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The thermodynamic potential, 0, in quantum electrodynamics (QED) is derived using the path-integral
formalism. Renormalization of 0 is shown by proving the following theorem: A~(e&, m&, T,p, )
—A~(e~, m~, T = O, ILL = 0) = A„(e„,rn„, T,p„S), where 8 and R refer to bare and renormalized

quantities, respectively, and S is the Euclidean subtraction momentum squared. This theorem is proved

explicitly to e„" order and could be analogously extended to any higher order. Renormalization-group

equations are derived for 0„, and it is shown that perturbation theory in a medium is governed by effective

coupling constants which are functions of the density. The behavior of the theory at high densities is

governed by the Euclidean ultraviolet behavior of the theory in the vacuum.

I. INTRODUCTION

We consider a medium of electrons, positrons,
ions, and photons in thermodynamic equilibrium
and wish to calculate perturbatively in a coupling-
constant series the thermodynamic potential, 0,
in relativistic many-body theory. T denotes tem-
perature and p, is the chemical potential corre-
sponding to the conserved electric charge carried
by the particles. ' The formalism for computing
0 in nonrelativistic quantum field theory is well
known (see Ref. 2, for example) and has many
applications in solid-state and nuclear physics.
However, relativistic mediums were throught only
to appear in cosmology and, as such, little inter-
est has been shown in relativistic many-body the-
ory. However, this situation changed dramatical-
ly with the discovery of pulsars, interpreted as
highly dense neutron stars (see Ref. 3 for a gen-
eral review) since these astrophysical objects are
de facro relativistic systems We us. e here quan-
tum electrodynamics as a laboratory for estab-
lishing various theorems about 0 including the de-
rivation of 0 from a quantum field Lagrangian and
the renormalization of Q.

These results will be true for any renormal-
izable theory including the non-Abelian gauge the-
ories of the strong interaction. ' In the latter, the
concept of asymptotic freedom' {the property of
the coupling constant becoming small) was shown
to be true for high densities and/or high tempera-
tures) allowing for the first time reliable calcula-
tions of the equation of state and other properties
of the high dense medium. ' These results all cen-
ter about obtaining a renormalized, infrared-fin-
ite 0 as a function of T and p,. In the following we
present a historical background.

Matsubara' in 1955 proposed a thermodynamic
perturbation theory which is the analog of the per-
turbation expansion of field theory. This was ex-

tended by Abrikosov, Gor'kov, and Dzyaloshin-
skii, ' Martin and Schwinger, "and Fradkin" to
momentum-space parametrization and use of
Green's function methods. These works laid the
foundation for finite-temperature field theory
(FTFT) but important gaps were left. The fjrst
one concerns the renormalization of Green's
functions in FTFT. As early as 1959, Fradkin"
stated without proof that the FTFT Green's func-
tions are renormalizable by vacuum-type counter-
terms appearing in the Lagrangian. However,
there arises the interesting possibility that these
counterterms, the bare charge, bare mass, and
wave-function scale factors become T, ,Li, depen-
dent. This possibility was ruled out in the work
of Ref. 6, where, for the first time, the proof of
the renormalizability of Green's functions in FTFT
by the vacuum values of the counterterms was
presented.

The importance of this theorem in Ref. 6 lies in
the following: Because the vacuum counterterms
are independent of T, p, , one can prove by re-
normalization-group arguments' that the behavior
of Green's functions at large Tjp. is identical to
the Green's functions' behavior in the deep Eucli-
dean region in the vacuum. In Sec. V we will show
that 0 also has this property.

The second gap was in the nonrecognition that
the partition function was a gauge-dependent quan-
tity for gauge theories, e.g. , quantum electrody-
namics (QED). This complication was cleared up
by Bernard, "who showed that a physically mean-
ingful partition function which is gauge invariant
can be defined in "physical gauges, " ones with the
correct number of degrees of freedom, and then
functional methods may be used to determine
Feynman rules for this partition function in other
gauges. The most important omission of the earl-
ier work is in the thermodynamic potential.
Akhiezer and Peletminskii" were the first to con-
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sider the thermodynamic potential in relativistic
field theory, where they computed the e' (e is the
physical charge of the electron) correction to the
noninteraction thermodynamic potential in QED.
However, they did not realize the theorem which
covers the renormalization of 0 (and whose state-
ment and proof constitute new results in this
paper) and introduced a superfluous charge re-
normalization. Had they used a gauge-invariant
regularization procedure, their infinity would have
been regulated to zero. Norton and Cornwall"
have considered the thermodynamic potential for
spinless mesons. They showed that the thermo-
dynamic potential can be constructed as an ef-
fective action functional of the various N-point
amplitudes (I)I~ 4). Their analysis is quite in-
volved, and a consistent method for renormal-
ization of Q is obscure in their mork. As mill be
seen below even after all charge and mass re-
normalizations are performed, 0 is still naively
quadratieally divergent, and only after precise
cancellations of parts of Feynman graphs with
parts of others is Q seen to be finite after sub-
tracting its vacuum value. This is why the re-
normalization of Q is technically one of the most
difficult procedures in quantum field theory. The
last topic of importance is the question of infrared
finiteness of Q to all orders of perturbation the-
ory. We have, at this time, no general proof to
all orders.

