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We present a canonical formulation of two-dimensional quantum chromodynamics in the
axial or Coulomb gauge A& =0. For consistency with the Lagrange equations of motion, the
Hamiltonian must include a nontrivial dynamical background electric field term. This
breaks translation invariance in the gauge-noninvariant sector. We argue, however, that
for the purpose of calculating gauge-invariant physical quantities one can consider the
naive theory defined by the Feynman rules without the background electric field. We show

that the naive theory has an anomalous Poincarb algebra due to its non-Abelian character;
the theory is Lorentz invariant only in the color-singlet sector. Because of this fact the
quark propagator has a noncovariant pole, and the i ~ prescription is different from the naive
one. Ln the N ~ limit (where Ã is the number of colors) we can set up a two-component
Bethe-Salpeter equation in the color-singlet sector to determine the spectrum of the theory.
The resulting equation has an obvious interpretation in terms of forward- and backward-
moving strings, and leads to the same spectrum of bound states as that obtained by 't Hooft
in the light-cone gauge.

I. INTRODUCTION

The purpose of this paper is to discuss the con-
sistent formulation of two-dimensional quantum
chromodynamics (QCD) [with an SU(N) gauge
symmetry] in the limit N- ~ in an arbitrary
axial gauge. The theory' ' was formulated by
't Hooft in the lightlike axial gauge, and there
has been some speculation' ' about its consistency
in other gauges. Our result differs from Refs.
4 —6 but agrees with Ref. 1. We shall in fact dis-
cuss only the A; =0 gauge in this paper for rea-
sons of clarity. The generalization to an arbitrary
axial gauge does not exhibit any new problems.

The theory is defined by the Lagrangian

', E;„E'""+g--(~~f) —m)P, (&)

where
Xu

D„=8„—ig A'„2

and

E'„„=s„A'„—s„A'„+gf' 'A A„'.

Our definition of g differs from that of Ref. 1 by a
factor of 1/vK The (suppressed) indices on the
quark spinor fields indicate N color components
and g flavors, and the gluons have N2 —1 compo-
nents.

The theory is set up in terms of canonical
variables in Sec. II. We discover that in order
to obtain a consistent set of equations of motion,
it is necessary to add an extra term to the naive

Hamiltonian. 'This term corresponds to the @CD
analog of the background electric field term that
arises in two-dimensional Abelian theories. ' '
The presence of the extra term leads to a viola-
tion of translation invariance in the gauge-variant
sector of the theory and, hence, the Poincard
algebra only closes on the color-singlet sector.

We can argue that (unlike in the Abelian case''o)
the extra term does not affect the physical gauge-
invariant sector of the theory. We restrict our
subsequent discussions to this sector and effec-
tively use the naive theory defined by the Feyn-
man rules in the absence of the background elec-
tric field. We show that the naive theory has an
anomalous Poincard algebra such that Lorentz
invariance is satisfied only in the color-singlet
sector. 'This happens only in a non-Abelian theory.

In Sec. III, we find the one-fermion eigenstates
of the Hamiltonian and determine the renormalized
energy of the quark in the 1/N approximation. This
is done by normal ordering the interaction and
diagonalizing the quadratic terms that remain.
This method differs from that of Ref. 6. The re-
sult is an integral equation that determines the
renormhlized wave function and energy of the
quark. We present an exact solution in the zero-
bare-mass limit and determine the general be-
havior for arbitrary mass. As we explain in
Sec. II, we expect to obtain noncovariant results
for the renormalized energy. This is displayed
by an explicit exact solution &(p) =

~
p

~

—Z/
~
p

~

in
the zero-bare-mass limit. We show that this

17 537



I. BARS AND M. B. GREEN

solution can be computed exactly in perturbation
theory because higher-order diagrams are identi-
cally zero. A property of the renormalized energy
in this theory is that it changes sign as a function
of momentum. It is at this point that we differ
significantly from the authors of Ref. 4 who invoke
an ia prescription that excludes such solutions.
We show that the correct ia prescription in this
theory is obtained by replacing e by eE(p) in the
propagator, and that, with this proviso, the same
results can be obtained by the ordinary Feynman-
rule techniques. There is no difficulty with the
principal-value cutoff prescription in our approach.

