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Fermion field theory on a lattice: Variational analysis of the Thirring model
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We extend variational techniques previously described to study the two-dimensional massless free fermion

field and the Thirring model on a spatial lattice. The iterative block spin procedure of constructing an

effective lattice Hamiltonian, starting by dissecting the lattice into three-site blocks, is shown to be successful

in producing results known for the continuum Thirring model.

I. INTRODUCTION

In this paper we continue the development and

application of techniques for finding the ground
state and spectrum of low-lying physical states of
field theories without recourse to either weak- or
strong- coupling expansions. Following our earlier
papers' we study lattice Hamiltonians by means of
a constructive variational procedure. The meth-
ods, which in our preceding paper (Paper III) were
described and applied to free-field theory of bosons
in one space dimension and to the one-dimensional
Ising model with a transverse applied magnetic
field, are now applied to two fermion theories in
one space and one time (Ix- 1t) dimensions: mass-
less free fermions and the Thirring model. ' ' Our
aim in this paper is to demonstrate that these
methods are easily applied to fermion theories
and that our simple constructive approach repro-
duces results known to hold in soluble continuum
models. Our fundamental approach to the study
of these models is the same as in Paper III. Name-
ly, we dissect the lattice into blocks containing a
few sites which are coupled together via the
gradient terms in the Hamiltonian. The Hamil-
tonian for the resulting few-degree-of-freedom
problem is diagonalized and the degrees of free-
dom "thinned" by keeping only an appropriate set
of low-lying states. We then construct an effective
Hamiltonian by computing the matrix elements of
the original Hamiltonian in the space of states
spanned by the lowest-energy eigenstates in each
block. The process is then repeated for our new
effective Hamiltonian. At each step, the coupling
parameters of the effective Hamiltonian change
and the procedure is repeated until we enter either
a very-weak- or very-strong- coupling regime.

The specific features of these models which make
them interesting are that (i) for the first time one
must study the behavior of the first-order gradient
term which we introduced for fermion theories' in
order to avoid doubling of states and preserve
chiral symmetry, and (ii) the wave-function re-
normalization, Z„ in the Thirring model vanishes

II. GENERAL METHOD APPLIED TO FREE FIELD THEORY

To fix notation and to illustrate our general
method as well as its accuracy, we construct the
ground state and lowest-lying excited states of a
lattice free fermion theory. The free massless
lattice Hamiltonian is [see (3.1)-(3.4) of Paper II]

H =A+ ib'(j, —j2)(bt b, —dr d,. ), . (2.1)

where

-(-1)'
b'(j) =

The two-component dimensionless lattice field X&

when the coupling strength exceeds a finite value

g„=1.1, even in the presence of a cutoff. We
also analyze the lattice theory's Schwinger term
and establish correspondence with the continuum

theory.
As we show, our general procedure leads to the

conclusion that there is a finite value of the cou-
pling strength g„such that for g&g„one only
needs to study the general properties of the mass-
less fermion theory. On the other hand, for g&g„,
we are driven to study the theory of the Heisen-
berg antiferromagnet, which is also a theory with
massless low-lying excitations. In particular,
this analysis confirms a conjecture made in Paper
II to the effect that the spectrum of the strong-
coupling limit of our lattice Thirring model is
that of the Heisenberg antiferromagnet with
nearest-neighbor interactions even though the
gradient appropriate to a fermion theory on the
lattice includes long-range couplings. In addition
to these results we show in the Appendix that the
operator expression for the Schwinger term be-
comes, in the infinite-volume limit, the ground-
state expectation value of the kinetic energy den-
sity divided by the square of the wave-function re-
normalization constant Z, (g).
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is specified in the Dirac basis TABLE I. Single-site basis states.

x, =lE „,
with n =y, = o„' and satisfies the anticommutation
relations

{xg,x;.) =6,p 1,

{x„x;)=o

and so,

{bi,b~i} ={dh,d,'.) =6

{b&,dz) =0, etc.
(2.2)

A is the inverse lattice spacing and the lattice has
2%+1 =AL sites. This theory possesses two con-
served "charges" which in this representationare

Q=:Xy Xg: = Qy=

(2.3)

e, =-QX', y, X, =Q Q,, =+[no(j)+n (j)-1],

where

n, (j) =bJ bq,

n,(j) =dJ d~ .
The Hamiltonian (2.1) is also invariant under

three discrete symmetry operations. Two are
unitary, and analogous to P and C, and one is
antiunitary corresponding to time reversal 8. We
define them as follows:

(1) Charge conjugation:

CbqC '=b), CQC '=-Q,
Cd) C '=d~, CQ C '= —Q

C2 =1'

(2.4)

(2) parity:

Pb P-'=d'„
Pd, P-' =b', ,

P2 —1 e

(3}time reversal:

e =TK,

PQP-' =q,
PQ5P '=-Q, , (2.5)

where K is the antilinear operator of complex con-
jugation and the unitary T operator is defined by

State

Io,. &: b, Io, &=d, lo, &=o

I+,.&=b&Io, &

I —,.) =—d J I o,. )
I+ &=b"dtIo

Note that this problem shares one feature in com-
mon with the Ising calculation: there are only a
finite number of states associated with each lattice
site. In this case for each lattice site there are
four basis states, summarized in Table I.

The transformation properties of these states
under P, C, and e are given once we adopt the
conventions

cl0, )=il+, ),
(2.7)

8 Io, ) = l0g&

Note that these conventions imply

&I+, &=- I+, &,

Also, it follows from Eq. (2.7} that

c I+, &
= i

I
—,&.