The plan of this paper is as follows. In Sec. II a
path-integral derivation for Q is given with subse-
quent derivation of (known) Feynman rules for
Green's functions and the new Feynman rules for
Q. The violation of charge conjugation is dis-
cussed in Sec. III. In Sec. IV the proof of the the-
orem concerning the renormalization of Q is given
explicitly to e' order. It can be analogously ex-
tended (but burdensomely) to any higher order, but
since fourth order contains all the complexities

which one can encounter, this is unnecessary te
demonstrate the theorem. Using the theorem on
the renormalization of Q, we construct renormal-
ization-group equations for Q and show that per-
turbation theory is governed by effective constants
mhich are functions of the density. Finally, a con-
clusion follows.

II. PATH-INTEGRAL DERIVATION FOR Q

A. Feynrnan rules for Green's functions

Since the number of particles is determined by
equilibrium, we are interested in the grand can-
onical ensemble. The grand partition function is

Z=e 8~ Tre-s(a-) ~)

where H is the QED Hamiltonian operator in some
gauge and N is the number operator, ))) y')(). We
will evaluate Eq. (I) using functional integral tech-
niques. Before we continue we discuss the gauge
dependence of Z. The masslessness of the photon
means that there are only two dynamical degrees
of freedom associated with the Maxwell field (the
transverse photon fields). Longitudinal and time-
like photons must decouple from the grand parti-
tion function. However, if we use the Feynmaq
gauge or any other gauge which has more than two
independent degrees of freedom, we find that 0 in-
cludes these extra, degrees of freedom and we in-
clude their contributions to Q. Thus e is a
gauge-dependent quantity for this reason. As
Bernard has remarked, "the true gauge-invariant
grand partition function, Z~, must be defined to
be Zo =e "~»„„„),where the gauge chosen is a
physical gauge describing massless photons. If we
wish to use other gauges, including the "nonphy-
sical" gauges, we then must define their Feynman
rules so that Z„ is derived.

The expression for Z~ from functional integra-
tion is the following:

x, x' )xx))))) f=, l&*x)[x) ))xu')lx)) M~) I
periodic A

antiperiodic y

8
xexp dT d g -~+~ Z, T F X, T

0

+ ) (x, )( II-„ - x'x, - e~ xx ' -m, )))(x, ) x,.„(x, ))I

(2)

In Eq. (2), A, {(), and gz are respectively the photon
fields, lepton Fermi fields, and ion fields.
is the Lagrangian for the ions. Hereafter we will
ignore explicit reference to the ions except to take
into account their neutralizing charge density. All

that will be said about the lepton fields will apply
analogously to them. F(x, T) is the gauge-fixing
function. For convenience me set

F(x, r) = a„A"(x,~) -f(x, 7),
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where f(x) r) is an arbitrary function and 0 & v &p.
Equation (2) is a generalization of Zo in Bernard";
it is manifestly gauge invariant since the combina-
tion

d[A] det —5(F)
BQ)

is the gauge-invariant measure. What has been
done was to take the functional formula for the
transition amplitude for going from one state
function ~P, & at t=0 to ~P, & at t=t„

(y ~e-"1("-»)~y )

setting it, = P (in general it=7}, and summing over
all periodic (antiperiodic) paths where

I@,& I, =8 =+ (-)le.& I, =.

to obtain the trace. This gives

pendent infinity arising from integration of the
two independent photon conjugate momenta. The

5(P(, ))det( '

)
appears to avoid the double-counting problem in
gauge theories: Fields (A„(x, ~})which are con-
nected to each other by gauge transformations
represent the same value of the action and should
be counted only as one history. ~ parametrizes
the gauge transformation. For F(x, 7) of Eq. (3},
5A" = -8"co and

det —B„A" = det—

We can multiply Zo by arbitrary constants (since
this does not change physical quantities}. Multi-
plying by

Z Q (y~e
—8(H »)~y&-

The change of variables it=7. is a "Wick" rota-
tion of the theory into Euclidean space. Nz is a
(T, iF)-independent infinity" and [N(P)]' is a T-de-

exp —— d7' d 'FFf'(x, ~)
2Q 0

and integrating over (df], we use the 6 function
5(F) to obtain the desired form of Zo (remember-
ing that we are dropping the reference to the ions)

Z = N' IN(l))l*(dmt-() )I f
pertodlc A

antiperiodic y

[dA][dql[dql

x exp dw d'x 4F))„F""-—(e()A -)
0

~ Ei(iF-„r'r, —rmF ~rr'™,)FI- (4)

The periodicity (antiperiodicity) of A (g) fields in the interval 0 & 7. & p is determined by their commutation
relations. From this requirement we may Fourier-expand the A and ()) fields and plug into Eq. (4). By ex-
panding the exponential of the interaction term in a power series to get a diagrammatic expansion for Z~,
we obtain the Feynman rules for Green's functions in FTFT:

Use the 7=0, ]L(, =0 rules with the following replacements:

r
d'K i d'K
(2w)' p (2w)"

K'=co„, &u„=2wNi/p (bosons),

K' = (F)„+p, &u„= (2N+ 1)iw/p (fermions),

N=O, +1,+2, . . . ,

(2w) 5(K, +K, + ') (1/i)(2w)'P5, , , . . . 6'(K, +K, + . ) .

