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The high-energy, fixed-momentum-transfer behavior of spontaneously broken non-Abelain
gauge theory, with SU(2) gauge group, has previously been calculated through tenth order in
perturbation theory in the leading-logarithm approximation. We interpret the complicated re-
sults as due to the exchange of the gauge-meson Regge trajectory plus associated cuts gener-
ated by Reggeon field theory. There are only two Reggeon couplings consistent with the lead-
ing-logarithm perturbation theory calculation. The coupling strengths are highly overdeter-
mined by the perturbation calculation, demonstrating the consistency of the assumption of the
applicability of Reggeon field theory. For large values of the momentum transfer our results
are in agreement with the calculations of Carruthers, Fishbane, and Zachariasen and Corn-
wall and Tiktopoulos to all orders in perturbation theory. When all of the contributions bf the
moving cuts are summed in the weak-coupling approximation, the leading J-plane singularity
in the I =0 channel is a fixed cut. We show that this singularity remains fixed, at least in the
weak-coupling approximation, even when asymptotic freedom is taken into account.

I. INTRODUCTION

At the present time non-Abelian gauge theories
(NAGT) provide the leading candidates for a theory
of the strong interactions. As a result, it is im-
portant for the study of high-energy diffraction
scattering to understand the behavior of these
theories in the Regge limit. In this paper we pre-
sent evidence that the high-energy, fixed-momen-
tum-transfer behavior of NAGT with spontaneously
broken gauge symmetry is concisely described by
Reggeon field theory (RFT). For the case of an
SU(2) gauge group we calculate the Regge trajec-

tories and coupling functions in the weak-coupling
limit.

Our analysis rests on leading-logarithm calcu-
lations of Feynman diagrams, ' ' which have been
carried out to tenth order for a theory with SU(2)
gauge symmetry and gauge-meson mass, &', gen-
erated by giving a vacuum expectation value to a
doublet of Higgs scalars. ' The same calculation
has been carried out through eighth order, when
there are three triplets of Higgs scalars, ' with
very similar results. For fermion-fermion scat-
tering (Ez) and meson-meson scattering (G,) with
a Higgs doublet and isospin-I exchange, the re-
sults @re'

Eo- G~ isg {J,(h) + [2J,(4) —2(h'+ -', X')J,(h)']g' 1ns+ [(J,(h) + J(d)) —4(h'+ -'X~)J,(h)J,(h)

+ 2(h'+ -', X')'J,(a)'](g'lns)',

+ [-', Jg(&) —-', Jg(&) —Js(&) + -', Jc(&)+ -', J~(~) —-', (&'+ -', &') (J,(&)'+ J,(&)J,(4) + J,(a)J(a))

+4(&'+ -,'x')'J, (&)'J,(a}-—;(&'+—,
' x')'J, (n)'](g'lns)'+ },

E,- G, - sg'[1/(b '+ A. ) —J(h)g'lns+ &(6 + X')Ji(h)'(g lns)' ——,
' (6'+ X')'J, '(h)(g' lns)'+ ~ ],

G, -isg~(J(4)+ [-4J2(h}+(4'+2&')J(4)']g'lns+ [4J3(h)+4J(h) -4(h'+2K') J(d)J(d)

+ -', (a'+ 2X') 'J,(h) '] (g' lns)'

+ [;J(S) ' J„(S)-4J,(S) ——;J,(S) —-', J,(S)+ —', (a'+ u.')(J(a)'+ Z(a }Z(S)+J(n}J(a))

2(a' ~ 2X2)'J,(h)'J, (h) + -'(6'+2k')'J, (h) ](g' lns)'+ },
17 585
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where 6'= -t is the momentum transfer squared,
a11d

d'k 1
(2v) 3 (k'+ y') [(g k)'+ y'] '

d'k j,(k)j(s}=,
( „'). . . n~2

j(6) = d'k (k'+ X')ji'(k)
"

(2v)3 (g k)~+y2

j~(n)= d k (k +x ) j,(k)
(2v)' (Z -k}'+X'

" d'kj (6) = ), (k +X )j,(k) j,(a —k),

~' d'k (k'+&') j,(k)j,(k). (2v)' (Z -k)' X'

(2)

" d'k, d'k, (k, '+X')j,(k, ) (k,'+X')j,(k,)
~ (2v)' (2v)' (6 —k ) +X (6 —k )'+X'

x [(Cl, k~ k,) +A, ']

Feynman diagrams and rules giving rise to these
transverse integrals are presented in Ref. 1.
When there are three triplets of Higgs scalars,
the only changes in Eq. (1) are (6'+ -', X') n' in
E, and G„and (6'+2K')-(a'+3k') in G,.'

We immediately note that the I = 1 amplitude can
be interpreted as the first four terms in the g'lns
expansion of the Regge-pole amplitude

F, G~ 2' j, (a)s &(1- e " ')/sinva, ,

with

(3)

o,(a') =1-g'(r '+X')j,(s}. (4)

It has been shown that for d'»X' and g'«1, Eq.
(3) holds to all orders in g'lns. "' The trajectory
passes through J=1 at t= -d'=X', and is obviously
the Reggeized vector meson.

The I = 0, 2 amplitudes are more complicated.
In this paper we show that they can be interpreted
as the first four terms in the g'lns expansion of a
Regge-cut amplitude. The cuts are generated by
the exchange of two of the I =1 Regge poles ex-
hibited in Eqs. (3) and (4). Our procedure is to
write down the most general form of the cut am-
plitude which is consistent with the contraints of
RFT. We then expand in powers of g'lns and com-
pare with Eq. (1). The requirement that only the
integrals of Eq. (2) emerge in each order in per-
turbation theory determines the dependence of the
Reggeon coupling functions on the transverse mo-
mentum. There are three independent couplings
in each isospin channel. Their strengths are com-
pletely determined by the information obtained
from fourth- and sixth-order perturbation theory.