In particular, fermions and antifermions have op-
posite intrinsic parity as usual.

Our purpose in this section is to study the free-
fermion model in order to establish the notation
and methods to be used in the discussion of the
Thirring modeL For this reason, the calculation
will be done in a way which is more cumbersome
than it needs to be for this simple case. Aside
from matters of notation, we will illustrate the
fact that although 6' (j, —j,) is nonvanishing for all

4 p2 it is not m or e diff i cult to work with than a
gradient term expressed simply as the difference
of fieMs at neighboring sites.

To begin our iterative 'procedure, we dissect the
lattice into three-site blocks. We write

H=+ Hq+ Hpq.
P v'P

=A Q Q i 5'(o. - a')(b~t b, ~ —dJ d~ .)- an'

Tb)T '=d),

Td~ T ' =6~,

e —1

eqe-' = -Q,
eq,e-' =Q, , (2.6)

+A+ Q io( (3P-p') +o-a')
PAP gn

x(b
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where now p specifies the block and a =-1, 0, 1 to
specify a site within a block. Each single-block
H~ operates only on that factor of the product
basis which pertains to block P, and is diagonal
otherwise.

We choose to use three-site rather than two-
site blocks when dealing with fermions so that the
lowest eigenstates of the block Hamiltonian will
have the same quantum numbers for Q and Q, that
are displayed for single sites in Table I, as will
be clear immediately. Our simple algorithm for
"thinning" our space of states will be first to
solve the 4' = 64 degree-of-freedom problem,
which can be done very simply by grouping the
states in the different (Q, Q, ) sectors which do not
mix. We anticipate that the block states of lowest
energy will be in the (Q = 0; Q, =-1, + 1) sectors,
degenerate by C symmetry, and we name them
~0~& and (+~&, respectively, in analogy with the
single-site states of like quantum numbers. (That
these are indeed the lowest block eigenstates is
verified in all cases by explicit computation. )
However, when we apply H~~ between two blocks,
it is apparent that it has no matrix element be-
tween ~0~& and ~s~&; the charge-selection rule
governing 5& and d& indicates that we have to keep
(Q =+1, -1; Q, =0) states in order to have non-
zero block-block coupling. We call these ~+~&
and (-~); again, they are degenerate. Since
these four sectors are the sectors of greatest
multiplicity, they are generally those containing
the lowest eigenlevels for the three-site problem.

To be specific, let us consider the 20 states in
the Q =0 sector of the three-site problem. These
are listed in Table II along with the states into
which they transform under i CP [note (i CP)' = 1].
The notation used is an obvious generalization of
that in Table I: the creation operators appear in
an order from left to right corresponding to the
ordering of the sites in the lattice, and at each
site the b&~ is to the left of d~~; thus for the block P

(2.9}

J (000&, = (+~+&„
6 j000& =

F
000)

(2.10)

As a general rule, the over-all phases to be in-
troduced in the (Q = 0, Q, =s 1}and (Q =+ 1, Q, =0)
sectors as we proceed will be such that the phase
convention (2.7) will hold for the lowest-lying
block states (with (0, & replaced by ]0~&, etc.).

Under C, P, and 9 these states will have trans-
formation properties derived from (2.7); viz. ,
starting from the (Q =0, Q, =-3) sector,

C ~000)~= i)+++)~, -

TABLE II. Three-site basis states, @=0 sector.

State

i
pop&

~00 &

PQ+ &

0+0 &

+ Q&

0+—&

+Q—&

+Q&

p +&
—Q+ &

0++ &

++0&
+0+&
—+ +&

i CI' transform

-)pop&

) pp+&
)+00 &

I
0~0 &

Q+
+ Q&

+Q

p —+&
+0&

—Q+ &

)p+s&
—[+p+&

+&
—

)
—++&

++&
-(++ —&

-)+-+&
[++

We do this because we wish to identify the new
block states in these sectors with the original
single-site ones so that the only thing changing in
the iteration is the Hamiltonian itself.

Of the nine states in the Q, = -1 sector, six
combinations that are even under i CP and three
that are odd can be formed. The lowest eigenstate
of the three-site Hamiltonian is even and can be
written as follows:

IO&& =, (3-4I)l+0-&&+ .(3+4'}I- o+&,

——,
' (3+i)[ ~+-0&+ ~0+-&]~

—& (3 —i)[ j 0 —+) +
~

—+ 0)]~

+-', i[ (0+ 0) +-', ()s 00) + [00+&}]~,

H~~0~& =-3A
~ 0~& . (2.11)

The other eight eigenstates in the (Q= 0, Q, = —1}
sector lie higher in energy with eigenvalues +3A,
+ &A, + ~A, 0, 0, 0, -&A, -&A. Since the state
having (Q = 0, Q, = -3) is unique, it must be an
eigenstate of P~ and it is clearly a null eigenstate.

The Q =1 sector has the 15 basis states listed in
Table III along with their corresponding P trans-
forms (C takes us from the Q =1 to the Q =-1
sector and is not important in this context).