The various frequency sums (i/P)g„re aconverted to contour integrals as in Ref. 6 for actual computations.
These contour integrals will be frequently used in the renormalization of 0 below, so we remind the reader
that for bosons'

i ~ . 1 ™~dKf(K) 1 "" ' dKF'(K 1Z f(vw = 2Niw/P) =—,—+ — '
0 + — dK f(K ),P „„" 2w; „„exp(PK'}—1 2w;„, exp(-PK') —1 2w

and for fermions'
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+ ao $~+jf+~

Q f(v„+»,, v„= (2N+1)i)&/P) = ——
0~=- 2g i ~+}1+

i ~+9-6

2m -i ~+ ji -~

dK f(K )
exp[P(K' —&))]+ 1

dK K + i ao

+ dK f(K')+ — dK'f(K'} .
exp [P(& K—') ]+ 1 '2g

C' is the contour running counterclockwise in the K' plane from (»,, —i~) to (»., + i~) to (0, + i~) to (0, -i~)
back to (&), —i~). For convenience we will call the first two terms of Eq. (6) and the first three terms of
Eq. (7) "finite" contours as opposed to the remaining "infinite" contours running up the imaginary axis.

B. Feynman rules for Qz

Frop& Eq. (4) we will derive the expression for A. Upon taking the operation esd/des on Za we obtain

ee = — d~ d'x(){(x, &.)gq(x, 7))ee,dn
~ de~ P

where (0) denotes the statistical average of an operator 0:
(Q) = Tr(e 8& "«&0)/Tre

We now use the equation of motion from the Lagrangian in Eq. (4},

(ijf„-y-'8, +&),y'-m«){{)(x,r) =eQq(x, &.),
to obtain

8
dj d'x lim Tr[(i)&7-„—y '9, -me+ &&y ') (g(y, T')g(x, &)) ]~ de~ P /~X

T'~T+

Now with &'- &', (g(y, T')g(x, &.)} is the temperature fermion position-space Green's function,
Gs(%, 7; y, ~ ), in the presence of interactions. We Fourier-transform it to momentum space with

1
G (x &-. y 7') = — e &)'&"-)'&-~« - '&G (p p)8 7 7 &

P (2 )3 8 0) !

(6)

a& « = (2N+ 1)i 7T/p) pa = a) «+ &). .
G8(p„p) is the momentum-space interacting fermion Green's function. Noting that (1/p) Ja8dr=1, fd'&) = V,
we easily obtain

e~ =-iV—dQ . i d'p e(28+1)i 7fc/8 TrG -1G'de, P «(2a)'. ..
where the free propagator is G«= (p'-m«) ' and &=0'. Equation (10) can be set in a more convenient form.
Dyson's equation is Gs = G~+ G«ZGB with solution Gs= (G„'—Z) '. Z is the sum of all proper self-energy
diagrams. Then TrG« 'Ge= Tr(1 —G„Z)-'. Since g~"«"&'" e=0 we can set

T )) —)' ):) '-T ' —)) =T (E)'8) .
1 —G~Z

So we obtain the final answer for Aa,
3

Ae(ee, me, T, ») —Ae(0, me, T, ») = iV -—g 2, Tr [Z(p„p)GB(p„p)]ee p «(2&)'

where Ae is the unrenormalized ("bare"} A.
Equation (11) is an expansion of A«in terms of
propagators. We also see that only closed loops
contribute to A. To e~' only Fig. 1 appears while
in Fig. 2 and Fig. 3 are respectively the e~' and
e~' graphs. We learn, considering only even num-
bers of photons attached to fermion-antifermion
loops, that there are 3 ' graphs for e~'"order.

In the vacuum odd numbers of photon lines attached
to fermion-antifermion loops are zero by charge
conjugation, but in FTFT (p. x 0}, charge conjuga-
tion is broken and these graphs have finite non-
zero values. As will be discussed in Sec. III these
graphs are ultraviolet (UV) finite so we need only
consider an even number of photon lines attached
to fermion loops for consideration of UV infinities.
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FIG. 1. The order-e correction to the thermodynamic
potential in QED. The wavy line is the photon and the
smooth line is the fermion.

(b) (c)

In Fig. 1-Fig. 3 each closed loop comes in with a
combinatoric factor which is computed as follows.
From (11) the e»'» contribution to the integrand
will bring about a factor 1/2N from the e» inte-
gration. There exists also another factor. When
we consider all the propagator diagrams to a de-
sired order and then close the fermion line onto

itself, the same closed loop may appear many
times. For example, in Fig. 4 closing all the fer-
mion propagators gives rise to the same loop
[graph (c) in Fig. 3]. Thus the combinatoric fac-
tor for each loop is (1/2NxD, where D is the num-

ber of distinct propagators giving rise to the same
loop. It so happens that the factor D/2N can be
determined for each loop by inspection of the
graph. We define the automorphism factor, A, of
a closed loop as follows: It is the number of ways
in which the same diagram could be drawn if the
internal fermion lines were regarded as distinct.
In considering this transposition of fermion lines,
one must be careful so that the directed arrows of
transposed lines are consistent with the directed
arrows of lines not interchanged. Then D/2N
= 1/A. This follows from the Dyson-Wick expan-
sion for the closed loops. For example, the
graphs (d)-(f) in Fig. 3 have A =2 since the fer-
mion lines in the lower bubble could be inter-
changed; however, the lines in the upper bubble
cannot be interchanged since the arrows cannot
match up. It is clear then that by opening up all
the fermion lines in the closed-loop expansion at
the e~'~ order, with the proper combinatoric fac-
tors, one just reobtains the e~'"-order Feynman
graphs for the propagator and each propagator ap-
pears with factor 1. The question of renormaliza-
tion of 0 is dealt with in Sec. IV. Here we will
give the rules for obtaining the renormalized 0 in
quantum electrodynamics and leave their deriva-
tion to Sec. IV. The renormalized thermodynamic

