are considered.

It is well known that in a class of nonrenormal-
izable field theories, interesting collective phe-
nomena occur. In particular, in Nambu- Jona-
Lasinio-type' four-fermion theories, one can
show the existence of collective bosonic bound
states by solving Bethe-Salpeter equations within
a certain approximation. Thus these models are
actually interacting theories of fermions and bo-
sons despite the fact that the original Lagrangian
contains only spinor fields.

Usually these four-fermion models are, of
course, regarded as nonrenormalizable. In a case
of current-current-type self-interaction, however,
it was known for some time that one can formally
develop a renormalizable perturbation series."
Here the basic idea is to expand the theory in
terms of induced coupling constants between col-
lective bosons and fermions instead of the original
four-fermiori coupling constant. In the model of
Refs. 2 and 3, a collective bound state, a photon,
appears in the vector channel. When one expands
the theory in terms of photon-fermion coupling
constant, one finds that the perturbation series is
renormalizable and obtains the same S matrix as
in quantum electrodynamics to all orders in per-
turbation theory.

Recently this type of renormalizability and cor-
respondence of four-fermion models to certain re-
normalizab]. e theories has been extended to other
types of four-fermion interactions. ' The original
Nambu-Jona-Lasinio model, for instance, is
shown to correspond to the linear o model.

In these works, however, the renormalizability
of perturbation series is yet formal. Although the
series has a finite number of superficially diver-
gent vertices and all the ultraviolet infinities of the
theory are amalgamated into field, mass, and
charge renormalizations, renormalized coupling
constants are not automatically guaranteed to take
finite and cutoff-independent values. This is be-
cause in four-fermion theories induced coupling
constants become independent of the original Fer-
mi coupling constant G after renormalization and
cannot be made finite and arbitrary by making G
cutoff dependent in a prescribed way. It is well

known that in the lowest-order, Hartree-Fock, ap-
proximation the induced Yukawa coupling constant
behaves as g„'-GjGlnA=l/1nA (A is the ultra-
violet cutoff). It is possible to prove that this fea-
ture persists to all orders.

In this paper we shall show that there is a Gell-
Mann-Low eigenvalue condition on these radiatively
created charges. If a theory possesses an ultra-
violet-stable fixed point, they can take well-de-
fined and cutoff-independent values. In this case
Nambu- Jona-Lasinio theories become completely
independent of ultraviolet cutoff and equivalent to
corresponding renormalizable models. On the
other hand, if a theory does not possess a fixed
point, cutoff dependence persists in created
charges and they vanish in the limit of infinite cut-
off. In this case, four-fermion models become a
free-field theory of collective bosons and fer-
mions.

Let us first consider the Nambu-Jona-Lasinio
model. The Lagrangian is given by

&=0~~ s0-kG[(44) +(4~~,~0) 1,
where ~IE) is an isodoublet spinor field. The descrip-
tion of collective bound states can be facilitated if
we introduce collective variables o and w and a
new Lagrangian,

where

G =g'jap'.

g is a bare induced Yukawa coupling constant, and
a term proportional to 6 p' is interpreted as a bo-
son self-energy counterterm. The new Lagrangian
2' has the same dynamical content as 2 since if we
perform a path integration over o and m in

dgdiI)dade exp i Z' g, g, o, m +g$+g'g

we obtain the original generating functional, '

~[a, nl =
f dydee

e at [&WA ~ no'PnB. ,
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A renormalized perturbation expansion for 2'can be formally set up if we add and subtract vertices for
bound states,

~'= [ksfr ass g-ROR(os+frP wR)4R]

+ [(Z, —1)k„~r ass -g„(Z, —1)q~(oR+f r57 ws)4s --&wu'Z, ,(o„'+w„'}]
= QRf r a4R gR-IR(oB+f r ~ ws)4R+w [(a os)' +(a„sw)'1 2&-s'(oR'+ws') '-l R-(oR'+wR')')

+ ((Z, —1)g„ir ~ ap„-g„(Z, —1)p„(o„+fr,7 ws)t)„--', [(a„o„)'+(awws)']

+&(i R ai Zs)(oR +wR ) & R(os wR )

(5)

(6)

Here the notations are standard. Five terms in the first set of curly brackets in Eq. (6) are regarded as
parts of the renormalized Lagrangian and those in the second set of curly brackets as counterterms. g„
and A are renormalized induced coupling constants. Next let us compare the above expression with that
of the linear g model,

2, =pi y aq -gy(o+i y Y' w)q +,' [(a-„o)'+(a„w)'] --,' p'(o'+w') --,'A(a'+w')'