In Sec. IV, we derive the Bethe-Salpeter equa-
tion for the quark-antiquark bound state. It takes
the form of two coupled integral equations in terms
of two unknown functions. We interpret these equa-
tions in terms of forward- and backward-moving
strings. 'The equations are valid in an arbitrary
frame and the total momentum appears as a pa-
rameter. Using the proven Poincard invariance
of the color-singlet sector we can evaluate our
equation in the infinite-momentum frame. It then
becomes identical to 't Hooft's equation' that was
derived in the light-cone gauge. 'This proves the
gauge invariance of the spectrum in this theory.

II. POINCARE ALGEBRA

Note that 8' can be changed by an x-independent
but time-dependent gauge transformation. From
A; one obtains the electric field F;,= —e,A;,

E;, = ——,
'

dy c(x -y)p'(y, t)+F'(t).
a a0

As x-+~ the electric field takes the values

F;,(+, t) = F'(t) —,'q'(t) —-=II'(t),

F:,(-",t) = F'(t) + W'(t) = 11'(t) + q'(t),
where

(2.8)

(2 7)

q'(t) = dx p'(x, t)
m oo

(2.8)

A'(x, t) ~ xFc, (+ca-, t)+ (B' T ~a'), (2.9)

where q;(t) is the first moment of the charge
density

q;(t) = dxxp'(x, t) .
a ao

(2.10)

Replacing these results in the field equation
DcF;, =da, as x -+~ (assuming Ja, -0) we derive
the time development of the electric field at
x

is the charge. Correspondingly, A0 has the asymp-
totic behavior

The generators of the Poincare algebra can be
derived by standard methods. 'The momentum P,
the Hamiltonian H, and the boost M" = tP —K are
given by

err'
c(aBaa1q a

) lieet 2

(ila+qa) @abc(Ba+ 1qc)(ilc+qc)
et 2 1

(2.11)

dxe0i, g= dxe-, K= dxxe-, 2. i

e
8

2 &x
(2.3a)

——y, —+ m g+ —' F, (2.3b)

where F0, = -&,A0 is given below. Our y-matrix
convention is y' = a„y' = ia„y, = y y' = a, .

The equation of motion D"F'„„=J'„ leads to a con-
straint for v = O. Denoting J0 —= p' = |t) g2Ã'g, one
finds the constraint

where e„„is the symmetric energy-momentum
tensor

8„„= F'„„F'„"+,'ig(-D„y„—+D„y„)g —g„„Z . (2.2)

In the present theory, if we set A; = 0, we obtain

Since we can change B'(t) by a gauge transforma-
tion, we choose it conveniently so that B + 2 Qy
=0, leading to

8 IIO QQC
@accq bileet et (2.12)

P= —— dxg —g,, a
2 ex (2.i3a)

As seen from the above equations, the electric
field cannot be made time independent at both
ends x-+~ if II'aa 0. Furthermore, II'(t) is a
dynamical variable and its equation of motion
must be reproduced by the Hamiltonian. We also
note that Q' is not conserved if II'WO, but II'+Q'
is conserved.

The Poincare generators now take the form

82Aie
0 a

2 =P (2.4)
aH= dxg ——y —+y m

2 'ex

whose general solution is given by

A;(x, t) = —,
'

dy ix —y i
p'(y, t) xF'(t)+B'(t). (2.5)—

m oo

—4 dxdyp' x) x —y p' y)

+ q;(11'+ -'q') (2.13b)



17 POINCARE- AND GAUGE-INVARIANT TWO-DIMENSIONAL. . .

a= dxxa ——v —~ y'm)a
i 8

2 '@x

dxdy p'x) +y ~-y p' y)

[Qa Qb] +fabcQc

Equations 2.14 and 2.15 lead uniquely to
[Ila IIb] = igfabcIIc

(2.15b)

(2.16)

Using the canonical anticommutation rules for
g and Eqs. (2.14) and (2.16), we can now verify
that