(e)

(g)

FIG. 3. The order-e correction to the thermodynamic
potential.

potential is

Ils(es, ms, T, p) —II»(es, m», T=0, p, =0)

= fls(e», m», T, g, S) . (12)

e and m are the coupling constant and mass param-
eters appearing in the I agrangian in the rela-
tivistic field theory. The subscripts B and R re-
fer to the bare (unrenormalized) and renormalized
quantities respectively and S is the subtraction
momentum squared. To obtain QR(es, m„, T, p. , S)
as a power series in e~ do the following:

(1) Draw all topologically distinct closed loop
("vacuum" ) diagrams.

(2) Multiply each diagram by 1/A, where A is
its automorphism factor.

(3) Evaluate each diagram as if it were an ordi-
nary FTFT Green's function using the rules for
Green's functions above. The mass and coupling
constant used are m~, e~.

(4) Include one extra overall factor of -i .
(5) There will be an overall three-momentum-

conserving 6 function with zero argument times
(2»)', eliminate this factor (this factor is as-

FIG. 2. The order-e correction to the thermodynamic
potential. FIG. 4. The propagator expansion of graph (c) in Fig. 3.
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sociated with infinite volume and dividing by it
gives Q/V).

The above rules give

~{e~,m~, T, p) —~ (O, ms, T, p) .Q 0

(7) Add

~(O, ms, T, g) —~ (O, ms, 0, 0),

which, when expressed in terms of e„, m„, and S
gives Qs(0, m~, T, p, S) plus mass counterterms
which precisely cancel the fermion self-mass in-
sertion infinities mentioned above. Equation (12)
results. These rules are proved in Sec. IV.

III. VIOLATION OF CHARGE CONJUGATION

The ordinary vacuum QED Lagrangian is in-
variant under the operation of charge conjugation.
The new term, jL(4}y'g, which appears as a result
of the presence of the medium, changes sign under
charge conjugation. Thus this symmetry is
broken. It follows then that closed fermion loops
with an odd number of photon vertices no longer
vanish. Let us see how this comes about for the
tadpole diagram of Fig. 5. This has the value

(0+m) d'p
ted pule Yjf 2 2 4

P -m

Equation (12) vanishes (as do all odd photon ver-
tices) in the vacuum because the only surviving
y matrices are multiplied by odd polynomial func-
tions of P. For FTFT with p. x0, Eq. (13) has the
value (at T=O, for example)

Dtadpoje f TJ T T =0 ~ ~@on (14)

where the number density, n, is p~'/3m' and the
Fermi momentum is defined as p~'+m'= p.'.
Equation (14) is found just by using Eq. (7). All

(6) Subtract its vacuum value (i.e., T,p =0) and
express e~, m~ in terms of e„, m„, and S.

All infinities associated with vertex renormaliza-
tion disappear. The only remaining infinities are
associated with fermion self-mass insertions on
closed fermion 1ines.

graphs which violate charge conjugation are ultra-
violet finite. An outline of a proof is as follows.
Infinities can only come from the "infinite" con-
tours of Eqs. (6) and (7). We deform these con-
tours to the Feynman contour which runs along the
real axis, below it in the left half plane, and above
it in the right. As shown in Sec. IV, this results
in the loops' g Jd'p, in.tegration going to the usual
vacuum fd'p, +finite pieces. But all vacuum

Jd'p, . are zero so infinities vanish. These graphs
which violate charge conjugation, though ultra-
violet finite, may have infrared infinities. We
will show that the lowest-order infrared infinities
of these graphs cancel. To the e' order we have
the following graphs shown in Fig. 6. The double
lines on the fermion loops represent the ions. To
avoid the infrared problem associated with the
masslessness of the photon, we introduce an in-
frared cutoff, A. , defined as a fictitious photon
mass. If we call c= e%'/A. ' then it is easy to see
that for Fig. 6 we have for Q/ V graph (a) = -c/2,
graph (b) =-c/2, graph {c)=+ c so the sum of the
graphs is zero.

At this point an observation can be made con-
cerning the embedding of QED within unified gauge
theories of the weak and electromagnetic forces
based on spontaneous symmetry breaking. It
should be recalled that the result of the broken or
"hidden" symmetry is that the gauge vectors of
the weak force acquire large masses. In Ref. 17
it was stated that the broken symmetry can be re-
stored at a high temperature, T, , in analogy with
superconductivity, and so the weak gauge bosons
would become massless above some T& T, . The
basic requirement for this is that one has thermo-
dynamic equilibrium. The question arises whether
or not massless weak vector bosons occur in the
early universe at high temperature if there is a
net ueak charge. Let us assume this. Now one of
the weak vector bosons is the Z boson which medi-
ates the weak neutral currents; it couples to par-
ticles just as the photon does so graph (a) in Fig. 6
exists where the wavy line is now the Z boson.
This graph diverges as A. -0, so if the Z becomes
massless for T& T, then Q- ~ because graphs (b)
and (c) do not cancel (a) by the hypothesis of non-
neutrality. However, the limit 0-~ shows non-
equilibrium, contrary to the assumption. There-
fore the weak vector bosons cannot become mass-
less at any temperature if there is a net weak

(b) (c)

FIG. 5. Tadpole diagram in @ED which is nonzero in
FTFT.