The lowest eigenstate of FI~ in the Q =1 sector
is formed from the six odd eigenstates of P in the
Q, =0 sector; this corresponds to the odd parity
of the single-site eigenstate according to (2.7). It
is given by'
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TABLE IG. Three-site basis states, Q= 1 sector. To accomplish this let us define for site n = —1,
0, 1 in the Pth block,

State

)+00&
)pp+ &

Io+0&

+0~ &

p ++&
0++ &

++p&
6 p+&
++ p&
+—+&
++—&

—++&

P transform

(+*+&

+6+&
4+4 &

—

los+�&

)+0+&
Ip++&

Q+&
—)++0 &

(~+0&
—[+—+&
—

I
—++&

-I++—&

(+, I
b',,. I 0, ) -=M„,

p I
d p I op& =—U

(2.14)

&+plb,'„.I-,&=& plb-, p, l~p&*

=&+,Icb„,.c lo, )*
= &+.lb.'p, .I o.&

*

=Na ~ (2.15)

It then follows from the symmetries (2.4}-(2.6)
that we can fix the remaining matrix elements:
e.g. , from (2.4) and (2.7) we see that

+++&
6 4+&
6+ +&

pp+ &

—+ 00&
—0+0 &

From (2.5), we find that

"a = v-a

and from (2.6)

(2.16)

I+p& =i-'( -» )I~+0&p —i~a(4+» }
I 0+~&p

+ ~(1—3f)[ I+o+) + I 0~+&]p

—~(1+3i)[I~0+&+ I+~0)],
+- +-+ + — ++ —+ —++

H, I+,) =-3A I+,). (2.12)

Q~=Q ~ ~ (2.17)

(2.18)

where

Combining these results, we see that we can write
truncated operators

B,lo, ) =B,lo, & =0,
B,'lo, &= I+,&,

Bp lo, &
= l-p&,

LBp, Bp~) = bpp~, etc.

(2.13)

The states specified in (2.11) and (2.12) plus their
two charge-conjugate counterparts lap) and

I -p)
are the states used as a basis in which to construct
the truncated Hamiltonian. This same process is
then repeated by combining 3 neighboring three-
site blocks as illustrated in Fig. I. In order to do
this, however, we must express the terms in H»
(that couple different blocks to one another) in
terms of creation and annihilation operators Bps
Bp and Dp, Dp, defined by

Qp=—Bp Bp -Dp Dp )

Q5p=—Bp Bp+Dp Dp —1 .

Equations (2.18) summarize, in operator form,
the contents of (2.13)-(2.17) and allow us to write
the Hamiltonian restricted to the Hilbert space
spanned by tensor products of the four basis vec-
tors lop), I+p), I+p), and

I -p). Since in this
subspace

Qp'+ Qsp' = 1, (2.19)

(b,", }7"=u B
(2.20)

it follows that if u and v„are real, then our trun-
cation procedure amounts to making the simple
substitutions [using (2.16) and (2.17)]

(i ~ ~ ~ ~

I I

I I

~ e ~ I ~ ~ ~ I ~ ~ ~
I I

block ' block
I

l

I I I

I

I ~ ~ ~ I ~ ~ al ~ ~ ~
I I I

block block
I

I

~ ~ ~ aP

super block

FIG. l. Iteration of the blocking procedure.

For the present case of a free fermion model g
and v are real. ' However, this is not generally
true, and the transformation (2.18) for the Thir-
ring model takes the more general form as we
shall see in the next section. Restricting to the
free-field case and collecting our results, the
truncated Hamiltonian (2.1) becomes
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pression

+j

P '( I x'(x(x —x)+a —x)x, x)P&e a, 8 =-1

x (Bq B -Dpt D ), (2.21)

&,((b —q)= Q 5'{3(P-q)+a —P)u u() (2.22}
a, 8=-1

which is readily calculated using (2.11)-(2.14) and

the definition (2.1}of 5'(j ).
Table IV compares the first few terms of 5'(j}

to a,(j). It is evident from the table that in a
single iteration, the strength of the gradient is
decreased by almost a factor of 2 and the second
nearest-neighbor term is suppressed by =30%{)
relative to the nearest-neighbor one. Continuing
this process, we find that, aside from the fact
that the gradient's over-all scale keeps dropping
by a factor =-', n, „(j) rapidly converges to a fixed
form. One can approximately carry out the itera-
tion procedure analytically by setting 4„(2)/6„(l)
= —~ =5'(2)/5'(1), in order to estimate the ground-
state energy. One obtains

AL 8 AL 8 ~ 4I.E=-3A x —3A — —3A—
3 15 3 15 33 + ~ ~ ~

where H ~,~ denotes the Hamiltonian obtained after
the first iteration. Proceeding to the second itera-
tion, we couple three adjacent "sites" of the new

Hamiltonian (or blocks of the original Hamiltonian)
and again retain the lowest eigenstate in each of
the four sectors (Q =~ 1, Q, =0) and ({I)=0, {II5=~1).
Of course, this time the gradient is given in terms
of a new function

(2.25)

where n, (k) and n~(k) are the number of particles
and antiparticles, respectively, with momentum

k. The ground state corresponds to filling all
k&0 states with d quanta, n~(k) =8(+k), and all
k&0 states with b quanta, n, (k) =8(- k). Actually
the ground state is fourfold degenerate corre-
sponding to whether n, (0) =0, 1 and n, (0) =0, 1 in

the k =0 state (N.B., in the infinite volume limit
it becomes infinitely degenerate). It follows that

the ground-state energy for (2.25) is
rA

E{) 2 k 2 krak ~ &A L
p 2 F p

(2.26)

Hence our simple truncation procedure leads to a
ground-state energy that lies 22% above the exact
answer. There are two ways in which this agree-
ment can be improved. One is by keeping a larger
subspace of states than the 4 of the 64 retained in

the above calculation for each three-site block.
This has proved very effective in the study of the
Ising model. Alternatively we can determine which

states to retain by a variational procedure as il-
lustrated in Paper ID."