0 8/=i [H, P] = — y, —+imy,

+ —'ig —'X' (A', gj, (2.17)

where A; is identical to Eq. (2.5) with B' = -aQ;
as before. Similarly the equation for II' is

ila I [H ila] +fabcQb ilc

as in (2.12). We thus have the correct Hamiltonian

(2.13c)

where Q„'(f) = f dx x"p'(x, t) .
In the above expression for the Hamiltonian,

we have dropped an infinite term proportional to
[II +(II+Q)']. This term has the effect of giv-

ing infinite energy to any charged state. Similar-
ly, in the boost, we have dropped an infinite term
ProPortional to a~'[(ll+Q)a —Il']. These stePs will
be justified below when we show that the combina-
tions (II+Q)'all' commute with all operators in
the theory, up to an x-independent gauge trans-
formation. In particular they commute with H, and
therefore they can be diagonalized independently.
We thus take the above finite operators as the
definitions of the generators of the Poincarb
algebra in this theory.

Let us verify that the Hamiltonian reproduces
the Lagrange equations of motion. We have to
specify the commutation rules of II' with ttt) and
with itself. Since rr is part of the gauge field,
it is reasonable to take

(2.14)

To find the commutation rules of II' with itself,
we note that the combination H'+Q' was con-
served [Eq. (2.12)]. This conservation property
will be guaranteed by the Hamiltonian, provided
II'+Q' acts like the total generator of global color
transformations on all variables of the theory.
This implies

(2.15a,)

Furthermore, from the anticommutation rules
of the g's we can immediately deduce that

and canonical rules.
We are now ready to check the closure of the

Poincard algebra. By direct commutation, using
(2.14) and (2.16), we verify that the theory is
Lorentz invariant for arbitrary IP:

[P,K] = iH,-
[H, K] = -iP.

(2.18)

However, the theory is not translationally invar-
iant in the charged sector owing to the presence
of the Q', term in the Hamiltonian. Thus, [P,H]
= -iQa(II'+ b Q') does not vanish on charged states.
The source of this violation is the background fields'
= II'+ bQ'. Since theoperator Jdxgt(S/Sx)g is not
conserved an ordinary Fourier expansion of the f ield
does not diagonalize the quadratic terms in
the normal-ordered Hamiltonian. This clearly
creates problems for the treatment of the quan-
tum theory in the charged sector, such as the
calculation of the full quark propagator, etc.

To circumvent this problem, one is tempted
to put the background field F'= lI'+ —,'Q'= 0 in
order to get a translationally invariant theory.
This, however, creates some problems if it is
taken as an operator statement. First of all,
one of the Lagrange equations is not satisfied by
the equations of motion generated by the naive
Hamiltonian H, with F' = 0. Namely, one obtains,
by using the naive Hamiltonian in ttI = i[H„g],

Dopa dc gf abc(QbQc+QcQb) (2.19)

instead of 0 on the right-hand side. As a direct
consequence of this fact, 0„, is not conserved and
the Lorentz algebra does not close, i.e.,

[H„K,] = -IP f"Q'(Q'Q'+-Q-'Q') (2.20)

where K, is obtained from K by setting F' = 0.
Although we have watched the order of the opera-
tors, this anomaly of the Poincard algebra is not
just a quantum ordering effect, but it occurs even
if one neglects the order of the operators.

We note that the charge operator Q' in Eq. (2.20)
can be moved to the right or the left of (Q„Q;}
and therefore, when applied to color-singlet
states, the complete naive Poincard algebra
"loses.

We shall argue now that no physics is lost in
the quark-antiquark singlet sector if we consider
a modified theory in which the background field
is set equal to 0: F'=II'+-,'Q'=0. " SupposeF't 0, then the time development of a singlet
operator constructed of quarks will be given by

0 = i [H, 0] = i [H „0]+ i [H„O],
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where H, is translationally invariant and H, is de-
fined as the part of the Hamiltonian due to the
background field H, =Q;(II'+ ~Q'). Since 0 is con-
structed out of quarks it commutes with II', and

since it is a singlet, it commutes with Q, but it
does not necessarily commute with Q;. When it
is sandwiched between qq-singlet states one ob-
tains for the time development of 0

( singlet
i
0

i
singlet)

=(singlet ii [H„O] i
singlet)

+ i ( singlet
i
( II'+ —,

' Q')[Q;, 0] i
singlet) .