FIG. 6. Lowest-order graphs which violate charge
conjugation. The double lines are ions ~
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charge. The only physical case then is the one of

weak charge neutrality, but as was demonstrated
in Ref. 18, the plasma effect cancels the long-
range forces for all massless vector bosons in a
neutral gas so the weak interaction remains short-
ranged at all temperatures.

IV. RENORMALIZATION OF Q

We now come to the primary interest, that of
the renormalization of Q. This will proceed in the
three steps given in the Feynman rules: (1) Find

Oe(ee, me, T, p) —Oe(0, ma, T, p} [this is given by

Eq. (11}]. (2) Subtract its vacuum value. (3) Add

Oe(ee, me, T, p) —Oe(0, me, 0, 0). This results in
obtaining Oe(ee, me, T, p) —Oe(ee, me, 0, 0), which

will be shown to be finite. The proof is tedious
and will be shown only to e~' order. It can be ex-
tended to higher order but becomes increasingly
burdensome. Since the fourth order has all the
renormalization problems of higher orders, the
proof to fourth order demonstrates the theorem.
To begin, we first want to compute Oe(0, me, T, p)
—Oe(0, me, 0, 0). In Eq. (4) we set ee=0 and me
=mR —am. Operating by Amd/dAm on the result-
ant ZG we obtain in the usual way

dQ—Phnt
d&m . =0eg -0

8
dr d'x lim Tr(nmt))(y, r'')g(x, r}}

y~x gg =0
7' '~T+

iV —-P, Tr(AmGF)
rr

where we Fourier-transformed the position-space-free Green's function momentum space. So

Oe(0, m~, T, p) —Oe(0, m~, T, p) = i V
dkm t )f p Tr(amGJ .
i}.m p ~ (2v

(15)

Now Oe(0, me, T, p) is just VOe(0, me, T, p) [where Oe(0, me, T, p) is the ideal-gas thermodynamic potential
per unit volume] plus its zero-point pressure. Therefore when we subtract the vacuum value of Eq. (15)
we obtain for our answer

Oe(0, me T, PI)
—Oe(0, me, 0, 0) = VOe(0, me, T, y)+i V

di) rn i
Am P

Tr{nmGr) . (16)

In Eq. (16) we must also include a minus sign from the trace. In all other equations which follow, this
minus sign will have already been included in the factors multiplying the integrals. P~ means that in
evaluating the energy sums via Eq. {7)only the "finite contours" are to be used. Inspection of Eq. (16)
shows that, as stated in rule (7) of Sec. II 8, this quantity is just the ideal-gas term plus mass counter-
terms. Using Eq. (16) we show some of the lowest-order mass counterterms in Fig. 7. Working these
out we have that up to ee' Eq. {16)is (T = 0)

Q~(0, me, T, p)~r, —Oe(0, me, 0, 0)= VO (0e, n rT)p)~r,

+ 2 Vmg~m'" + nm'&)
2 2) )P

+ V(am ),0(p —(p +m„) ), ;r,i; — -, ,),i, , (17)( ) d p 2»p t
m~' 1

2' p +m~ p +m~ J'
where hm'" and Am ' are respectively the e~-- and the e~'-order mass counterterms. We are now in a
position to prove Eq. (12) and the Feynman rules for O.

A. Renormalization proof to second order

For convenience we renormalize on the mass shell which means e~ and m~ are the physical parameters
denoted by e and m. We first find Qe(ee, me, T, p) —Oe(0, me, T, p); this is given by Eq. (11) so we must
calculate Fig. 1. Call the va.lue of this graph, I; we have

ee' i ~ d'p i ~ d'K y„(p'- 'if+m)ye" {p' m +)e
P ~ (2v)' P ~ (2v)' [(P K) -m ']-K'(P' —m '] (16)

In considering the p integration let us do the finite contour of Eq. (7) first. Then we close over the two
fermion poles (p -K)' -me' and p' -me'. By symmetry, or if one explicitly works it out, these poles give
identical results so we will close over the p'-m~' pole and multiply it by 2. We will call the operation of
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closing over a fermion line with the finite contours "opening up the fermion line" and decompose the closegl
loops into their propagator expansion. In Fig. 8 we have the propagator expansion for Fig. 1. For con-
venience we work at zero temperature. The simple modification for nonzero temperature will be pointed
out. Thus for the finite p, contour we have (setting es=e, ms=m to this order)

d'p 0()), —(p'+m')' ')(. ,} i ~ d'K y„(p -g+m)y"
(p ) (19)(2w)' 2(p'+m')'/' P ~ (2w)' [(p-K) -m']K'

~ (p2, 2) ~/2

In the following, the notation (po (~2 2)1/2 will be abbreviated to just ~~0 ~. Now we do the K contours.
From Eq. (6) at T = 0, we see that only the infinite contour up the imaginary axis contributes for the photon
loop. To help separate the finite piece from the infinite piece we deform this contour to the Feynman cop-
tour used in the vacuum propagator definition. This contour runs along the real axis from -~ to +~ and is
below the real axis in the left-hand plane and above the real axis in the right-hand plane. We can accomp-
lish this deformation by setting Ko=K,'+is KO, e &0. Then Eq. (19) becomes (dropping the prime on K,')