We are able to Use these coupling functions to cal-
culate the eighth- and tenth-order contributions
to the I = 0 and I = 2 amplitudes, and we find agree-
ment with Eq. (1}. We take this agreement to be
a nontrivial confirmation of our assumption that
RFT correctly gives the Regge limit of NAGT.

Bartels has also used the techniques of RFT to
analyze the high-energy behavior of NAGT. ' Note
that there are terms in the I = 0 and I = 2 ampli-
tudes which might appear to be the contributions
of Regge poles in those channels on the trajectories

+0(4 ) = 1 —2g (6 + v X2)j~(6),
5)

&,(&') = 1+g (6'+ 2X')j,(g) .
As a first approximation Bartels retains only these
Regge poles and writes down an RFT based on them.
On the other hand, we find we can reproduce the per-
turbation- theory results only with Regge cuts in the I
= 0 and I = 2 channels. To clarify this point, we
repeat our analysis allowing for contributions
from these poles. Now there are five independent
couplings in each isospin channel. The five
strengths must satisfy a set of six equations in or-
der that each coefficient of (g'ins) "f,(h) take the
value given in Eq. (1), when n 4 I—t is. unneces-
sary to include the tenth-order contributions in
this analysis because the contributions through the
eighth order already overconstrain the coupling
strengths. There is only one solution to these
equations, the old one in which the poles of Eq.
(5) decouple from the theory. Actually, there is
no obvious reason from non-Abelian gauge theory
why "elementary" Regge poles should be present
in any channel except I= 1, so their decoupling is
reasonable.

The RFT couplings we have deduced are, of
course, only the leading weak-coupling expres-
sions. (To our knowledge, NAGT are the only
field theories for which one can unambiguously ex-
tract the Regge trajectory and coupling functions
order-by-order in perturbation theory. This is
the case because all the singularities are near
j= 1 in the weak-coupling limit. ) Retaining only
the lowest-order couplings, there are always just
two Reggeons in the t channel for I=0, 2. (For I
= 1 there is simple Regge-pole exchange in the
weak-coupling limit. ) Since the Reggeons only
scatter off each other, we can write an integral
equation which sums all the diagrams. This equa-
tion has been given previously by Fadin, Kuraev,
and Lipatov, ' and Cheng and Lo,' without note of
its connection to RFT. The kernel is determined
by the two-Reggeon-two-Reggeon coupling, and
when the weak-coupling expression is used, the
kernel is not sufficiently damped at large trans-
verse momentum to be square integrable. If the
kernel were L', then there would only be moving
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singularities in the angular momentum plane. In
fact it is argued in Refs. 1 and 7 that when one
sums all of the leading-logarithm contributions
to the I = 0 amplitude, the right-most singularity
in the angular momentum plane is a fixed cut with
a branch point at J= I+g'(21n2)/v'. It is suggested
in Ref. 7 that if the theory is asymptotically free, '
the fixed cut may no longer be present once the
momentum dependence of the effective gauge cou-
pling constant is taken into account. We have stu-
died this suggestion with negative results. We fol-
low the basic approach of Cardy' and Lovelace"
who used the renormalization group to study the
behavior of the two-particle irreducible Bethe-
Salpeter kernel in PD, field theory. They found
that the kernel was square integrable and hence
there were only moving singularities in the angu-
lar momentum plane, provided the theory was as-
ymptotically free. For NAGT the Bethe-Salpeter
equation does not appear to be useful for this type
of analysis because multiparticle intermediate
states are not negligible even in the weak-coupling
limit. However, multi-Reggeon intermediate
states are negligible in the weak-coupling limit,
so we write down an analogous equation with a two-
Reggeon irreducible kernel. We use the renor-
malization group to study the behavior of this ker-
nel when the (Euclidean) momenta on which it de-
pends become large. Our formal argument indi-
cates that the kernel is sufficiently damped at
large momenta to be square integrable provided
that the gauge coup!.ing constant is driven to
zero in the deep-Euclidean limit. However, when
we make use of the weak-coupling approximation
to the RFT couplings, we find that the formal ar-
gument breaks down because the approximate ker-
nel does not have sufficiently tame infrared be-
havior. Whether the infrared behavior of the ker-
nel is tamed by higher-order corrections is an
open question.

In understanding the Regge limit of NAGT it is
important to see how our results are related to
those of Carruthers, Fishbane, and Zachariasen,
and Cornwall and Tiktopoulos. ' These authors
have calculated the coefficient of the leading pow-
er of In(n'/X') in each order of perturbation theory
and summed up the contributions. They find for
I=O,

FD-, 1 —exp —,lns In(&'/X') . (6)0 g2 lns 4g2 J

the leading-logarithm calculation of Refs. 1 and 7,
presumably because it is not sufficient to merely
sum the leading powers of In(h'/X') even for n'
» X'.

The layout of the paper is as follows. In Sec. II
we calculate the couplings in RFT by comparison
with Eq. (1). In Sec. III we write down the integral
equation which sums the leading-logarithm con-
tributions and discuss its solution. We also es-
tablish Eq. (6). In Sec. IV we derive the renor-
malization group equation for the two-Reggeon ir-
reducible kernel, and use its solution to discuss
the large-momentum behavior of the kernel. Fi-
nally, in Sec. V we recapitulate and comment on
our results.

II. REGGEON FIELD THEORY COUPLINGS

We now show how the results of Eq. (1) arise
naturally from the assumption that the leading
singularities in the angular momentum plane are
the I = 1 Regge pole and its associated Regge cuts.