III. LATTICE THIRRING MODEL

Turning now to the Thirring model, we add a
chirally invariant "potential term" to the Hamil-
tonian of the free-fermion theory. The lattice
Hamiltonian is [see Eq. (2.15) and Sec. HIA of
Paper II]

= —A'1(4~) = —1.216A'L . (2.23)

Carrying out the calculation exactly by means of a
computer yields an almost identical result

E'R = —1.21VA'I. (2.24)

The exact ground-state energy can, of course, be
computed very simply from (2.1}by transforming
to momentum space. This leads to the familiar ex-

—
x I, ((x x,)*-(xu.x,)*I)

TABLE 1V. A comparison of the free-field gradient
functions before (6') and after (b ~) the first iteration.

8
15-- (1--)4 9

i5

where Q» is defined by (2.3). Since the added po-
tential term commutes with Q and Q„we again
choose the site basis in Table I used for the mass-
less free-fermion theory. The discrete sym-
metries C, P, and 9 of (2.4)-(2.V} are again use-
ful for classifying states.

Proceeding as in Sec. II, we divide the lattice
into blocks of three sites, and rewrite the Hamil-
tonian divided into single-block and block-block
terms
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Q (-g)Q», '

+ Q ib'(n —n')(b~, b~, —dt~, d~, , )
eel

+A Q Q f6'( 3(p-p') +n—n')
P4 P' ee'

x(b'„b~-d'„, ,d„,,)) . (3.2)

The plan is again to diagonalize the single-block
terms exactly, to truncate the Hilbert space to the
lowest few eigenstates, and to rewrite the block-
block coupling term in terms of operators which
are confined to the truncated space.

The enumeration of block states and the block
diagonalization of H~ according to Q and Q, go
through as for the free field, and once more we
choose the lowest eigenstates IO~&, I+~&,
and I+~& and define B~ and D~.

Equations (2.16) and (2.17) still hold, because
they depend only on the same symmetries (2.4)-
(2.6). Furthermore, (2.18) is unchanged; indeed,
when we truncate our block Hilbert space, that

expression for (b~ )r" is the most general opera-
tor on the subspace with selection rules b Q =+1,
&Q, =+1; and analogously for (dt)T". However,
we can no longer write (2.20}, because u& is no

longer real. The reality condition depended on
the symmetry of H under Q —Q„which does not
hold for go 0 in (3.1). Unlike the free-field case,
now

&+ p I bg I0,&«~, Ib', I-,&

Thus (2.18) no longer turns into a simple scaling
transformation for bt and d~ . Instead it ex-
presses a nonlinear Bogoliubov transformation
which forces these operators to take on their most
general forms in the next iteration.

The single-site term H~ in (3.2) becomes the
sum of two terms: a constant representing an
over-all energy shift and a term proportional to
(Q»)' which splits the degenerate pairs I+~& and

0.& and I~,&; viz. ,

(3.3)

This is its most general form consistent with the
symmetries. Correspondingly, the kinetic Hamil-
tonian turns into

'" "' = 'I(P P')Q»'. Q5~'-+B(P P')Q; Q,~' -B*(P P')Q-»'Q~' -A*(P P')Q-,2Q„']B-„

—Dp [ A'(P P'-)Q o'Q p
'+-B(P P')Q, 'Q

p
' -B'(P P')Q-»'Qp '+-A(P P')Qp'Qp '] D-p (3 4)

where

A(p- p') =g fb'(3(p —p')+n —n')u, u,*, ,ee'

blocks as sites and group them into (super) blocks
as in the free-field theory. After diagonalizing,
we will need matrix elements such as (letting n
index a "site" within "block" P)

B(P P'}=+ fb'(3(P--P')+n- n)u~u*. , .
ee'

(3.5)

and

&+plB'u. Q p. 'Io, ) =-r,

(3 7)

Note that if u =u*, then A =B and (3.4) reduces to
(2.21) when we use (2.19). Equation (3.4) is in
fact the most general site-site (or block-block)
coupling Hamiltonian which conserves Q, Q„C,
and P, for any functions A. and 8 subject to

&+pIB'». .Q5, »..'10'& =-w .

Indeed, use of C and P symmetries shows these to
be the only independent matrix elements. Then the
newly truncated H~z takes the form (3.4) with new
A(p) and B(p) given by a generalization of (3.5):

A(-P) =A*(P), B( P) = B(P) . --(3.6}

We are now faced with the prospect of iterating
(that is, blocking and truncating) this operator
as a kinetic-energy term in the Hamiltonian. It
is clear that the generality of (3.4) precludes any
further change in form in the truncated subspace
to which we have restricted ourselves.

In the second iteration, we treat our former

A(p —p')-g [A(x)r r~, —A*(x)w w*, +B(x)w r

—B*(x)r,w*,,],
(3.8)

B(p —p')-g [B(x}r*r*,—B*(x)w~w*, +A(x)w"r*,

A*(x)r*,w*,, ],—
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where

x=3(p —p') +n—a' .

This procedure can in fact be specialized to the

first iteration if we start with A(j) =B(j)=i5'(j).
It is convenient, in order to make later com-

parison with the free-field case more transparent,
to rewrite H&„& (defined as HT&„"&/A in the nth itera-
tion} as

H(„)= Q iX„(P,—P2)(Bp Bq —D~p Dp ) —g„Q (B~p Bp+D~p D~ —1)~+8„

+ Q i [Z„(P,—P2)(B~~ Q~ 3Qp Bq —D~p Q,~ Q,p 'Dp )+Z„*(P,—P2)(B~q Q,q Q,p
'Bq —D~p Qp 2Qp 'Dp )]

Aye Q

(3.9)

3
2N+ 1~~

(3.10)

where X„(p) and Z„(p) are the appropriate linear
combinations of A's and B's: viz. , iX„(p}=B„(p}-
and iZ„(p) =B~(p)-A„*(p).