(2w)' 2(p'+m')'/' (2w)' (K'+is}[(p—K)'-m' —ieK, (P, —K)]
The d'K integration is now almost the second-order fermion vacuum proper self-energy except that the
(p-K) -m propagator has the -ieK, (p, —Ko) imaginary piece rather than the +is. It is just this difference
which gives rise to a finite g-dependent self-energy: Subtract and add to Eq. (20) the expression

d'P 4~-(V+I')"') . ~ d'K y. (P-~'+~)y"(p'+~)
(2w}' 2(p'+ m'}'/' (2w)4 (K'+ ie) [(p —K)' —m'+ ie]

to obtain

d'p O(p —(p'+m')'/'), ~0 dKO d'KI V
(2 +3 2 2 2 g/2 (ie'), ,~ Tr [y& (p -/+ m)y" (p + m) ] (2wi)5 ((p —K) -m ) + I'

Ip =~I PO—

In Eq. (22) we used (e & 0)

1 0; K&0, Z&p,
(P —K)'-m' —ieKO(P, —K ) (P- K)' m'+i& -2w, 6((P K}2 )s2) . 0& K & P (22)

The first term in Eq. (22) is now finite" and the last term, I', has its K integration just giving us the nor-
mal vacuum self-energy. Thus for I we have the result

d 'p 0()|.—(p'+ m')'/')
) 2y )/ T [E (0o P)(P )1 (24)

po-H

where Z '~ =Z„',&+Z&„". Z„'„' is the vacuum value of the second-order proper self-energy and Z~„ is the
finite p-dependent piece. Now for p'=m'

Z'„,') ~p~ a = d, m'"+ (1 —Z, -')(P -m)+Z/"~),

where Z f'~~is the vacuum finite piece of Z„,', ; this has the property that for on-mass-shell renormalization

Z,'y)(p'+m) )p2 2 —0 . (25)

Z, is the fermion wave-function renormalization. Thus the final value for I is"

(2w)3 (pz ~~2)1/2 (2w)3 2( 2 ~~2)1/2 L fP P™
0

(26)

Now we consider the infinite p, contour which remains. For T =0, this contour gives a p,-independent in-
finity. For T 0, we get the same previous p. -independent infinity and no T-dependent infinities. This
can be seen from Eq. (6) where the two temperature contours are both identically zero for no pole inf (IP). This absence of T-dependent infinities coming from the outer infinite p, contour is true in general
at all orders. The reason is that the infinity coming from the infinite p, contour is of theformK'x(infinite
constant) in every order, so that there are no K poles remaining in doing the finite contours in (6).

We now subtract Q~(e~, ms, 0, 0) —As(0, ms, 0, 0). This just subtracts out the infinity coming from the in-
finite po contour. Now we add As(0, ms, T, g) —Q~(0, mw, 0, 0). This is given by Eq. (17) and we see that the
infinities cancel to this e' order. 8'hat remains is just the ideal-gas and exchange term,
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Qs(e, m, T, p)!r 0= VQs(0, m, T, p)!r 0
—V

2 3 2 2 2 1/2 Tr[Efp(p'+~)]
d 'p 0(p —(p'+ m')'~')
2p 2p +m po=&

This completes the proof to e' order.

(2 I)

B. Renormslization proof to fourth order

We again follow the sequence of obtaining

QB(e~, m8, T, p) —Q~{0,ms, T, p),

subtracting out its vacuum value, and adding

Q~(0, m~, T, p) —Qs(0, m~, 0, 0) .

The integrals are arranged so that the outermost
integration, call it d'p, is a fermion loop, and
we again consider its finite and infinite contours
separately. For the finite p, integration we get the
propagator expansion of Fig. 9. There are two re-
marks to be made. First, the middle graph of
Fig. 2 has two fermion loops, and when we open
each one separately and add we get graph (b) of
Fig. 9. So Fig. 9 represents all the finite integra-
tions. Second, the dashed lines in graphs (d} and

(f) mean close over the double poles. The x in the
vertex of graph (g) is e'f (A), where e~ in Fig. I
has been expanded as es = e+ e'f(A). e3f{A) is the
vertex counterterm to lowest order and A is some
gauge-invariant ultraviolet regulator. The x in
graphs (e) and (f) are just -imam"~ mass insertions
coming from expanding to lowest order i && (propa-
gator in Fig. 1}. To separate out the finite and in-
finite pieces of these graphs, we again fold down
the "infinite" photon K integration(s) to the Feyn-

(2v)' 2(p'+m')"'

x Tr[Z'„,', (P+m}] (28)

because graphs (a), (b), (c), (e), (g) with +ie prop-
agators are just the fourth-order vacuum self-en-
ergy. As before, only Am"~ survives in Eq. (25)
and the final value for S is

man contour by the usual change of variables
K&, —K,', +icK,', (e &0 and we drop the primes).
Now each graph has a finite outside d'p integra-
tion and one or two K inner integration(s} with an
integrand of strange i~ propagators. To each
graph we add and subtract within each integrand
the vacuum expression for the propagators with

their +ie imaginary parts, just as we did in sec-
ond order. Now each graph in Fig. 9 has two

pieces, one with the integrand having all propa-
gators with their vacuum +is and one with the in-
tegrand which is the difference between the ro-
tated contour propagators and the vacuum propa-
gators. We now are in a position to analyze Fig.
9.