It will be convenient to work with the Sommer-
feld-Watson representation of the scattering am-
plitude

G,(s, a') =s . s f,(E,n')dE @ 2 1 —8

for I =0, 2. Here fz is the even-signatured t-chan-
nel partial-wave amplitude for isospin I, and E
= 1 —J. The contour of integration runs from +i
to -i ~ and is to the left of all singularities of f,.
Note that we have only included even-signatured
contributions to the G,. It is clear from Eq. (4)
that the singularities of interest will be within a
distance of order g' from the point E= 0 (J= 1).
As a result, in order to obtain the leading power
of lns at each order ing', it will be sufficient to
approximate the signature factors by their values
at E= 0. The even-signatured amplitude will
therefore be pure imaginary and the odd-signa-
tured amplitude will be pure real, but we see from
Eq. (1) that G, and G, are in fact imaginary.

We start by considering 6,. The simplest RFT
diagrams with one large rapidity gap are shown
in Fig. 1. The wavy lines represent the I = 1 Reg-
geized vector meson. Diagrams corresponding
to the exchange of an odd number of Reggeons con-
tribute only to the odd-signatured amplitude, so
they do not concern us. The two-Reggeon-cut dia-
gram of Fig. 1(a} has the general form

We have used our RFT integral equation to evalu-
ate the leading contribution in powers of
g'lns ln(n /X') for n'» X'. Our coefficients agree
with Eq. (6), which further establishes the cor-
rectness of the extrapolation to all orders of per-
turbation theory. Equation (6} does not agree with

G,'(s, S')=is . s ~
2ri

d'k p, (k, ~)
(2v)' E g9C(k) g'JC{n k) '

(6)
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{o)

k, 5-k)- k(- k)

FIG. 1. Reggeon diagrams with one large rapidity
gap. Diagram (a) contributes in the weak-coupling limit,
but diagram (b) does not.

where

g'K(k) = 1 n, (k2) =g'(k'+ X')J', (k) .

We have approximated the signature factor by i,
which, as we have just noted, is sufficient for a
leading-logarithm or weak-coupling calculation.

In principle, the function p, (k, 4) is arbitrary.
However, if we make use of the expansion

dE sE 1= 1 -A lns+ —(A lns)'
KZ

1 3

3j
——(Pins) + (10)

we see that in order not to be in contradiction with
the g' term in G, we must choose p2(k, 6) to have
the form

a2g4
2 0 (k2 y2) [(n k)2 y2]

where a is a constant which measures the strength
of the coupling of two Reggeons to the external
particles. The factors of (k'+X') ' and [(b, —k)'
+ X2] ' are hardly surprising. We know from
Gribov's general analysis" that p, must be pro-
portional to [sinwo, (k) sinwo. ,(4 —k)] ', so it must
have a pole when either of the Reggeons is on the
spin shell. In writing the rules for evaluating RFT
diagrams we shall assign a factor of (k2+X2) ' to
each Reggeon line carrying transverse momentum
k. The two-Reggeon-two-particle vertex function
is then simply ag'.

Substituting Eqs. (10) and (11) into Eq. (8) and
making use of Eq. (2), we expand the two-Reggeon-
cut diagram of Fig. 1(a) in powers of g'lns and
find

G',(s, 6') = isa'g'{J, (b) —2J2(n)g' lns

+ [J2(n)+2(n)](g'Ins)'

—[2'J„(n)+Js(n)]( g'lns)'+ ~ ~ ~ ).
(12)

It is encouraging to note that all the terms found
in Eq. (12) also appear in Eq. (1).

Since the coupling of two Reggeons to the exter-
nal particles is of order g', we expect the coupling
of four Reggeons to the external particles to be at
least of order g'. As a result, the four-Reggeon-
cut diagram of Fig. 1(b} will not contribute in the
weak-coupling limit. To be more specific, this
diagram has the general form

2wi (2w)' (2w)' (2w)' E —g K(k, } -g'K(k, ) —g'K(k, ) —g'K(n, —k, —k, —k, )
'~ ~

Since p~ will be at least of order g' the nth-order
term in the expansion of Eq. (13}will be propor-
tional to g'(g' lns)", and therefore will be negligi-
ble compared to the corresponding terms in Eq.
(12} in the weak-coupling limit. In addition we
have been unable to find any nonzero form for p4
which does not lead to a contradiction with the
transverse-momentum dependence of 6,. The
basic difficulty is that the coefficient of {Ins)'
arising from Eq. (13} involves a triple integral
over the transverse momentum, whereas the cor-
responding coefficient in 6, involves a single in-
tegral. The same arguments hold for the N-Reg-

k

FIG. 2. Reggeon diagram with two large rapidity gaps.
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geon-cut diagrams, so the diagram of Fig. 1(a} is
the only one with one large rapidity gap which
contributes in the weak-coupling limit.

We now turn to the RFT diagrams with two large

rapidity gaps. Since only the two-Reggeon-two-
particle vertex enters in the weak-coupling limit,
the only relevant diagram is the one shown in Fig.
2. It has th~ general form

d'k d'k 2

G'(, &)= ' 'g . ', ', c (k„k,b) g(k x') '[(n —k, )' x'] '[E-g'K(k, ) -g'K(b, —k )] '.
7fi

(14)
C,(k„k„h}is the two-Reggeon-two-Reggeon coupling function in the isospin-zero channel. The most gen-
eral form for C„which reproduces the transverse-momentum dependence of the g term in G„ is

, (k, '+ x') [(a —k,)'+ x'] + (k,'+ x') [(n —k,)'+ x']
Co(k„k„a)= bg'(b, '+ gX' + cg' '

(k k ),+!,
(k, +x )(k +x )+[(n —k, ) +x ][(n —k )'+x'] 1, (15)

b and c are constants whose numerical values will be determined shortly. Making use of the fact that

(16)

3

G,'(, &)= ' 'g' . Q ', C,(k„k„&)C,(k„k„n) Il(k, '+&') '[(&-k,)'+&'] '
2wz 2wi ai j~1

" dE ~E

~ 2@i (E-A)(E-B) 2!
= —lns+ —(A+ B)(lns)' ——

i
(A'+AB+ B')(lns)'+

31

we see that G,' has the expansion

G', = -isa'g'([b(h'+ -', X')J,(b)'+4cJ2(n)]g'Ins —[2b(b, '+ -', X')Ji(n) J2(d)+4c(J3(n)+ J(h))](g'lns)'.[-;b(n"-', !')(J,(~)J.(n) J,(n)J(~) J.(n)')

+ -', c(Ji(n)+ 2J„(n)+ 6Js(n)+ 2Jc(h)+ Js(n))](g'Ins)' - ~ ~ ~ j .