= g„fy ag„g,q-„(os+f y,~ wR)Os+2[(a, os)'+(a&ws)'l -2&s'(os'+ws') -'4(&R'+wR'}')
+ f(Z, —1)/~i r ~ ap„-gs(Z, —1)ps(o„+f y,7' w&)Q„+ Q (Z, —1)[(amos)'+ (a„ww)']

—
w [(Z, —1)Iu„+Z,6 p ](o„+w„) —~ Z„(Z~ —1)(o„'+w„) }. (8)

(Z, —1)ys'+Z, ag'
i=1, 2, 3, 4, (9)

+ (divergent part of self-energy) =0. (10)

On the other hand, in the Nambu- Jona-Lasinio
model the elimination of infinities has an uncon-
ventional feature. It is performed by

Z, -1+ (divergent part of

radiative corrections), =0, i = 1, 2, (11)
-1+ (divergent part of

radiative corrections), = 0,

-pg +Z35 p

i=3, 4, (12)

+ (divergent part of self-energy) = 0. (13)

Here the radiative corrections in (9}, (10), and
(11),(12), (13) have an identical structure since
they are calculated using the same renormalized
Lagrangian. In the Nambu- Jona-Lasinio model
there are only three parameters Z„Z„and 6 p

We notice that equations (6) and (8) differ in the
coefficient of counterterms.

The elimination of ultraviolet infinities in the
linear 0 model is well understood. ' Since diver-
gent parts of radiative corrections have a strictly
chiral-symmetric structure, they can be elimin-
ated by a common wave-function renormalization
factor Z, for g and m and a common mass counter-
term & p if we choose appropriate subtraction
points. Then renormalization factors are deter-
mined as a power series in g„, XR, and lnh,

Z~ —1+ (divergent part of

radiative corrections), = 0,

to absorb infinities, and hence the above equations
(11),(12), (13) impose nontrivial restrictions on gs
and X„. Comparing (9) and (12) we notice that the
vanishing of Z factors,

limZ, (gs, A.„,A) =0,
Q~ e)

lim Z, (g„,As, A) = 0,
A~ ce

(15)

is needed to eliminate infinities in Nambu- Jona-
Lasinio theory. When these conditions are satis-
fied with cutoff-independent values of gR and ~&,
the model becomes free of ultraviolet cutoff. Fur-
thermore, since the same renormalized Lagran-
gian is used to compute Green's functions and the
S matrix in both the Nambu- Jona-Lasinio model
and the cr model, these quantities will have an
identical structure when expanded in power series
in g& and A„. From this the equivalence of two
theories follows.

The above equations (14) and (15) are nothing but
familiar compositeness conditions. This is only
reasonable since g and m are fermion-antifermion
composites in our theory. Although much litera-
ture' exists on the compositeness or bootstrap
condition Z = 0, its physical significance has been
somewhat obscured owing to ultraviolet diver-
gences in the case of a relativistic field theory.
Next we analyze these conditions dsing renormal-
ization-group equations and the idea of a Gell-
Mann-Low fixed point. In the following we choose
subtraction points at certain nonexceptional Eu-
clidean momenta in order to avoid possible in-

fraredd

problems.
It is well known that renormalization factors

obey Callan-Symanzik equations, '
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8 8 8—
p&

—pk + 2y&I Z3(gR& ~R& A)
8A 8g~ 8A.g

8 8 8~ ——P. -P). + —+4r~
8~a

(16)

Ps(ga& &R) P&, (—k'z& ~s) =0& (16)

and renormalized coupling constants are equal to
these values,

gR gR ~
~B ~R ~ (19)

Then using Callan-Symanzik equations we obtain
an exponentiation of ln~,

x Z, (g„,A. , A) = 0. (17)

Here y„(gs, Xs) is the anomalous dimension of the
meson (o and%) field. P, and Pz are the P func-
tions related to the scale transformation of g„and
~&, respectively.

First let us consider a possibility that P, and Pq
have an ultraviolet-stable fixed point at (gs, Xa) in
the two-dimensional coupling-constant plane,

ated. They are determined to be a solution to
bootstrap conditions; however, these equations do
not completely fix them and allow them to take val-
ues within a certain range. The theory exhibits a
scaling behavior at high energy with anomalous di-
mensions.

Such a mechanism seems to be common to most
of the models for dynamical bound states. For in-
stance in the models of Refs. j.2 and 13, the analy-
sis is based on an assumed existence of a power-
behaved, nonperturbative solution to Schwinger-
Dyson integral equations. The residue of a bound
state becomes cutoff independent when a Bethe-
Salpeter kernel possesses a certain power behav-
ior. All of this will happen if a theory has a fixed
point.

