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A method for approximately including quantum effects on the solution to lattice field theories is presented.

The formalism is an extension of the semiquantum approximation of Sachrajda, Weldon, and Blankenbecler

to obtain lower bounds for quantum Hamiltonians. This approach yields classical-like equations in which the

effects of quantum fluctuations is included in a variational manner. The energies obtained by this method

should be lower bounds to the true eigenvalues. Vacuum and single-kink solutions are treated in detail, both

analytically and numerically.

I. INTRODUCTION

The study of methods for finding nonperturbative
approximate solutions to quantum field theories
has been of much interest in recent years, in par-
ticular for those theories that have classical,
time-independent, space-dependent solutions such
as kinks, etc.

Approximate solutions to scalar A. tde)' field theory
have been extensively studied by Dashen, Has-
slacher, and Neveu' (DHN) and Goldstone and Jac-
kiw' in the weak-coupling limit, by quantizing
small vibrations around the classical limit. Nore
recently Drell, Weinstein, and Yankielowicz' have
developed a variational method for treating one-
dimensional A. Q4 theories on the lattice and Scala-
pino and Stoeckly' (SS) considered a quantum-me-
chanical solution to a truncated theory on a lattice
comparing it to a semiclassical approximation in
which they linearized the equations of motion about
the classical minimum and then added the energy
of each resultant normal mode.

Similar problems that appear in statistical me-
chanics have been earlier treated by other methods
by Qnsager' and Fisher and Ferdinand. ' Finally,
extensive work on the theory of classical and quan-
tum solitons has been done by Christ, I ee, and
co-workers. '

In the preceding paper, ' hereafter called SWAB,
a new method for including quantum effects in a
classical-like limit was developed. The method is
based on approximating the effects of quantum fluc-
tuations to the energy in a variational way which is
not equivalent to an expansion in powers of k. The
values of the energy thus obtained are lower bounds
to the corresponding true eigenvalues. In a way,
the SWAB method is equivalent to a generalization
of well-known uncertainty-principle arguments for
estimating the ground-state energy of quantum sys-
tems. A further advantage of this approach is that
the resulting equations can be solved by simple
methods since the problem is one of finding a pure-
ly classical equilibrium configuration. For rea-

sonable choices of the trial functions, the resulting
values for the energy of quantum Hamiltonians are
lower bounds to the quantum energy levels, and
thus the method complements the Ray&e&gh-»tz

variational calculations which provide upper bounds
for those eigenvalues.

In this paper we further develop this method by
applying it to one-dimensional field theories on
a lattice. The extension to higher dimensions is
straightforward.

In Sec. II we present a general description of the
application of the semiquantum approximation to
lattice field theories, and apply it to free field the-
ory in Sec. III. In order to make clear the phys-
ical interpretation of our results we discuss in Sec.
IV the meaning of the equilibrium semiquantum co-
ordinates. Sections V and VI are devoted to des-
cribing analytical and numerical methods for solv-
ing the classical-like equations obtained. In Secs.
VII and VIII we study in detail the Dashen, Has-
slacher, and Neveu and the Stoeckly and Scalapino
problems, respectively. Section IX presents our
conclusions and outlook.

II. LATTICE FIELD THEORY

Let us now consider the application of our meth-
od to field theory. This will not be a full discus-
sion but merely a brief exposition of the general
approach. Of course one hopes that the inclusion
of some quantum effects in an otherwise classical
solution will be of interest in itself as well as pro-
viding a new starting point for an expansion of
quantum effects. Since some of these important ef-
fects have been included in the zeroth order, one
might hope that the expansion would be more rapid-
ly convergent. We shall be particularly interested
in the local, or classical-like, solutions and for
purposes of illustration we will work in one space
dimension but it 'is said that the extension to higher
dimensions is straightforward.

Ignoring normal-ordering terms, the Hamilton-
ians under discussion are
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H =
l dx(-,'m'(x)+-, [Vy(x)]'+y(y(x))) . A more general choice is to consider a linear com-

bination of field variables and write

Since the conjugate momentum n does not commute
with p, our object here is to estimate w' (or better
yet to bound it from below) by a function of the field
variable P only, as in our earlier discussion of
Schrodinger theory. Since the new Hamiltonian
then would depend only on the field variable, both
H and Q would be diagonal in the same coherent set
of states. The quantum effects of the m' term have
not been completely neglected as they are in the
usual classical limit.

In order to implement this program, it is con-
venient to work on a lattice with spacing a and
write

H =a g[-.",'+-,'(&4) +I (4;)],

m'[0]=-,' P [v(n) y]-',

where the v(n) are a complete set of orthonormal
vectors in N dimensions. The final approximate
form of H in this "almost quantum theory" approx-
imation is

aHs = ~w'[pj+ —', Q ~ D ~ /+a'p[pj .
Recall that the object here is to choose g(p), and

hence w'[p], so thatHs is as large as possible.
Then its minimum will be as close as possible to
the exact energy value. Criteria to be used in the
choice of the function g(P) were discussed in detail
in Ref. 8.

where any version of the gradient operator may be
employed' and where

[m, , y, ]=-i5,, /a .
It is convenient to introduce a vector notation at
this stage, P =(P„P„.. . , p„), where P; is the
field value at site i, and write

N

v-=g ~, ,dy

O'D 0-=a'g (~4)i',

v[y] = p v(y }

where D is an NxN matrix. The Hamiltonian be-
comes

III. FREE FIELD THEORY

As is customary for all approximation schemes,
the method will first be applied to free field theory as
an aid in interpreting the nature of the approxima-
tions involved and as a guide to the choice of v'[p].
The potential is

I [ej= 'M'~ -~

If the estimate (5) is used for s'[P], then a varia-
tion of the (t)&'s yields the minimum condition

1

4~ 3 a'M'4(=-ZDi, 4g .
f

The solution for P is a vector with constant com-
ponents, P, '=1/2aM, and

aH = —
~~ + —,

'
P D P +a' V[/] . (4) H s (min) = -,' g M = 2MN . - (9)

The familiar interpretation of a set of oscillators
coupled by the derivative matrix D is clear. Since
our procedure worked well for single oscillators,
one might expect that the same will be true here
in this much more complicated case.