Next, we must consider the RFT diagrams with three large rapidity gaps. The one shown in Fig. 3 has
the form

Making use of the expansion
x [E gee(k, ) -g'K(~ k, )]- (18)

" dE S E

J 2vi (E A)(E B)(E—-C) 2!-3!
we find that

G'(s, n) = isa'g~{[-', b'(b, '+ -', X')'Ji(h)'+ 4bc(X'+ -', X')Ji(h) J2(h) + 4c'J(n) + 4c'J(n) ] ( g' lns)'

—[b'(a'+ —,
' x')'J, (n)'J, (n) + -,'bc(a'+ -' &') (J,(a)'+ J,(n)J,(h) + J,(n)2(n))

+4c'(-', J„(dl)+J' (d))+ -', c'(J(h)+2J (n}+J (b)}](g'Ins}'+ ). (20)

We now argue that the diagram of Fig. 3 is the
only one with three large rapidity gape that enters
in the leading-logarithm approximation. First we
note that the coupling function for an odd number
of odd-signature Reggeons must vanish by signa-
ture conservation. ""Diagrams involving the
coupling of six or more Reggeons do not contri-
bute because such couplings are at least of order
g . Furthermore, such diagrams would not have
the proper transverse-momentum dependence.
The only other possibility would be for the three-
Reggeon-one-Reggeon coupling function to be of
order g'. If this were the case then the diagram

of Fig. 4 would contribute to the isospin-one ex-
change amplitude in the sixth order, and spoil the
simple exponentiation. Since this does not happen,
we conclude that the three-Reggeon-one-Reggeon
coupling is at least of order g'. As a result, the
only RFT diagrams which contribute to the iso-
spin-zero (and isospin-two) amplitude in the lead-
ing-logarithm approximation are those which cor-
respond to strings of two-Reggeon bubbles as il-
lustrated by Figs. 1(a), 2, and 3.

The last Reggeon diagram to consider is the one
with four large rapidity gaps. Its contribution is
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G', = i—sa'g'( g' lns)'{-,' 5'(4'+ —,
' x')'J, (h)'+ 2b'c(n, '+

—,
' &')'J,(n)'J2(4}

+ -,'bc'[J, (d)J,(n) + J,(n)J(s) + J2(n)'] + —', c'[J,(h) + 2Jc(d)+ JD(&)])+ (21)

a=1, b=2, e= -1. (22)

Since all parameters are now determined, we have
in effect "predicted" the results of the eighth- and
tenth-order calculations. In order that the various
functions of momentum transfer have the correct
coefficients, 5 and c must satisfy the following
eight equations:

eighth order

J,+ J (2c+ 1)'=1,

The complete amplitude given by RFT is the sum
of Eqs. (12), (17), (20}, and (21}. The three cou-
pling strengths are determined by the fourth- and

sixth-order perturbation terms of Eq. (1),

b-b' c-c' s'+-'X'-a'+2m'.
4

(24)

strong support to our hypothesis that the high-en-
ergy behavior of the I=0 amplitudes is controlled
by the two-Reggeon cut. As we mentioned in the
Introduction, in Sec. III we shall extend the com-
parison of perturbation theory and RFT to all or-
ders in the limit b, '»&'.

The isospin-two exchange amplitude can be
treated in exactly the same way as the isospin-
zero amplitude. The coupling of two Reggeons to
two external particles in the I = 2 channel will be
denoted a'g'. The two-Reggeon-two-Reggeon
coupling function C,(k„k„d) can be gotten from
C,(k„k„h) by the replacements

J~J, 2b(2c + 1)= -4,
J3 b2 2

tenth order

J,'+ J,(J,+ J) ' b+ —'bc(1+c) = »
J,'J, b'+ 2b'c = -4,

(23)

a'= 1, b'= -1, e'= & .1 (25)

It then follows that the contributions from Reggeon
diagrams with one through four rapidity gaps can
be read off Eqs. (12), (17), (20), and (21) by mak-
ing the replacement of Eq. (24}. Comparing with
the fourth- and sixth-order terms of Eq. (1) we
find

-', J„+Js (2c+1)'=1,

J,+2Jc+ J~ -', c(1+2c)'= —-', .

These equations are satisfied by the values of b

and c given in Eq. (22), which we believe lends

Q-k

The eighth- and tenth-order I = 2 contributions to
Eq. (1) are correctly given by RFT when Eq. (25)
is used.

The above formulas hold when a Higgs doublet
is coupled to the gauge mesons. When three Higgs
triplets are used instead, the only changes are 4'
+ 5 X'- b, ' in the I = 0 expressions, and 4'+ 2X'-~'+ 3X' in the I= 2 expressions. '

As we mentioned in the Introduction, Bartels has
suggested that as a first approximation the I= 0
and I=2 channels can be described in terms of
Regge poles with trajectories given by Eq. (5),
and one can identify contributions to Eq. (1) which
appear to be the first three terms in the g' lns ex-
pansion of such Regge-pole amplitudes. We will

kp Q-kp

k@

FIG. 3. Reggeon diagram with three large rapidity
gaps

FIG. 4. Self-energy correction to Reggeon propagator.
The coupling must be O(g 3) or smaller.
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now show that if one starts by assuming that such

poles exist, one finds that they decouple from
both the external particles and the two-Reggeon
intermediate state.