On the other hand if a fixed point is absent in the
theory, cutoff dependence persists in g~ and A.„.
In this case, the renormalization-group equation
is useless and we have to inspect directly the ex-
pression of Z factors in terms of g„, X~, and 1n&
In the nth-order perturbation theory Z factors
have a structure,

Z, (g„,z„A) -A-'»«s ~s&,

Z, (g„,Z, A) -A-'»«s ~s&.

(2o)

(21)

Z = 1 + (C»f+ ~ + C ~f") ln A + +C„~,f"(ln A)",

(24)

Since y~(gs, As) is non-negative due to unitarity,
it follows that"

limZ, =O)
P~ oo

limZ4= 0.
A~~

(22)

(23)

Thus g„=g~, A = A~ is a solution to our bootstrap
condition.

Actually the above assumption (19) can be re-
laxed significantly. As is well known in the renor-
malization-group analysis, as long as g„and A.„
lie within a domain of attraction of the fixed point
there are so-called running coupling constants
which interpolate between (g„,A.„)and (gg, Xs) in
the coupling-constant plane. When Callan-Syman-
zik equations are solved in terms of them, we ob-
tain a minor correction to (20) and (21) which
leaves our result (22) and (23) unchanged. Thus the
bootstrap condition can be solved for a certain
range of values for g& and A~ if the theory pos-
sesses an ultraviolet-stable fixed point. "

In this case we obtain an interesting phenome-
non; although we start with a theory of a syinor
field and dimensional constant G, we arrive at a
theory of bosons and fermion with two dimension-
less numbers g„and A~ as well as a dimensional
constant p„. It appears that the dimensional con-
stant 6 has somehow been traded for p~. On the
other hand parameters g„and A,„are independent
of G and are interpreted as being radiatively cre-

where f is either gs' or As. We notice that boot-
strap conditions imply a cutoff dependence of g„
and Ag as

1 1
lnA ' ~ lnA ' (25)

& = 4~ y ' s4 ™4- a GÃ qy)&I&~ (26)

Using the same technique as before we can intro-

in each order of perturbation theory. Hence both
vanish as A-~. Thus we obtain a trivial free-
field result. Therefore the eigenvalue is a condi-
tion to support nontrivial values for radiatively
generated charges.

Apparently the above result applies to other
types of four-fermion theories as well. Unfortun-
ately in most of the nongauge Yukawa theories the
origin of the coupling-constant plane is ultraviolet
unstable. " In these cases we may not be able to
discuss fixed points within the realm of a weak-
coupling perturbation expansion. On the other
hand if we let a non-Abelian gauge field couple to
our theories, it is possible to stabilize the origin.
The analysis seems feasible in this case though it
becomes complicated owing to gauge dependence
of renormal. ization factors.

The above results become somewhat modified
when one considers a four-fermion theory where
a gauge field appears as collective bound states.
Here the simplest example is the Abelian model of
Refs. 2 and 3,
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lim Z, (es, A) = 0,
A~ ap

(28)

is satisfied.
Now we argue that the above equation (28) may

not be satisfied even by imposing an eigenvalue
condition,

P(e„")=0. (28)

Here the basic reason is that the anomalous dimen-
sion of a photon field vanishes at the fixed point
owing to gauge invariance, and hence Z, remains
nonzero in the limit A-~.

Though this may appear obvious to those familiar
with the finite theory of quantum electrodynam-
ics,""we shall give a simple argument using di-
mensional regularization. In 't Hooft's scheme of
renormalization" Z, is expanded in a Laurent ser-
ies in n —4,

duce a collective variable A„and a new Lagran-
gian

2'=pi y sg —mug —eely„gA" +-,'5p, 'A„A" . (27)

Here the term proportional to 6 p' is again inter-
preted as a mass counterterm. It should be ad-
justed to cancel the photon self-energy when we
use a noncovariant momentum-space cutoff. If a
gauge-invariant regulator or dimensional regular-
ization is used, we should put 6 p, =O. Then the
above model becomes equivalent to quantum elec-
trodynamics if a bootstrap condition,

where a„has a structure,

a„(ea') = a„,(eD }"+ a„,(e~')"' '+ ~ ~ ~

a, is related to the P function,

2eD'a', (en') = P(en') .

(31)

(32}

Then using renormalization-group constraints, "
eD av 1 av 1)al all (33)

a, =o, v 1y 2y 3y ~ ~ ~ ~ (34)

Hence"

Z, (e")= 1 . (35)

This is just the other extreme of the Lehmann
bound opposite to the bootstrap Z, = 0. Thus it ap-
pears unlikely that a photon (Abelian gauge field)
can be interpreted as a fermion-antifermion bound
state.