In this way our Hamiltonian (3.2}, with gen-
eralized kinetic term (3.4), takes on the same
form when blocked and truncated, subject to an

energy shift and a change in the value of g and in
the form of "gradient functions" A( j) and B(j). We
iterate this procedure until one of three limits is
reached:

(a) X„and Z„-~ relative to g„. The resulting
gradient functions must then be compared with
those resulting from the free field (where g=o to
begin with). More on this later.

(b) X„and Z„-o relative to g„. This, the
"strong-coupling limit, '"' is the Heisenberg anti-
ferromagnet as discussed in Paper II, and the
limiting form of the gradient functions before they
go to zero must be examined to determine the de-
generacy breaking of the ground state.

(c) X„and Z„approach a fixed form, and a fixed
ratio with respect to g„. In this case the dynamics
at large scales remain complicated.

We have thus far applied our procedure of suc-
cessively truncating the Hilbert space to compute
the general form of the Hamiltonian. We may also
apply this procedure to any other operator by com-
puting its matrix elements between the states re-
tained in each step of truncation. An example
which will be useful for calculating the Schwinger
term in the Appendix is the ground-state expecta-
tion value of the potential energy density [in units
of A=(2N+1)/L]

1
V=2N+1~ 'Q~'

=&o, Iv, Io,&=&+, Iv, I~,&,

a= ;2- &—+.IQ.,".-'I+.&
= &+.Iv. I+.&

(3.11}

=(-o Ivl-o) ~

Then the matrix elements of V~ in the truncated
basis are summarized by writing

V~=a+bQ»'

Since —,'(2N+1) is just N„ the number of blocks,

7' = a+— bQ,&2 (3.12)

This procedure may be repeated through following
blockings, and the recursion formula is

a-a+ —g &+, IQ, „,.'I+, &,

I -32[&0.IQ.,"..'Io&- &+, IQ„....'I+p&1,

(3.13)

Initial conditions are a=0, b =-g.
Thus we may calculate (V) in any of our final

variational states. Since we already know what
the Hamiltonian is doing in the iteration, we also
determine the kinetic-energy density by this pro-
cess. This will be of interest for determining the
theory's Schwinger term.

In order to renormalize the field, we will need
its amplitude to create a (Q =1, Q, =0) state at
rest from the vacuum, i.e. ,

Noting that Q»' is diagonal in our truncated basis
and that it commutes with C, we let, in a three-
site block basis,

a+&=- -'Z &» IQ,."..'Io.&
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~o(olx(o=o&(+& -=( „) (o +xi+)
(1

2 IO
rx-z i

I (3.14)

The operator of interest in (3.14) is

(o&x+1&'i'+i i 2N+1 + ox ~ ' ' )
(3.15)

1
3jlo o&) ~1 &&

3 tx

After n iterations, with N, =(2N+ 1)/3", we have

(3.16)

TR~ b = g" ~B, 31V}
(2N+ 1)x i2 Zi

5 p

where

At this stage there is no order in the system on a
scale greater than 3" sites, so that the zero-mo-
mentum state is just

Therefore

Q (l.,&if lo. &). (3.18)

after one blocking. The symmetries of the theory
imply that in the truncated basis

and

6'i (x)=s'(7y 0)=o, (4 2)

where the angular brackets indicate a suitable
averaging process over directions of &. Once both
sides of E&ls. (4.1)-(4.3} are well defined, it is
possible to compute all finite Green's fuoctions.

A second procedure" is to take the currents and
their commutators as fundamental, and from these
reconstruct the Thirring model and the fermion
field. According to this approach, the theory is
defined in terms of currents j„and j„where j,(x}
is assumed to satisfy the commutators

[j.(x),j.(y)]„=0,
[ j(&(x),j,(y)] sr =ic6'(x —y),

[j (x),j (y)],

(4 5)

(4.6)

(4 f)

(where the subscript ET denotes equal time) and
also the conservation laws

Sut j"(x) = suj (x) —0 (4.3}

We refer to these as formal equations since if one
begins with the fields g(x) as fundamental, the
operators j,(x) and (jP)(x) are singular. To give
them meaning, one must adopt some prescription
for rendering them finite. Johnson does this by in-
troducing a point-separation prescription

j"(x) = lim —,
' &[g(x+e) yu(i(x)]& (4 4)

euj (x) =Sue j"(x) =0 (4.8)

Thus

&0Ib I+& =N r. &"&p &0 Iff, l+,&

i

(3.19)

The fermionic degrees of freedom are introduced,
after finding general solutions of the problem
specified by (4.5)-(4.8), by re&luiring that there
exist a field (C&(x) such that

Z '"=iim g
&" & =Q g2 n~~ k=j.

(3.20)
[j.(x), 4(y)] „=-ag(x)6(x -y),
[j,(x},4(y)] „= ap(x)6-(» -X). (4.9)

Using (3.16) and (3.7), we find that in iteration i
1

(~«& + «&&" ) .
3 e

(3.21)

IV. CONTINUUM THIRRING MODEL

Before discussing results obtained from our re-
normalization-group procedure, we review known
features of the continuum solution with which we
are interested in making contact. To begin, we
recall that operator solutions to the Thirring mod-
el have been constructed in two ways. In the first, '
the starting point is the formal equations of mo-
tion

(4.1)

A Hamiltonian is then constructed in terms of
currents alone in such a way that g(x) satisfies
the equation

& & 0(x) =g„:j'(x)4(x):, (4.10)

where:: indicates an appropriately defined nor-
mal-ordering prescription for the composite opera-
tor.