III. THE SELF-ENERGY EQUATION

In this section, we will discuss the derivation
of the ' self-energy" equation that arises by nor-
mal ordering of the Hamiltonian (excluding the ad-
ditional background electric field terms) and dia-
gonalizing the quadratic terms. We will also de-
rive the self-energy equation from the Feynman
perturbation series. Furthermore, for the ca,se
m =0 we exhibit an explicit solution, while for the
mt 0 case we give the general behavior.

A. The Hamiltonian method

Using Q'i singlet) = 0, and II'i singlet) = (c-number)
x

t
singlet), we see that

II'( singlet' [Q;, 0]
i
singlet) = 0.

since [Q;, 0] is not a singlet. Therefore, the time
development of 0 in the physical sector is given
by H, only.

The argument given above applies in particular
to the Bethe-Salpeter wave function which is of
main interest in this paper,

where the color indices are contracted to make a
singlet. Since H, has no effect on the time develop-
ment of ft} z, it cannot affect the spectrum of had-
rons in the qq channel, and therefore can be com-
pletely dropped. This is in contrast to the Abelian
case treated by Coleman' where the background
field had physical consequences in the neutral sec-
tor.

Another way of arriving at the same result is to
consider H, as a perturbation in a translationally
invariant theory defined by H, to zeroth order. It
is not difficult to convince oneself that in the sing-
let sector of H, the perturbation H, will vanish
order by order. 'This is due to the non-Abelian
property of the operators.

Therefore, from now on we will set the back-
ground field I'=0 and treat a modified, transla-
tionally invariant theory given by H, . Note that
this is precisely the theory defined by the naive
Feynman rules which do not take into account a
background field. However, because of Eq. (&.ZO),
nozv sate should expect noncovariant results in the
charged sector of this theory. In particular, the
pole of the fult quark propagator in the 1/N ex-
pansion u)ill not be covariant as zoe shall display
below'). S'e emphasize that, as seen in Eq. (2.20),
this Phenomenon is due to the non-aphelian char-
acter of the theory, it ~ould not occur in an &be-
lian theory. Furthermore, as already argued,
the physical singlet sector is Poincard covariant
in the naive theory.

'The Hamiltonian is not in normal-ordered form.
We wish first to choose a vacuum, i0), such that
H i0& =0 in the 1/N approximation. To do so, we
expand g(r) in terms of eigenstates of the momen-
tum operator e""and obtain

1
Ice(x! t} (2v)1/2 dk[b'(k, t)u (k)

+d '( k, t)v (—k)]e"*.-(3.1)

The vacuum state is defined by

b'i &0=O=d'io&. (3 2)

u (k)u(k) = 1= v (-k)v(-k)

u (k)v(-k) =0,

u (k)u,'(k)+v (-k)v,'(—k)=b, .

(3 3)

(3.4)

(3.5)

It is clear that a general form of the wave func-
tion is

u(k) = T(k), v(-k) = T(k)
1 0)
0 I)

(3.6)

where T(k) is a, unitary 2 && 2 matrix in Dirac
space. With these definitions, the canonical anti-
commutation relations become

(b'(k, t), b ~(k', t)j = b(k —k')b'i

(d '(k, t), d ~(k', t)] = b(k —k')b'~,

(3.7)

(3.S)

and all other anticommutators are zero.
One can now write the interaction term in the

Hamiltonian in normal ordered form plus the nor-
mal ordering pieces (leaving out the background
electric field term as described previously) as
follows:

The wave functions u(k) and v(-k) will be defined
below. They are not ordinary Dirac wave functions
for a free particle. We normalize them so that
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dhdyp' x) x-y p' y)= dxdy:p' x x-y p' y:
2

dk dx dy e' '" "'
~

x —y ~

1)1 (x)[ u(k)u (k) —v(-k)v (-k)] g(y),4. -N (3.9)

dxdy g~ M x, y g y), (3.10)

where M(x, y) is a 2 x 2 traceless, Hermitian

where N is the number of colors in the SU(N)
theory. The newly generated quadratic terms
may be combined with the original kinetic terms
in the free part of the Hamiltonian to give the
quadratic form:

operator. As N-~, in order for the Hamiltonian
to annihilate the vacuum defined by b' and d' we
must demand that this term be diagonal, i.e. , it
must take the form

dura &'a bu +d'ada (3.11)

up to a constant. This requires eigenvalue con-
ditions on the wave functions u (p) and v (-p) with
real eigenvalues E(p).and -E(p), respectively,

py, +my, +—,[u(k)u (k) -v(-k)v (-k)] u(p)=E(p)u(p)
y dk
2 p —k' (3.12)

and similarly, for v(-p) with E(p) replaced by
E(p}. The-constant y is given by (y is fixed as

N-~)

E(p)cos8(p) = m+—,cos8(k),y dk
2 P —k'

E(p)sin8(p) =p+—,sin8(k),y dk
2 p —k'

(3.is)

(3.17)

(3.13)

y+
2 ( „),&( ) kTy'( ).k

(3.14)

We take for the unitary transformation

T(k}= exp [ —,'8( p)y'], (3.i5)

which is sufficiently general for our considera-
tions. We find two equations:

and the integral is defined by a principal-value
prescription.

We note that Eq. (3.11) corresponds to a com-
pletely diagonalized Hamiltonian in the one-ferm-
ion sector, in the 1/N approximation: The states
b, ~0), d, ~0) are exact eig enstates of the Hamil
tonian in this limit, since the remaining normal-
ordered interaction is of order 1/N when applied
on these states. Therefore, the operators b~„d~
create renormalized quarks with renormalized en-
ergy. 'The two eigenvalue conditions can be written
in matrix form

E(p)~(p)rp'(p) =pr, + mr.

+ — —, cos [8(p) —8(k)].
r dk

(3.19)

Therefore, the eigenvalue E(p} is completely
determined by the solution of the 8(p) equation.

The fermion propagator can be obtained by direct
calculation,

(O/ T [y.'(xyg(&)] /O&

tS4J p p eiP~(r v) $(p p ) (3 20)

with

u(p)u(p} v(-p)v(-p)
p' E(p)+i~ p'+E(p—) ie '-
p'y' —r'E(p)stn8(p)+ E(p)cos8(p)

[p' E(p)+is][p'+E(-p) —ie]

(3.22)

which imply that 8(p} is odd under p--p if E(p)
is even. By taking appropriate linear combinations
we obtain the decoupled forms

p cos8(p) —m sin8(p) =—,sin [8(p) —8(k)],
y dk

(p-k)'
(3.18)

E(p) = mcos8(p)+ psin8(p)
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where we have made use of Eqs. (3.6) and (3.15).
We note that the denominator in Eq. (3.22) takes

the form p '-E +2iE& and not p —E'+i&. In a
covariant theory E = (p + c')' ' is positive, so that
the two forms are equivalent. However, we have
argued that in the quark sector we expect non-
covariant energies to appear, and in particular
E(P) may not always be positive. Thus, we must
retain the form Ea. This is where we depart from
all previous treatments of this problem. As we
shall see the inconsistencies pointed out in Ref. 4
are removed by this simple observation.

Z(p)= I - ', y'S(k, k,}y',y dkodk o o

p-k (3.23)

where the integral is defined with a principal-
value prescription. The propagator S(k, k, ) can
always be parametrized in the form (3.22). If we
write the self-energy in the notation of Ref. 4 as

z(p) = A+ y'B,

we can identify

A =E cose —m,

B=Esine -p.