Let us start by considering 6,. If there is an I
= 0 Regge pole with a trajectory given by Eq. (5),
then it will have the g'lns expansion

G,'(s, n') = isp(n) [1 —2(4'+ —,
' X')J,(b)g' Ins

+2(n'+ -'X')'J, (n)'(g'lns)'+ ] .
(26)

From Eq. (1) we see that P must have the form

(27)

so the coupling of the I = 0 Reggeon to the external
particles has the rather artificial form dg3J, (b)'~'.

FIG. 5. Diagrams with two large rapidity gaps when
there is an elementary I =0 Reggeon.

There are now two additional RFT diagrams with
two large rapidity gaps. They are shown in Fig.
5. The dashed line represents the I = 0 Heggeon.
Their sum has the general form

G,'(s, n')=2isadg'J, (n, )'I' . ss,D,(k, ij,)(k' X+') '[(n —k)'+X'] '[E g'K(k-} -g'K(n k)] '"dE E d'0

(29)

x [E 2g'(g'+ ' x')J,(n)]-'.

D (k, h} is the coupling function for the vertex involving one I =0 Reggeon and two I = 1 Reggeons. It is
clear that in order to get the transverse-momentum dependence correct in the sixth order we must take
Do to have the form

D = sg'(n'+ ' X')Z(n)' '

Then, Eq. (28) will have the expansion

G',(s, n') = -2 is dasg(( n+ -', X')J,(b,)g'lns —[(n'+ —,
' &')'J,(n)'+ (n '+ -', X'}J,(n)J,(b) ](g'lns)'+ j. (30)

The new diagrams with three large rapidity gaps are shown in Fig. 6. Their sum has the expansion

G,'(s, n') = isg'j[(-', a'e'+ ,' d'e'+ abds—)(n,'+ —,
' X')'J,(n)'+ 4adce(n'+ -', &')Z, (h) J2(n) ](g'lns)'+ ~ .

Adding the contributions of Eqs. (26), (30), and (31) to the previous terms yields

Go(s, n ) = isg~ ((a2+ d )J(n }—[(a'b + 2d'+ 2ads}(h'+ -', X')J,(n ) + a'(4c + 2)J2(b ) ]g' lns

+ [a'(2c+ 1) (Z,(n) + J(n))+ (2a b(2c+ 1) + 2ade+ 4adce)(h'+ -' X')J,(b, )J,(n)

+( ', a'b'+2d'-+2ads+ -', a's'+ —', d'e'+abde}(b, '+ ', X')'J,(n)'](g'Ins)'+ ~ ~ ~ ).

(31)

(32}

At this point it is convenient to normalize Go(s, 4')
so that the coefficient of (lns)' is exactly isg'J, (n).
%e now have five parameters which must satisfy
the following six equations if we are to obtain
agreement with the Feynman-diagram calculation
through eighth order:

(j,) a +d2= 1, (jj) a b+ 2d + 2ads= 2,

(iii) a~(4c+ 2) = -2, (iv) a (2c+ 1)'= 1,

(v) 2a'b(2c+ 1}+2ade+ 4adce= -4,

(vi) ~a b'+ 2d'+ 2ade + 2 a'e'+ ~ d'e'+ abde = 2 .

(33}

FIG. 6. Diagrams with three large rapidity gaps when
there is an elementary I=0 Reggeon.
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The unique solution to this overconstrained set of

equations is

a= 1, b=2, c= -1, d= e=0. (34)

So, the presumed elementary Regge pole de-
couples from both the external particles and the
two (I=-1)-Reggeon state. We are simply left with

our original solution. Precisely the same thing

happens if we assume that there is an elementary
Regge pole in the I = 2 channel.

III. KEAK&OUP LING SOLUTION OF REGGEON FIELD
THEORY

We have seen that only two-Reggeon cuts con-
tribute in the I = 0 and I = 2 channels in the weak-
coupling approximation to RFT. We emphasize
that this does not correspond to just two vector
mesons in t:he t channel. We have explicitly corn-
pared our predictions with perturbation theory
through the tenth order, where as many as five
vector mesons appear in the t channel in particular

FIG. 7. Integral equation for the two-particle-two-
Reggeon ampli. tude.

Feynman diagrams. These contributions (J, is an
example) are reproduced in the leading-logarithm
approximation when the Reggeon factors s are ex-
panded in powers of g'. In 2nth order, the tw'o-

Reggeon cut includes as many as n vector mesons
in the t channel. Therefore, the description of the
dynamics is greatly simplified when written in
terms of RFT.

Since only two-Reggeon cuts contribute, we can
write an integral equation summing all diagrams;
it is illustrated in Fig. V for TI(k, n, , E}, the two-
particle-two-Reggeon amplitude in the isospin-I
channel

T(k n E)=1+ ' ' ' " ' ' [E — 'K(k') — 'K(~-k')]-'.. (2v)'(k" +X'}[(n -k')2+X']

The coupling functions C,(k, k', n) are given by Eqs. (15), (22), (24), and (25). In terms of T, the partial-
wave amplitude is

. (2v)' (k'+ 12)[(n —k)'+ X'] [E -g'K(k) -g'K(rh —k)]
(36)

Equation (35) is equivalent to equations given by
Fadin, Kuraev and Lipatov, ' and by Cheng and Lo.'
If the kernel of the integral were of Fredholm
type, we could immediately state that fz(n, , E) has
only a two-Reggeon cut plus, possibly, poles which
can be regarded as Reggeon-Reggeon bound states,
and which move as d' is varied. However, the
norm of the kernel, regarded as a double integral
over k and k', actually diverges. This permits the
partial-wave amplitude to have additional cut sin-
gularities in the E plane, and in Refs. 1 and 7, the
analysis is carried far enough to argue that the
leading singularity is a, fixed cut at E= -g'(21n2)/
v' or 4=1+g'(2ln2)/v'. We think it is very inter-
esting that a fixed cut can arise by summing mov-
ing Regge cuts. Fixed cuts are generally thought
to lie outside the purview of RFT, but here we see
how they can be incorporated naturally.