In either approach, if one studies the full opera-
tor solution of the theory one learns that only two
of the four parameters (a, a, g„,c) are independent
and that the resulting theory has no mass gap.
Moreover, the wave-function renormalization
Z, (g„}is found to vanish at a finite value g„=g„
if one adopts Johnson's specific point-separation
procedure. The parameter c in (4.6) is singular
at g„as 1/[1 —(g„/g„)'], and is negative for



17 FKRMION FIELD THEORY ON A LATTICE: VARIATIONAL. . . 531

g„&g„. Thus the Hamiltonian, which when written
in terms of light-cone components of the Bose field

j,(x) is'

(4.11)

cannot be constructed past this point.

V. CALCULATION

( ) ()g ((B()„(B2), '(C)„) (5.2)

where as stands for asymptotic fit to large j, and
compute the real coefficients (Al}„, (A2)„, (Bl)„,
(B2)„, and (C)„.

In this section, we present the calculational de-
tails necessary to understand how we numerically
carry out and interpret the results of our iterative
"renormalization-group" procedure for the lattice
Thirring model. We find that the picture emerging
from our truncation procedure and the resulting
equations (3.3)-(3.9) is consistent with the con-
tinuum model in that there is a finite critical value
g„=1.1087 such for g&g„ the theory has no mass
gap; for g&g„ the cut-off lattice theory cannot be
multiplicatively renormalized in the usual fashion.
The lattice theory still exists for g&g„; in fact,
for this region its behavior seems entirely sensible
and is precisely as described in Paper II-i.e., for
g&g„we are driven to the strong-coupling limit
which corresponds to a Heisenberg antiferromag-
netic chain with nearest-nei ghbor interactions. As
was discussed in Paper II, this theory possesses a
massless excitation spectrum as first proved 46
years ago by Bethe." For g&g„, however, the
single-particle operator (1/ML) J dxgt (x) fails to
create any finite-energy states from the vacuum.
In fact, the excitations of unit charge are found
to lie an energy -gA above the ground state. This
result shows that for a certain region of the pa-
rameter g the particles and low-lying excitation
spectra found in finite cutoff lattice theories are
not simply related to the fundamental field intro-
duced in the starting Lagrangian and Hamiltonian.

In order to describe more fully how we carry out
the numerical solution, we recall that the generic
form of the Hamiltonian obtained after n iterations
will be as given in Eq. (3.9). The problem of
storing and recomputing the infini)e arrays X„(j)
and Z„(j) is handled in our numerical iteration pro-
cedure by explicitly computing and storing the
values of X„(j) and Z„(j) for j =1, . . . , 100. For
j&100 we parametrize X„(j)and A„(j) by

„( ) =(-1)i (A1)„(A2)„

Tables V through VII show the results of such a
calculation for typical values of g&g„and g&g„.
The meaning of the various columns is as follows:

(i) The number of iterations performed.
(ii) The value of X„(1}since it proves convenient

for numerical reasons to redefine H„=X„(1)x K„,
where the shortest range part of the gradient term
in 3C„ is chosen to be normalized, to the starting
function 6'(j).

(iii) g„, is the value of g„ /~X„(1)
~

and so, for
example, g,«-0 implies that up to an over-all
scale factor the theory is being driven to a theory
with no quartic single-site interactions.

(iv) X„(j)gives the first five values of

(X„(j}&& [(Al)„+(A2)„])/(X„(1)~X„(j)) . (5.3)

The values of Z„(j) stay small for all initial values
of g and iterate to zero relative to X„(j) so that
we do not bother to display them here.

(v) (Al)„/X„(1), (A2)„/X„(l), etc. , are self-ex-
planatory.

We see that if g,«and B1/X„(1), B2/X„(1), and

C/X„(1) go to zero as the number of iterations in-
creases and if only X„(j) takes a fixed nonzero
form, then the Hamiltonian becomes a purely quad-
ratic operator which can be diagonalized simply.
Tables V-VII show that this is what happens for
g &g„. On the other hand, for g&g„we see that

g,«grows; in fact, g,«xX„(I) approaches a finite
value. This means that the quartic terms of the
theory dominate the gradient. Moreover, ac-
cording to Table VII, only the first (i.e. , nearest
neighbor) part of X„(j)survives an infinite num-
ber of iterations. Therefore, the Hamiltonian K„

H„/X„(1) is se-en to approach the strong-coupling
nearest-neighbor Thirring model —which was
shown in Paper II to be equivalent to the Heisen-
berg antiferromagnet as studied by Bethe. The
results shown are typical of the behavior for all
values of g)g„. Since, as is shown in Table VI,
the fixed form of X„, (j) is the same for all g&g„
and is, in fact, the same as for the free-field case
g=0, it is evident that, for g&g„, the large-
distance behavior of the Thirring model will be
that of a massless free-fermion theory. This is,
of course, consistent with what is known about the
continuum model.

In order to understand what the change in the
behavior of the iterative solution at the point g=g„
signifies, we consider the wave-function re-
normalization constant Z, (g). Since the spectrur. .
for g &g„ is always a free massless spectrum,
there is no scale in the theory which is set by
multiplicatively renormalizing P(x) and so there
is a great deal of arbitrariness in the definition of
Z, (g). We therefore consider the ratio
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TABLE V. Computational results for g=0 (free field).