(3.24)

(3.25)

(3.26)

We take care to keep the form eE(p) that ap-
pears in the fermion propagator. In covariant
perturbation theory E(p) is positive and one norm-
ally replaces eE(p)-e. However, in our case it
is crucial to keep this form. Clearly, dropping
the E(p) at this point will not allow for the possi-
bility of solutions with negative E(p) We can now.

derive equations for E(p) and 8(p) by means of
Eqs. (3.23)-(3.26). As usual, " this involves
evaluating the k' integral in Eq. (3.23) explicitly,
taking great care with the ieE(p) prescription.
1he resulting equations are those previously de-
rived [Eqs. (3.16) and (3.17)] where no conditions
appear on the sign of E(p)

B. The Feynman-diagram method

For completeness, we derive the results of the
previous section with Feynman-diagram techni-
ques. The self-energy equation in the 1/N approxi-
mation is derived by standard methods (see Fig.
1).

C. Solution of the self-energy equation

Since the self-energy equations are not easy
to solve in general, it may be instructive to con-
sider the explicitly solvable m =0 case. The so-
lution is simply given by"

8(p)= —,
' e(p),

where

(3.26)

(3.29)

2
= —cosk(x -y)+ x ~x -y

~

—2(x -y)SiI X(x -y)],

where

2—cosa(x —y ),
Ix -y I ~~ ~ (3.30)

Si(x) = siny

( )
+lp&0
-1 p&0,

and 0 denotes the principal value.
The form of the solution for mt 0 can now be

guessed as plotted in Fig. 2. This clearly inter-
polates between the two limits m'/y-0 given by
Eq. (3.26) and m'/y-~ given by tan8=p/m. Notice
that E(p) is not positive for the whole range of p,
in particular for small m'/y, E ——y/m as p -0,
and this explains why there is no such solution for
the equations of Ref. 4 as derived with the princi-
pal-value cutoff for the gluon propagator. Since
the quark is confined, there is no physical objec-
tion to negative energies. In any event we will not
use any explicit solutions in order to arrive at the
spectrum. %e will need only the general behavior
8(p}-+w/2 as p- +~, which can be arrived at
directly by analyzing Eqs. (3.16) and (3.1V).

The origin of the negative sign in the self-en-
ergy E(p) is presumably due to the confining po-
tential ~x -y

~
which is equivalent to the principal-

value prescription. If, instead, a small momen-
tum cutoff X is introduced to regulate the gluon
propagator, one gets a nonconfining potential at
large distances:

e( &

X( )

FIG. l. Self-energy equation. FIG. 2. General behavior of the solution to Eq. (3.18).
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pF kP qF
A A

FIG. 3. Calculation of the self-energy in perturbation
theory.

This prescription gives a positive-definite E(p)
(Ref. 4).

The m = 0 solution for E(p) [Eq. (3.29)] involves
only the first power of y. Indeed, it is easy to see
that it is exactly given by the one-loop contribu-
tion to the perturbation series for the sel.f-energy
in Fig. 1. We will now show that the rest of the
series is zero. The zero-mass fermion propaga-
tor in perturbation theory may be written as

we do not understand the relevance of these solu-
tions and we shall not consider them further.

If the m 40 self-energy equations [(3.16) and

(3.17)] are solved perturbatively' [i.e., for y
«(p' +m')] we do not recover the m = 0 solution
by setting m =0 in this expansion. This is because
the expansion is singular at m = 0 (at any p) and is
invalid for small enough values of m."

IV. THE BOUND-STATE EQUATION

Having obtained the form of the quark propaga-
tor, it is straightforward to derive the equation
for the color-singlet bound states of quark-anti-
quark pairs. The equation for the wave function,
I'(r ",P"), is given by the usual construction'

[1+y,e(p)]r' [1 y, e—(p)]r'
p' —Ipl+ ie p'+ Ip t —i~

dk dkr(" )= —" "'""
S( ) r(r" k")xy dk dk

xr'S(p" -r"), (4.1)

+if (3.31)

In any Feynman diagram of order higher than g '
contributing to the quark self-energy, there is at
least one loop with two or more fermion propa-
gators in it carrying the same momentum (Fig. 3).
For example, the order g4 correction contains the
structure

p(r, p) = dp'I'(r ",p") . (4.2)

where r" is the total momentum of the bound
states and p" is the momentum in one of the quark
legs (Fig. 4). Since the interaction is instantan-
eous, we may perform the p' integration as usual
by defining