We can use Eq. (35) to calculate the leading-log-
arithm approximation to Eo(s, d ') = Go(s, n, '} in all
orders of perturbation theory for 6'»X'. Our re-
sult agrees with Eq. (6), which can be regarded
as further support for Eq. (35).

We begin with some restructuring of Eq. (35).
Define P(k, b, E) by

( )
To(»n E}

E -g'K(k) —g2K(n —k)

so that

F,(s, n, ') = G,(s, d ')

4 "dE
=SSg ', S2'

d'k $(k, n, E)
3 $2+// g Q 2+$2

In order to compare with Eq. (6), it is convenient
to expand E,(s, n') in powers of lns. This is done
by expanding

(38)

(39)

so that

F,(s, u, ')= isg'Y4~

d'k g„„(k,d)
~ (2s)'(k'+ X'}[(~ k)'+ X'] '

(40)

Equation (35) now can be recast as a recursion re-
lation for the P„'s.
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y, (k, ~) =1,
P„.,(k, 6) = [K(k) +K(h —k}]g'!{„(k,a}

d'k'C, (k, k', r )y„(k', ~}
„' (2v)'(k" +~2)[(~ k')'+X'] '

Now we must exploit the relation b'»~'. There
is no longer a cut in the E plane which dominates
the picture because we have expanded in powers
of E '. However, note that when 6' is large, the
integral operator in Eq. (41) is large only when
k' is near zero or 6,. As a result, tt}„ is going to
be needed only in this region in order to evaluate
either g„„, or F,(s, n') in Eq. (40). Since P„(k,h)
= g„(h —k, 6), let us concentrate on evaluating
g„(k, h) for X'«k'«4'. (lt is unimportant to cal-
culate P„accurately for 0& k'~ X' because the
phase space of this region is small. ) Now we can
approximate

P(k, 6)= Q 4„,(ln~) (1 —,) (45)

and the recursion relation for the A„, 's is

A, ,=1,
g2

Aff, j s o —
4~2 n

g2
ff+1s fl 4 ~ fls fl

(46)

2 2

4~'

Since Eq. (43} obviously has a unique solution, so
must Eq. (46). (It is not hard to see how the terms
are calculated successively. ) Therefore it suf-
fices to exhibit a single solution of Eq. (46) to
know it is unique,

k'+ k"+ 2X'
C,(k, k', n)- gh' 1 —(,),

K(k)-, In(k'/X'),1

K(n —k)-, In(n'/X'),1

1 1
(a —k')'+ X'

(42)

( ) (47)
I !(n f 1)! '

The partial-wave amplitude can be calculated
from Eqs. (40), (45), (47), and the integral

r [1 (6'/X'}]'", (48),2(~2 (2v)'(k'+ X') 8v'(p+ 1)

which we derive in the Appendix. The result is

In connection with the last approximation we ob-
serve that after substitution the integral operator
of Eq. (41) becomes logarithmically divergent
when applied to typical terms in g„. To logarith-
mic accuracy we can made the substitution pro-
vided we choose k"& b, ' as the region of integra-
tion. Altogether, Eq. (41) reads, for X'«k'«6',

g, (k, b) =1,
g2 k2 g2

P„„(k,h)=, ln —,+ln —,P„(k, h)

6'4m' ~ pgf

fl+1
n+j., f

j+1f~
(49)

This includes a factor of two for the region k- 4
in Eq. (40). From the binomial theorem

( g'/4s')"
j+1 n+1

+ 2g
d'k'g„(k', a)

, ,„.(2s)'(k" + X')

so for each value of n the coefficient of In(n'/X')
is in agreement with that found in Hefs. (4) and
(5). The sum of these leading-logarithm contri-
butions is

+k +2K
(43)

(k k) F,(s, S') =, 1 —exp — lns in-/'sg' g'
o y g2 ln&

— —
4&a (5o)

The factor two in front of the integral is to include
the region k'-6 in Eq. (41).

In the Appendix we establish the result

d'k'[ln(k "/X') ] k'+ k"+ 2X'
(2s)'(k" +X') (k —k')'+&'-

, [In(k'/X') ]'" X' «k' «a'. (44)
1

W'e immediately see that the general term in the
recursion relation has the form

which agrees with Eq. (6).
We point out again that the calculation of the

leading powers of In(n'/X') at each order in per-
turbation theory provides a significant consis-
tency check on our assumptions. On the other
hand, the resulting sum does not have a singular-
ity at J= 1+g'(2 In2)/v', which presumably shows
that the sum of leading powers of In(n'/X') does
not give the leading behavior of the amplitude for6'» X'.
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IV. ASYMPTOTIC BEHAVIOR OF THE RFT KERNEL

We now want to determine whether the norm of
the kernel of Eq. (35) is divergent when higher
orders of perturbation theory are taken into ac-
count. We shall use the renormalization group as
the main tool in our analysis.

When higher terms in perturbation theory are
included, Eq. (35) will become

"d'k'C, ~(k, k', n,)T,(k', a, E)
„(2v)'I'& &(-k') I'&»(-(n —k)')

x [E+u( k')+o( (6 k)') 2] '.