Iteration
(&) X„(1) g ff Xnogm (y = 1, . . . , 5) (Al)„/X„(1) (A2)„/X„(1) (Bl)„/X (1) (B2)„/X„(1) C„/X„(1)

20

-0.533 33 0

—0.31376

—0.188 05 0

—2.989 7
xlp 4

—1.937 6
x]0 &

1.000 00
0.818 97
0.81187
0.810 71
0.81040
1.000 00
0.608 75
0.602 04
0.60100
0.60p 72

1.000 00
0.496 14
0.491 03
0.490 24
0.490 03
1.000 00
0.312 56
0.309 77
0.309 34
0.30922
1.000 00
0.309 31
0.306 55
0.306 12
0.306 01

—0.625

—0.461 76

—0.38047

—0.243 86

—0.241 38

—0.18519

—0.138 78

—O.lpg42

—0.06528

-0.064 55

TABLE VI. Computational results for g =0.1 & g„.

Iteration
(n) X„(1) geff Xnorm() = 1. . .5) (A1)~/X {1) (A2) /X (1) (B1)z/X&{1) (B2)„/X (1) C„/3 (1)

15

20

-0.532 65 0.076 589

-0.31313 0.058 668

-0.18760 0.046 113

-2.980 3 0.005 397
xlp 4

—1.9315 0.002 389
xlp 5

1.000 00
0.818 g6
0.81187
0.810 72
0.81040
1.000 00
0.608 72
0.60201
0,600 98
0.600 70
1.000 00
0.496 11
0.49100
0.490 21
0.49001
1,000 00
0.312 56
0.309 77
0.30934
0.30922
1.000 00
0.30931
0.306 55
0.306 12
0.306 01

—0.624 98 —0.18521

—0.38044 —0.10g42

—0.243 86 —0.06528

—0.24138 -0.064 55

—0.461 73 -0.138 78

2.705 9 —0.004 1123
x]0 '

1.3216 —0.002 470 3
xlp 5

4 5477 —0 0013154
x]p-6

8.169 1 —4.463 3
xlp 9 xlp ~

1.533 5 —1.923 9
xlp ' xlp '
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TABLE VII. Computational results for g= 2 &g, ,

Iteration
(n) X„(1) 80t t Xnorm(j = 1, . . . , 5) (A1)n/Xn (1) (A2~n/Xn (1~ ( &~n/Xn ( ~ (+ ~n/ n (~~ n/ n (

-0.374 52

—0.128 98

2.914 7

5.488 5

1.000 00
0.817 34
0.81111
0.810 34
0.810 22

1.000 00
0.589 pl
0.583 19
0.582 55
0.582 44

—0.617 55

—0.439 35

—0.192 82

—0.143 30

0.00723 —0.066 80

0.009 09 —0.063 21

-0.032 991 16.712 1.000 00
0.442 20
0.438 14
0.437 78
0.437 78

—0.329 30 —0.108 71 0.01048 -0.058 74

10

15

—1.6136
x1p ~

4.128 6
x1p &5

—3.081 6
x 108

1.204 4
x]0+14

1.000 00
0.001 19
0.001 20
0.001 23
0.001 24

1.000 00
—2.066 1 x 1P 5

2.7470 x10
3 0416xlp

—3.189 2 x 1p 5

—6.237 0
x]0 4

1.684 9
x 10-5

—6.415 5
x10 4

1.785 5
x1p 5

2.3514
x1p 4

-3.5695
x1p 5

3.829 7
x]p 4

1.889 5
x]p 7

(
Z, (g) '~' (+1|'dxy (x)~0&,
Z (0) (+ ) Jdxg (x) )0)

(5.4)
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FIG. 2. Wave-function renormalization vs coupling
constant g in the lattice Thirring model.

with Z, (g) defined in (3.14) with g =M& X.
The result of our renormalization-group cal-

culation of this ratio is shown in Fig. 2. Note that
it vanishes for g-g„, the point dividing the two
regions in which the Hamiltonian H„ iterates to
very different forms. When g&g„, Hn converges
to the same fixed form that the free g =0 Hamilto-
nian iterates to, whereas for g&g„ it iterates to

the very different form in which the charge fer-
mions move high up to mass -gA and fail to propa-
gate. This breakdown of multiplicative renormal-
ization and the concomitant loss of the charged
degrees of freedom from the finite mass spectrum
is interesting in that it seems to occur in several
types of lattice theories for appropriate values of

coupling constant. Presumably if there is a quali-

tative difference between non-Abelian gauge theo-

ries, to which we look for an explanation of quark

confinement, and these nongauge models, it will be

that for the gauge theories whenever geo we will

lose the simple multiplicative revormalization pro-
cedure and, with it, propagating free fermion
(quark) states. "

CONCLUSION

We have demonstrated that our iterative pro-
cedure of constructing an effective Hamiltonian
on the lattice can be readily applied to fermion
problems and is successful in reproducing known
results for the Thirring model.
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APPENDIX: THE SCHWINGER TERM

be simpler to use Eq. (Al) and

p (x) = i[H, p(x) ]

to rewrite (4.6)

(A2)

Sj /sx =0 (A1)

and to evaluate the commutator [j,(x, f),j,(y, t)]
which according to (4.6) must be nonvanishing.
We can directly construct a conserved current
p(x) =j,(x) and j,(x) but it turns out technically to

In the preceding sections we described a tech-
nique for calculating the properties of a lattice
version of the Thirring model and showed that at
least in its most important features it corre-
sponded to the continuum theory. If we wanted to
construct a more complete correspondence with
the continuum theory, we would have to give ex-
pressions for the operators j,(x) on a lattice with
finite parts that converge to their continuum
counterparts. The next step would be to fix the
normalization of these operators by computing
their matrix elements between an appropriately
chosen set of low-lying states ~ As an illustration
of such a general program we will discuss here
the Schwinger term for this model. The principal
purpose of this discussion is (i) to show how to
define continuum operators "j„(x)"for finite cutoff
A and (ii) to show how to compute matrix elements
of this operator and commutators of j,(x) with

j,(x) between low-lying states.
To begin, we observe that our goal is to define

a current j„(x) satisfying

[P(x), P(y)] „=I[P(x), [H, P(3)]] =- fc6"(x-3)
(AS)