It is also possible to consider a non-Abelian
analog of the above example. For instance in the
case of SU(2) it is given by

2G — 7'
Z = tI) z y 8$ - mug ——gy2 "2 (38)

Introducing a field A& and putting 6 p = 0 we obtain

and the fact that the zero of the P function is an in-
finite-order zero, " one obtains

a„(eD')
(30)

~' = 0& r &tI) —~44 —g 4y&
— gA" . (37)

By adding a ghost term we write the Lagrangian as

2"=giy s( —mg ggy&2-7 ~ gA" -s&p* ~ (8 +gA &&)&p

= [gsi y sos —msgsgs gsgsy-&~7'gsAs -2s"pg ~ (8&+gsA& &&)ps ——,'(s&A"„—s„A&+gsA& XA„)']

+ [(Z» —1)p„iy sos —m„(Z» —1)$„$„5mZ»p„p„--g„(Z, —1)p„y„2r psA"-

-(Z, -l)s„qk s 4, g„(z, -l)s„@R~ A„4„
- -,' (s„A"„—s„A"„)'- -,'g„(s„A"„—s, A"„)"(Ag && A„') - -,gs(A„&& A"„) ~ (A„" x A„")]. (38)

Then, comparing Eq. (38) with the Lagrangian of
an SU(2) Yang-Mills theory coupled with fermions,
we notice that the two theories become equivalent
if a bootstrap condition Z, = 0, Z, =0 is satisfied.
Renormalization factors Z„Z, are those associ-
ated with three-vector and two-vector vertices,
respectively.

Although these parameters are gauge dependent,
we can solve Callan-Symanzik equations and eval-
uate them using asymptotic freedom. The result
depends on the choice of group and representations.
It is possible to show that if the quantities

y = 8„a(~T2-~ C2}
1

(40)

Z - limA-'»" =01 7
P~ oo

(41)

are both positive, the running coupling constant
and gauge parameter go to zero, g~=oR=O, in the
deep Euclidean limit. " Here C, is the value of a
quadratic Casimir operator in the adjoint repre-
sentation and T, is that of the representation of
fermions. Then by using renormalization-group
equations we obtain

1P- 18„a(s .-sT2) (39) Z, —limA»+ =O.
A~ oo

(42)
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This result is gauge independent in the sense that
it holds in any gauge. Thus bootstrap conditions
are satisfied. On the other hand if P &0 and y&0,
the Z's remain nonzero in the limit of infinite cut-
off. In the case of SU(2), for example, P, y&0 if
there are F fermion doublets with ~2&E&11.

Our method described above has an interesting
comparison with that of Wilson" who introduced
an unconventional renormalization procedure for
superrenormalizable theories in less than four di-
mensions. In this procedure dimensional coupling
constants of a theory are let go to infinity while
properly defined dimensionless coupling constants
are held fixed as A -~. Then a superrenormaliz-
able theory is converted into a nontrivial renor-
malizable theory. There is an eigenvalue condi-
tion for the dimensionless coupling constant, and
by satisfying it the theory exhibits a scaling be-
havior with anomalous dimensions. Here relevant
eigenvalues are infrared-stable fixed points.

A great virtue of this method is the guaranteed
existence of a fixed point close to the origin so
long as ~ =4-d is small. However, in the limit e
-0 Wilson's prescription gives a free-field theory.
Therefore, here the existence of an eigenvalue is
achieved only by having a trivial theory at four di-
mensions.

Our work suggests an intimate connection be-

tween the idea of dynamical symmetry breakdown
and the Gell-Mann-Low fixed point. If a theory
possesses an ultraviolet-stable fixed point, some
of its fields (presumably spin-zero mesons) may
be interpreted as composites, and their vertices
can be eliminated from the Lagrangian without

spoiling renormalizability. Then we have a smal-
ler number of fields and vertices and a more con-
strained theory than the original one. Allowed

phases in such a theory may well be quite re-
stricted. Hopefully such a procedure eliminates a
high degree of arbitrariness in the conventional
Higgs mechanism and gives us a new approach to
dynamical symmetry breakdown.

After completion of this manuscript we received
a report by C. Bender, F. Cooper, and G. Guralnik

[Los Alamos Report No. 77-1093 (unpub1ished)],
where some of the materials of this paper are dis-
cussed using mean-field theory.

The author is indebted to G. Guralnik and N. Sny-
derman for discussions on the possibility of fixed
points in four-fermion theories and to K. Shizuya
for helpful correspondence. He also thanks
Y. Nambu for discussions and reading the manu-
script. This work was supported by the U. S. En-
ergy Research and Development Administration.
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