Let us take from graphs (a), (b), (c), (e), (g)
that piece which involves the integrand with only

+ie propagators. Calling the sum of these pieces
8, we have

(2)

(2)
X

(n)

X

(2)
X

~ ~ s ~ ~

X(4) ~ ~ ~ ~ ~

,) d 'P 0(P —(P'+m')' ')
(28)(2v}' ( '+m')'~'

What remains of each of the graphs (a), (b), (c),
(e), (g) is the piece which has in the integrand the
difference of propagators. We will look at these
graphs individually and start with (g) which is the
simplest. In (g) there is only one propagator which
has the strange ie (the internal fermion line) so
the integrand of the one remaining piece of (g)
has Eg. (23) in it. This just gives rise to Zz')so
the last remaining piece of (g) [call it (g')] is

FIG. 7. Mass counterterms given by Eq. (16). (2),
(4), . . . refer toom[, Dm, . . . , which are the
second-, fourth-, . . . order mass counterterms. FIG. 8. Propagator expansion for Fig. 1.
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(a) (b) (c)

(e)

FIG. 9. Propagator expansion for Fig. 2.

po =H

Now to this order Z, '~' —1=--', (Z, —1) so the final value for (g') is

(30)

Let us continue on to the last remaining piece of (b) [call it (b')]. As was said before, graph (b) includes
opening up both fermion loops of the middle graph in Fig. 2. Looking at this graph we see that there are
two fermion lines which have the strange ie (one of the lines in the closed loop and the bottom fermion
line). Thus the integrand of the last remaining piece in (b) has the form

AB-A'B' = (A —A')(B —B') +A'(B —B') + B'(A —A'), (31)

where A, B are the two strange i~ propagators and A', B' are the +is vacuum propagators. As before,
any term such as A-A', B—8', where A, B are propagators, will give a finite loop integration by Eq.
(23). Thus the first term on the right-hand side is finite. The last two terms in Eg. (31) make the bottom
fermion line a vacuum propagator with the upper loop a 5 function (giving rise to a finite K integration)
and vice versa, where the upper loop has now pure vacuum propagators and the bottom fermion line is
finite (on the mass shell from the 5 function). The former term is finite and the latter contributes a
(Z, —1) infinity. Working out the minus signs we have

(b')= —V(Z, 1) P P T [ (')(P' ) (32)(2v) 2(p +m) i

We continue to the last remaining term in graphs (c) and (e). In {c)the integrand is of the form of Eg. (31),
but now one of the symbols is a propagator squared and the other one is a single propagator. Now by tak-
ing the derivative of Eq. (23) with respect to one of the loop momenta we see immediately that the differ-
ence of two squared propagators is the derivative of a 5 function. Thus in graph (c) the first term in Eg.
(31) is finite, while the last terms make the single propagator have the vacuum value times the derivative
of the 5 function and the double propagators have their vacuum value and the single propagators become a
6 function [by Eq. (23)]. Only the former gives rise to an infinity. It makes the inner photon loop give
rise to a Z('~. We evaluate the derivative of the 5 function by integration by parts; after that the 5 function
makes the two fermion lines on the mass shell. In the remaining term of graphs (e), (e'), we have a dou-
ble propagator which becomes the derivative of the 5 function. The nm~' piece of (e') cancels the Am'
piece in ZP& of (c') leaving the only infinity in the sum of the two diagrams a (1 —Z, ') from (c'). Working
out the signs we have

Po=v
{33)
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Next we turn our attention to the last remaining piece in (a). There are three different fermion propagators
in (a) which have the strange ie. We need the counterpart to Eq. (31) in three variables. It is

ABC —A'B'C'= (A —A')(B —B')(C —C')+A'(B —B'}(C—C')+ B'(A —A'){C —C')

+ C'(A -A')(B —B')+A'B'(C —C')+ B'C'(A —A')+A'C'(B —B') . (34)

Each difference of an unprimed and primed variable produces a 6 function by Eq. (23} giving us a finite
loop integration. The only possible divergences represented in Eq. (34}are the last three terms, each of
which gives rise to a single 6 function. They put one of the three internal fermion lines in (a) on the mass
shell while the other two are the vacuum propagators. When the two vacuum fermion lines are just sep-
arated by one vertex they give rise to a (Z, —1)-loop infinity. This happens twice. The one remaining
infinity in (a') is

2 2 &/2

(35)
(2v ' 2$'+ m' '/'

p =H

We go on to the last remaining diagrams, {d) and (f). We deform the photon contours and add and sub-
tract from their integrand the vacuum propagators so each diagram has two pieces. Let us look at the
piece of each which just involves the vacuum propagators. Now in (d) the two photon loops will give rise
to a product of Z", which is to be differentiated by d/dp, from the residue theorem for a double pole. The
(hm'")' of these {Z'„,",}'pieces would be exactly canceled by the vacuum propagator values of graph (f) if
the factor ~ multiplying (d) were changed to 1. Thus the vacuum value of (d)+ (f) leaves a resultant mass
infinity which is easily worked out to be [call it (d, )+(f,}]