S(k„)y'B,(k)S(k„), (3.32) Substituting for S(p") from Eq. (3.21) and doing
the p' integration, we obtain

where B,(k) is the lowest-order contribution to the
self-energy which is B,= P(y/k) [givin-g the order
-y contribution to E(p) in Eq. (3.29)]. The mo-
rnentum 0„ is a loop momentum which is to be
integrated. In performing the 4, integration, the
ic prescription causes the terms in the integral
containing only the S' or only the S parts of the
propagators to vanish. The remaining terms then
vanish by simple y-matrix algebra. Thus, a fac-
tor of [1+r,c(k)] can always be pulled through an
even number of y matrices until it is adjacent to
a [1 —y,e(k)], which it causes to vanish. The argu-
ment is the same to all orders, and only the g'
contribution survives.

We note that there are apparently other solutions
to the equations with m = 0. These are solutions in
which

( 8(p) (
=-,'w but e(p) is odd in p and changes

sign an arbitrary number of times. Since they do
not reduce to free field theory in the y-0 limit,

dk4(rp)=r
( „),

u(p)u( )yp'p( rk)y' v(r -p)V(r -p)
E(p)+E(r -p)

v(-p)v( p)r'p(r, p)y'u(p —r)u—(p —r) '

E(p) + E(r —p) + r'
(4.3)

Using the definition of T(p) [Eq. (3.6)] and g( p)
= -8(p) to write

u(p)u(p) = T(p) T'(p)y',

(4. 5)
v(r —p)v(r —p) = y'T(r —p) T'(r p),2

we have

dk '1+r T (p)T(k)p(r, k)T (r —k)T(r-p) 1 —y
(p - k)' 2 E(p)+ E(r p)-

1 —r' T (p)T(k)p(r, k)T (r —k)T(r -p) 1+y'
2 E(P)+E(r P)+r' 2- (4.6)
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FIG. 4. Diagrammatic representation of Eq. (4.1).
FIG. 6. Forward- and backward-moving string struc-

ture.

y(r, p) = T'(p)A(r, p)T(~ —p).
The general structure of ft), as given by Eq.

(4.6), is [(1+y,)A(1 —y, )+(1 —y, }B(1+y,)]. The

2 & 2 matrices A and 8 could contain only y, oj
y'. Since y'= y,y, can be replaced by y, due to
the (1+y,) factors, we can finally express P in

terms of two unknown functions P, and P, such
that

(4.7}

P = P,M'+Q M (4.8)

where P is obtained from (II) by unitary transfor-
mations determine the bound-state spectrum in an arbitrary

reference frame characterized by the total mo-
mentum r. The structure of the two equations has
an immediate interpretation in terms of time-
ordered diagrams. Thus, the right-hand side of
Eq. (4.12) has two terms. The term containing

C(p, k, r) arises from diagrams which do not

change particle number after interaction [Fig.
5(a)], while the term containing S(p, k, r} comes
from diagrams that create or destroy four par-
ticles [Figs. 5(b) and 5(c)].This interpretation
becomes particularly evident by writing

where the matrices M' are given by

M'= —,'(1~ y. )y, . (4.9)
C(p, k, r) =u (p)u(k)v (p —r)v(k —r),
S(p, k, r) =ut(p) v(-k) vt(p —r}u(r —k).

(4.13)

We can arrive at a pair of coupled integral equa-
tions for Q, by substituting Eq. (4.8) in Eq. (4.6}.
Thus defining

C(p, k, r) = cos—'[8(p) —8(k)]cos—'[8(r -p) —8(r -k)],
(4.10)

S(p, k, r) = sin-,' [8(p) —8(k)]sin-,' [8(r —p) —8(r —k)],

(4.11)

we arrive at

[E(p)+E(r p} &')e.(r p-}-

},[C(P, k, r)y, (r, k)
dk

+S(p, k, r)y (r, k)],

(4.12)

[E(p)+E(r -p)+r']p (r, p)

=r „),[C(p, k, r)y (r, k)
dk

+ S(P, k, r)y. (r, k)) .