The correction of the Reggeon denominator is ob-
vious, where &(t) is the complete gluon trajectory
function. The replacement of (k'+ X') by -I'"'(-k')
is consistent with the vanishing of sinvu(-k ) at &

= 1, and can be motivated directly by considering
the effect of self-energy insertions on gluon lines
in the NAGT diagrams. C, „includes corrections
to the weak-coupling four-Reggeon interaction, and
the effects of intermediate states of more than two
Reggeons. Equation (51) can, of course, be thought
of as defining C/ „(k,k', 6).

The functions of Eq. (51) are all renormalized
quantities, as they must be when one goes beyond
the leading-logarithm approximation. They there-
fore depend upon a normalization momentum, p',
at which normalization conditions are placed on
propagators and vertices. In addition, they depend
upon the Higgs-meson self-coupling which is re-
quired to spontaneously break the gauge symmetry,
the Yukawa coupling of the Higgs mesons to the
fermions, and the gauge parameter, g, of the vec-
tor mesons. We will suppress the dependence on
these additional couplings since they do not appear
in the weak-coupling expressions. Under these
conditions, the functions in Eq. (51) depend upon
renormalized parameters g, X', f, and p'.

We can immediately dispose of the gauge de-
pendence by recalling that S-matrix elements are
gauge independent. " We can therefore imagine
having done our initial leading-logarithm calcula-
tion in the Landau gauge, instead of the Feynman
gauge used in Refs. 1 and 3. Equation (35}would
have again appeared, and in Eq. (51) the effect of
high-order corrections would not change the Lan-
dau gauge condition. The important property of
the Landau gauge under a renormalization trans-
formation is that one remains in it after the trans-
formation. We can therefore set $= 0 in the rest
of the discussion.

When the normalization point, p', is changed to
p', the NAGT n-meson amplitudes undergo a re-
normalization

I (n)(p g y2 p2)

Z +/2p«)(p Z Z 3/& Z Z &p~ p2) (52)

y=a, g, P= -pb, g, K=c,g,a I 3 2 (56}

with b, & 0, unless there is an exceptionally large
number of fermions. The solution of Eq. (55) is

C, „(pk, pk', n, g, x', p')

= p'C/ „(k,k', 6/p, g(-lnp), R'(-Inp), p, ')

xexp 2 d~ g &))

where

= -P(g(r)), g(0) =g,

d ink(&) =1-~(g(r)), X(0)=&.

(58)

Using Eq. (56),

g (- p)

A

X(-Inp) = —(1+b,g'lnp)'0 'o.
p

(59)

From this it follows that both g and X decrease
monotonically to 0 as p increases above j..

Similar results can be derived for the other
quantities appearing in Eq. (51),

where the renormalization constants are finite.
%e now want to determine what transformation
this renormalization induces on Eq. (51). The
Regge trajectories are invariant since the asymp-
totic behavior cannot depend on the renormaliza-
tion scheme, and the effect on the inverse meson
propagator can be read off Eq. (52}. If we consider
contributions like those of Figs. 1-3, it is evident
that

C/ a(k, k', b, ,g, X', P')

=Z, 'C/ ~(k, k', h, Z, Z, ~/'g, Z,Z ', X', p, ). (53)

From this it follows that Ci „satisfies the same
renormalization group equation as 1 "',

8 8 8
p, —+ P —+ zX—2y C/ „(k,k', h, g, X', p, ') = 0 .

8p. 8g 8X

(54)

By dimensional analysis this can be converted to

8 8 8

8p 8g N.p ——P—+ (1 —«)X——2+ 2y

x C, „(pk, pk', pd, g, X', p')=0. (55)

At the one-loop level,
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I

p ——P—+ (I K)X —- 2+ y I' "](pk,g, X', p, ') = 0,
8p 8g 8X

p ——p —+(1 —K)X—n(pk, g, X, p ) =0,8 8 8 t

8p 8g N
I

t'"'(pk, g, k*, n']=p'I'*'(k, g(-tnp), X't-tnp], n*)exp deq(g( ))},
1np

u(pk, g, &, p, ') = u(k, g (-lnp), &'(-lnp), p, ') .

It is convenient to symmetrize the kernel of Eq. (51). Recalling that p is O(g') we write the sym-
metrized kernel in the form

(60)

g2K (k, k', q/], ,g, X2) = C „(k,k', q5){I' ](-k ) 1 ["(-(b —k)')I' "](-k")I' "](-(&—k')')

x [E+u(-k') + u(-(b, —k)') —2] [E+ n(-k") + n(-(n —k')') —2] '/'. (62)

The norm of the kernel is

dp

d q
s s 5 (q +q' —I}I

g' Kl(pqq pq q~ qg'"q} I~ (2v}' (2v)'

"d2 d d, g (-lnp), , 5(q'+ q" —I) IKz(q, q', qkklp, g(-lnp), /]. '(-1np))
I (63)

Superficially it would appear that N is finite provided g (-lnp) -0 as p- ~. This is the result found by
Cardy' and Lovelace" in ft)~., theory. However, before we can draw any such conclusion we must investi-
gate the infrared behavior of the kernel since]].(-lnp)-0 as p-~. We can only do this in the weak-coupling
approximation, where we know KI explicitly. Making use of Eqs. (4), (15), and (59) we see that in the
weak-coupling approximation

w]

Z(q, q', n/p g( tnp), x't-tnp)) (g —, [2[n'/p' ~ —,
' x'(-tnp]][q'+x'(-t p)]'[q"+x't-tnp)]'

0

—[(q -q')' + ]].'( -1np)] ' —[(q + q')'+ X'( -lnp)] ').

with an analogous expression for E,. If one now
substitutes E[1. (64} into E[I. (63) the regions q
= +q' make a contribution to the q and q' integrals
of order X ', so at least in the weak-coupling ap-
proximation the p' integration diverges linearly.
The factor g(-lnp} cannot come close to removing
so strong a divergence. We would again expect to
find fixed singularities in the angular momentum
plane.