(d)(f )$I/((Q))pa((22)f/Q)Tr(p+m)())(+m)Tr(2py)
(2v)' " 4(p'+m')'/' 4(p'+m')

and which has the final value

(d, }+(f,) = -(nm'2))' d 'p m'
{2v)' (p'+m')' ' (p'+m')' ' (36)

(37)

What remains in each of the graphs (d) + (f) is the piece which has in the integrand the difference of the strange fe
and the vacuum+ ieFor (.d}there are twopropagators so we use Eq. (31). The first term of Eq. (31)is of course
finite while the remaining two terms of Eq. (31) make one of the photon loops give a Z'„,',& and the other a
X~&~), and vice versa; there are then two Am~')Z/~„') and am~') (1 —Z, '} infinities in {d) which, when multi-
pDed by -„are canceled by the last remaining piece of (f) which has minus these infinities. The only infinity
not canceled between the two remaining pieces is a (1 —Z, ')Z/~'„) piece in (d) which does not exist in (f).
Thus the sum of the two remaining pieces of (d} and (f) [call it (d, )+(f,)] is

(d, )+ (f,) = V(Z, ' —1), ~ »/2 Tr[Z&&'„)(p'+m)]
d'p 0()/, —(p'+m')'/')
2p 2p +m

po =W

This finishes the enumeration of the infinities in
Fig. 9 and completes the outer finite contour of

p, . Looking at Eqs. (28)-(37) we see that, after
the Ward identity Z, =Z, is used, all infinities
cancel except mass insertion infinities of Eq. (29)
and (36). Now we take the infinite outer p, contour
which just gives us pure vacuum infinities which
disappear after subtracting out the vacuum value
of

Qe(ee, me, T, g) -Qe(0, me, T, p) .
Next we add

the proof of the theorem, Eq. (12), to e' order.
This method oi proof could be extended to a

higher order but becomes increasingly tedious.
One sees that there are precise cancellations of
infinities which come about from parts of graphs
canceling parts of others in an intricate, delicate
manner.

V. RENORMALIZATION-GROUP EQUATION FOR QR

From Eq. (12) we have the renormalization-
group equations for Q~,

Qe(0, me, T, p) —Q (0, e0m, e0} S —Q„(e„,m„, T, p, S) = 0 .d
(38)

whose infinities are given by Eq. (17). This just
cancels the remaining mass infinities that were
left over in Eqs. (29) and (36). This completes

Equation (38) can be used to obtain important in-
formation. Let us choose the following renormal-
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ization scheme: We m'ake all wave-function and

coupling-constant renormalizations at a Euclidean
momentum p'= -M', but we renormalize the fer-
mion mass on the mass shell (for simplicity, one

mass), so that m„ is the position of the pole in the
fermion propagator. For the interesting case T = 0
(we will drop the T dependence of Qs for this dis-
cussion) Eq. (38) becomes

+P eg, — Qg eg, m~, —=0 .
(39)

The Callan-Symanzik function P depends on e„and
p, /I, for large pz» m„. The general solution to
Eq. (39) is

R eR)~R& ~ QR el' M & eR r~R

where

(40)

eR(1, ee) = ee .
Equation (41) states that the effective coupling
constants in a renormalizable field theory are
functions of the density (through their dependence
on p) for matter at T=O. Actually, this discus-
sion makes clear the fact that p. plays the identi-
ca1. role here in FTFT that Q, Euclidean motnen-
tum, does for the vacuum. From Eq. (41) it fol-
lows that the behavior of matter, vis-a-vis its
strength of interactions, is the same as the the-
ory's ultraviolet behavior in the vacuum. Thus
the strength of electromagnetic interactions in-
creases with density" while strongly interacting
matter, describable by a non-Abelian gauge the-
ory, becomes weak at high densities. " It is easy
to see that one must have densities of matter ap-
proaching the initial cosmological big-band singu-
larity before perturbation theory in QED breaks
down. This is due to the smallness of the electric
charge. However, for the strong force to become

weak enough so that perturbation theory may be
done, one need only have densities of the order of
6x10'" g/cc. " These large densities are in fact
reached in the heavier neutron stars, and one has
the astounding discovery that all quantities of in-
terest in these heavier mass neutron stars, which

involve the strong force, may be perturbatively
calculated. The reason for this is that the quark
fine-structure constant -2 at nuclear densities
(-2 x10"g/cc) and decreases rapidly above that
density.

VI. CONCLUSION

The primary result in this paper is the renor-
malization of the thermodynamic potential, Eq.
(12). The exact Feynman rules for constructing
Q~ as a power series in e for QED are given in
Sec. IIB; analogous rules can be derived for any
renormalizable theory following the procedure here
by first obtaining e~dQ~/de~ and following through
with the same calculations.

An immediate corollary is that the use of per-
turbation theory for a renormalizable field theory
in a medium results in an effective coupling con-
stant that varies with density. Equation (41) gives
e„as a function of p, . To obtain e~ as a function
of density, p, one must have p =p(p). Wlule this
is relatively unimportant for electromagnetism, it
has important implications for the strong force. '-'-'

An outstanding problem in FTFT is the proof of
the infrared finiteness of Q~ to all orders of per-
turbation theory. Research on this is in progress.

Parallel work on finite-temperature field theory,
including the explicit QED calculation of Q~ to e,
has been done in a series of reports from the MIT
gr oup.
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