These equations, together with (3.16) and (3.17),

In a general frame both types of interactions occur
and allow the qq pair to move forward or backward
in the manner of a string forming a sheet struc-
ture, as shown in Fig. 6. Thus, p, (p, r) is the
amplitude for moving forward and Q (p, r) is the
amplitude for moving backward. 'This is evident
from the fact that the total energy r ' has opposite
signs in the two equations (4.12).

In general, the equations are rather complicated
and we have not tried to solve them. However,
using our formal proof of Lorentz invariance in
the color-singlet sector, we can evaluate the
equations at any value of x and expect that x'
= (r'+M')'~', where M' is an invariant eigen-
value. In particular, we will take the r-limit,
because we expect that the backward motion should
disappear and simplify the equations in this limit.

%e define the rescaled variables p = xr and k
=yr. As we let x-+ , the right-hand side of Eq.
(4.12) is of order llr. Therefore, any term on
the left-hand side which grows with z must be set
equal to zero and the 1/r terms on both sides
must be matched. Thus we find that P (x) =0 for
all values of x, and P,(x) 40 only when 0 & x & 1.
Furthermore, when 0 ~ x & 3.,

s(p, k, r)-0,

C(p, k, r)-1 only for 0 &y & 1,

E(p)+E(r p) -(r'+M')'~'—
(b) (c)

FIG. 5. Time-ordered interactions that dominate the
~ limit.

+ -M, 4 14
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where we have used the general behavior of 8(p}-&/2, for p- +'o as shown in Fig. 2. Therefore,
as expected, backward motion disappears and Eq.
(4.12) reduces to

=2y 2Q, y). 4 15

This is precisely the equation derived by 't Hooft
in a different gauge' (A, =O}. We have thus proved
the gauge invariance of the meson spectrum in
two-dimensional QCD.

V. CONCLUSION

We have shown that two-dimensional @CD can
be formulated in a consistent canonical formalism
in the A, =O gauge. This requires a modification
of the naive Hamiltonian by the addition of a back-
ground electric field in order to ensure Lorentz
invariance and consistent equations of motion.
These extra terms do not affect the derivation of
the color-singlet bound-state equation. Therefore,
they can be dropped in order to simplify the theory.
In the absence of these terms the structure of the
Poincare algebra implies that the quark propagator
need not have a covariant pole with energy E
= (p'+ c')'i'. In particular, quark energies can
become negative and great care must be taken to
enforce the correct i&E prescription.

The spectrum of bound states is given by an
eigenvalue equation which becomes identical with
't Hooft's equation in the infinite-momentum frame.
In a general frame the equation describes forward-
and backward-moving quark-antiquark pairs form-
ing a sheet structure. Although we have not ex-
plicitly demonstrated the Lorentz covariance of
our bound-state equations (4.12), we have demon-
strated that the formalism is covariant in the
color-singlet sector. 'This indicates that our
spectrum must be frame independent, and thus
equivalent to that of 't Hooft. To confirm frame

independence directly from (4.12), one could dif-
ferentiate the equations with respect to the param-
eter r and take the scalar product with the wave
function Q, (P, r) T. he dQ, /dr terms drop out with
this prescription. Using the eigenvalue condition,
one must then show that the equations obtained
through this procedure are satisfied only if Sr'/Sr
=r/r', implying r'= (r'+M')'~'. This procedure
is algebraically very involved for our equations
and therefore we have deferred it to a later investi-
gation. However, because of our formal proof,
we expect to obtain the desired results.

Note added in proof Afte. r this paper was sub-
mitted for publication, it was pointed out to us that
other groups arrived independently at similar con-
clusions with respect to the Poincare algebra
[L.-F. Li and J. F. Willemsen, Phys. Rev. D 10,
4087 (1974): 13, 531 (E) (1976); N. Pak and P. Sen-
janovic, Report No. SLAQ-PUB-1975, 1977 (unpub-
lished)]. However, our Hamiltonian Eq. (2.13b) is
the only one that correctly reproduces the La-
grange equations of motion and is Lorentz covari-
ant for any value of II'. This difference comes
from the operator II'(i) which was not introduced
by the other groups.
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