Of course we cannot say whether N continues to
diverge if we go beyond the weak-coupling approxi-
mation. What we have shown is that the mechanism
identified by Cardy' and Lovelace" for ensuring
Regge behavior in asymptotically free QD. , theory
is not applicable in NAGT in any simple way. The
difference is that in @~,theory the infrared prob-
lem is much milder, partly because the trans-
verse-momentum integrals are four dimensional
and partly because the kernel has been smoothed
by the partial-wave projection.

V. SUMMARY AND CONCLUSIONS

In previous sections we have seen that in the
Regge limit the scattering amplitudes of NAGT
with a spontaneously broken gauge symmetry can
be generated by summing a moving pole and mov-
ing cuts in the angular momentum plane. The pole
is the Reggeized vector meson, and the cuts are
produced from the pole by RFT. The couplings in
RFT were deduced in Sec. II by comparing the gen-
eral RFT expressions with the perturbation-theory
expansion of the NAGT amplitudes. The couplings
were highly overconstrained when the comparison
was made through the tenth order in perturbation
theory, which we took as confirmation of our hy-
pothesis that RFT generates the asymptotic am-
plitude. In Sec. III this comparison was extended
to all orders in perturbation theory in the limit
b, '»X' by making use of the results of Refs. (4)
and (5). All of the perturbation-theory calcula-
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tions with which we compared HFT were carried
out in the leading-logarithm approximation, so
only the weak-coupling limits of the trajectories
and couplings in RFT were obtained.

In the weak-coupling limit, the structure of
Hegge singularities in the t channel is very simple.
In the I = 1 exchange amplitudes there is a single
pole, the Reggeized vector meson. In the I = 0 and
I = 2 exchange amplitudes there are two vector-
meson Reggeons, which can elastically scatter off
each other with a momentum-dependent coupling
we deduced. Since there are only two Reggeons,
we were able to write an integral equation for
their interaction. We think it is remarkable that
although any number of vector mesons can appear
in the t channel in the leading-logarithm approxi-
mation to NAGT amplitudes, only one or two Reg-
geons appear in the HFT formulation of the prob-
lem.

When the integral equation for Reggeon-Reggeon
scattering is solved in the I =0 channel, the lead-
ing singularity turns out to be a fixed cgt in the
angular momentum plane. Of course there are
only moving cuts order-by-order in Reggeon per-
turbation theory, and there is also a moving
Hegge-Mandelstam cut in the sum whose discon-
tinuity is controlled by Reggeon unitarity. " The
fixed cut is additional and only appears when all
HFT graphs are summed. Here we see explicitly
that under some circumstances RFT is capable of
generating singularities other than the moving
poles and cuts that are envisioned in its formula-
tion.

In Sec. IV we considered the possibility that the
fixed cut becomes a moving singularity if asymp-
totic freedom is taken into account. ' We found
that this was not the case, at least in the weak-
coupling approximation. The mechanism identi-
fied by Cardy' and Lovelace" in f~, theory is not
applicable in NAGT because the kernel of the t-
channel integral equation is not sufficiently well
behaved in the infrared limit.

It is tempting to speculate about generalizations

of our results. Our explicit calculations have
been carried out for a theory with an SU(2) gauge
group, but it seems clear from the work of Yeung'
that our approach can be straightforwardly ex-
tended to theories with other gauge groups. It
would also be interesting to study backward me-
son-fermion scattering in the same spirit to see if
there is a RFT formulation of meson-fermion
scattering.

The calculations we have made are for spontan-
eously broken NAGT with Higgs generation of the
vector-meson mass. We have said nothing about
the interesting case where the symmetry is un-
broken and X=0. Our expressions diverge as X-O.
This in itself is not alarming because the particles
we have been scattering, the fermions and vector
mesons, are then believed to be confined. They
should no longer appear as asymptotic states.
Neither should the vector-meson Reggeon continue
as an ordinary Reggeon, at least in the sense of
generating bound states and resonances at right-
signatured integers. It is possible that the broken
symmetry theory with massive gluons is relevant
to hadron scattering, "but the relevance of our
results to self-confining quantum chromodynamics
must await the elucidation of QCD.

APPENDIX

In this appendix we derive the result quoted in
Eq. (44). The integral involves three terms. The
first integral is

�

d2kI [ink~2/y2} ]& [ln(/2/g2) ]P+&

„2(~2 (2w)'(k" + X') 8w'(p+ 1)

where all the contribution comes from the upper
limit. This is also the integral cited in Eq. (48).
The second integral is

d2k'[ln(k' /y )]o
2 2g 3

Q QI 2+ /2

Let k'=qk. Then there are contributions to I,
from q-k, q n/k. Separating these terms (e
«1}

1 "'d(q2)[ln(k~/g )]& 1,
"& ~~ d( )

[1 (qk/X)]

[1n(k'/A. ') ]'" 1 [ k'e ""+,
]

[ln(n'/Z') ]'" ln

p [ln(k~/y'} ]o+' [ln(n'/y ) ]o+~

p+ 1 8w2 8w'(p+ l)
The third integral is

(A3}
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Again we scale the integral, and now the contribu-
tions come from q-0, q-k. Separating these
terms,

where P = q —k, and E «1. In the first term we
can replace the lower limit by X'/k' and then drop
X'/k' in the denominator. As a result,

1 "d(q')[ln(k'q'/X')]P
Bw' q'+ X'/k'

1 ' d(p') [in(k'/X') ]'
Bw2 0 p'+ X2/k2 (A5)

[ln(k2/y2) ]P+1 [ln(k2/y2) ]P+1

8m2(p+ 1)
+ 8m'

The integral in Eg. (44) is now I, —I, —I,.

(A6)
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