4(x) = ~~ e'"X(j = o)e ""
1 /2 ffA

X(k}ei™
a f

1 sinn(Ax —j)
' 2N+1 x)x[ (x*—j)((2)x+1)])

sine(Ax —j}
~(Ax- j) (A4)

and introducing

p, (x) =0'(x)4(x)

=A
~ ' ((xx ))""'-(Xx -)')

)))(Ax- j) x(Ax ji)
~

~

~

(A5)

Next we construct Bp(x)/St from the equation of
motion

There is no unique prescription for constructing
a local charge density on the lattice. We adopt the
straightforward procedure of defining the con-
tinuum field"

Xg =& [H)Xy]

((x ( () () -( )xx,.-x'(x.x;(x)x.x~) ~ (x', x.x@.x )I) .
f

(A6)

Using (A5}, we find

dp~ . 2 ~ sinw(Ax- j} sinn(Ax jx)—
dt ~~ )) (Ax j) )) (Ax—j')—

x Xq « i& ) -j X~- + Xq- «i& j—j"X&, —2E X& Xp XpX~ +2g X&Xp XpXp

(A7)

We will now evaluate the commutator (A2) and
verify that the left-hand side of (AS) becomes a c
number which is a function of the coupling g. This
is easily accomplished once we recognize that at
k,„we can simply pick off the coefficient
c in the Schwinger term by averaging the com-
mutator over a cell size -1/A. In the lattice

theory (AS) becomes

[ (p),x(p)]y„=- ,fcg 2%+1

(A8)

An average over the lattice distance is performed
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by operating on both sides of (A8) with

l, I„=- dx (A9)

where d-1. This gives

4n'2
[l,p~(x), l„pa(y)] = d'A(ic~} . (Alo)

5'(i, i.)X',-uX, = A(tc, )
4+d 2

The calculation of the left-hand side of (A10) is
straightforward in the limit L =(2%+1)/A-~
and we find

a.o

2.5—
lZ
UJ«20—
K
UJ

l.5—
z'

1.0—
0
V)

0.5—
I I I I I ) I

0 0.2 0.4 0.6 0.8
g

I
I

I

]

I—

I

I

I

I

[

I

I

I.O I.2

FIG. 3. Renormalized Schwinger term c vs coupling
constant g in the lattice Thirring model.

where

-6 T -6T
m' A(Dr+1) (A11) (0

~

T ~0) =- 2 k+ (finite excitations)
=0

,' &A'L[1—+0(1/L}] . (A14}

T=—A Xt& jo;6' j -j (A12}
Hence in the L -~ limit the free-field Schwinger
term is given by

T= kb~ kbk —dt kdk) .
A =- ifA

(A13)

The only term in (A13) proportional to volume L
is the zero-point energy since all excitations are
finite. Note, for the case g=0, H=T and since
we know the ground state of the system, we find

is the kinetic-energy term in the Hamiltonian.
This result is independent of the specific form
of the quartic interaction terms which are softer
at short distances, i.e., the same result (A11)
follows from prescriptions for defining the Thirring
model on a lattice in terms of a quartic potential
term free of umklapp processes or of a charge
density defined by constructing p(x) by the opera-
tion (A4) on the bilinear }it&x&. We must now verify
that in the limit L —~, (A12) becomes a c-number
equation. We readily verify this by expressing T
in a momentum basis and recognizing its content:

ca =3/v . (A15)

Finally, one must divide the ca of (All) by (Z,)'
in order to have the Schwinger term of the cur-
rents after field renormalization. ' Since Z, -O
as g-g„, our c is indeed singular there. (See
Fig. 3.}

Johnson has shown that the choice of a value of
g„and of a point-separation procedure are suffi-
cient to determine the theory and its Schwinger
term. Conversely, choice of values for g„and c
determine the theory' and every pair of values
corresponds to a point-separation procedure. '
We have given a renormalization-group construc-
tion of the operators determining c as a function
of the "bare" coupling g. In order to complete
the numerical correspondence to the continuum
theory, we would have to similarly construct the
operators ii( and j'g, thus finding the "renormal-
ized'"' parameter g„.
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' A simple variational guess for I in (2.20) of NO=0
and u~=1/ 2, thereby emphasizing the block-block
coupling terms by maximizing the trial wave function
at the bIock edges, cuts this error by almost a factor
of 2.
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to strong block-block coupling.

~2This procedure for constructing operator solutions of
the model, and not only the Green's functions, was
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magnet for all g& 0. That is, we find g~ =0. A. Luther
[Phys. Rev. B 14, 2153 (1976)] has derived results for
a lattice version of the massive Thirring model which
uses the difference operator for the gradient and
assigns particles and antiparticles to alternate lattice
sites in order to avoid the doubling of degrees of
freedom [in this connection see also J. B. Kogut, Cor-
nell University Report No. PRINT-76-0865, 1976
(unpublished)]. He has found for I & 0 that there
exists a g ~ & 0 such that for g &g~ the theory can only
be defined by reinterpreting the ground state.
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8 (+~ 0 ~18'ET ~
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with a nonlocality resulting from the km~= ~ A cutoff.
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rendering the products finite, and before wave-func-
tion renormalization.