Using the SWAB procedure, the first term can be
estimated by a localized function of Q:

w'- n'[4]= pm'(y, ),
where p' is of the form

v (ei) = i[el(ei}/a;(4~}]' .

For example, one may choose

H(y,. ) = I/4y, '

This approximation has neglected completely the
kinetic energy of each oscillator. The basic reason
was that the choice for s'[p] did not prevent the so-
lution for P from being orthogonal to the eigenvec-
tors of D with large eigenvalues (indeed p was
orthogonal to all eigenvectors except the one cor-
responding to D =0}.

This defect is easily remedied. Introduce the
eigenvectors of D such that

Dv(n) =D„v(n) = a'k„'v(n)

for n = 1, . . . , N and define

r„=v(n)

Using the form (5) for rP[P], the Hamiltonian be-
comes

H& =
2 Z 4, +a'k„'r„'+a'M'r„'

nr &n
(10)
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a set of uncoupled eigenmodes. The minimum with
respect to the rn is easily found:

N

Hs(min]=-, ' Q (M'+b„')'~' .

This is the exact result and the coordinates r„are
just the Fourier transforms of the (QI), . The exact
form of this transform is, of coux'se, defined by
the choice made for the derivative operator D.

Excited states of the free field are also straight-
forward to treat. Consider the case in which only
the mth mode is excited to its first level. For the
w„' one obviously chooses (see Ref. 8) the same as
the above for n e m, but for the excited mode

1 r 2+b2 2
2 nt

4 2 2 b2

where b is chosen after the minimization with re-
spect to the r„. It is chosen to maximize H~. Since
the modes are decoupled, this is a simple problem
and at the optimum point one finds b' =1/a(M'

2)1/2 and

Hs(j ) = P [w„'(r„+j„b„)+a'b„'r„'+2j „r„]
2Q n

+ aV(r) .
The procedure now is to minimize with respect

to the r„'s, and then choose the b„ to maximize the
resultant energy values. Working to first order in

j, one finds that the new equilibrium coordinates
are

r„=r„'+JR (n)j +O(j'),

where the y„"s are the solution for j =0, and

R (n) = — /, (man),
By.Br. /' By.

~„(.) ——(i .b.
d n' B'H

rn rn

where all the variables are evaluated at rn =r„'.
The lower bound to the energy becomes

Hw =He(j =0)+—P j„r„2D„r„+—, b„
1 . 0 0 Bp

H (smi )n=w' P(M'+b„')'~'+(M'+b„')'~', +O(j') . (12)

the correct result, as expected.
For a general potential, the optimum choice for

g(P) and therefore w'[P] depends upon which terms
in the Hamiltonian are large. If the potential is
large and has a deep minimum, then g(p) should
be chosen so that p cannot take maximum advan-
tage of this minimum. On the other hand, if the
derivative term is dominant, then one must force
f to mix in the large eigenvalues of D. The form-
er condition is most easily expressed in coordinate
space, the latter in 4 space. Hence their simulta-
neous satisfaction requires some ingenuity in the
choice for g.

W. PHYSICAL INTERPRETATION

In order to aid in the physical interpretation of
the equilibrium solution for the field variables P;,
or the r„, it is instructive to add a source term
g J~P, =gj „r„to the Hamiltonian and to generate
expectation values of the field using the Feynman-
Hellman theorem, (P,) = (SE/Sg, )~,. Consider a
Hamiltonian of the form

1
Hw(j =0) = g [w„'(r„)+a'b„'r„']+aV[r J,2'

Now since the original Hamiltonian possessed a
symmetry in r, if the set r„' is a solution to the
minimization problem, so is -r„. Now the opti-
mum value for bn must be such that the value of
dH~ does not depend upon which of these minima
one expands around (otherwise one would be small-
er) and hence

1 Byb„= 2Dn+ o on ro Bro

The odd term in j in the energy vanishes identi-
cally. Thus

&r„) =&y, ) =0

and clearly one should not identify r„' with the quan-
tum expectation value (r„).

Qn the other hand, if a term Q„j„r„' is added to
the Hamiltonian, one finds approximately that (r„')
= (r„')'. This root-mean-square relation for r„' is a
reasonable and intuitive interpretation of the equi-
librium values of the fields and this momentum-
space connection should be kept in mind while in-
terpreting our results.

V. KINK SOLUTIONS-COORDINATE SPACE

which is assumed invariant under the simultaneous
transformation of all the r„--r„. Now in the pres-
ence of the source term, this symmetry is lost and
the optimum choice for the m„' should reflect this
fact. Therefore, we introduce a shift in m' and de-
fine

In this section, a few general remarks will be
made for kink-type solutions although no specific
examples will be discussed in detail. We shall be
interested in the difference in behavior between the
solutions using our approach and the purely class-
ical (w'=0) limit. For w'[P] of the form given by
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Eq. (5), which treats all lattice points the same,
the minimization of (8) yields the equation

, D;, P, + W(p)=0,1 d

where

1
w(y, ) = v(y, )+ 2, H(4, } .

This difference equation is most easily treated by
passing back to the continuum limit in which P;
= P(x), but the explicit factor of a' is retained in
the effective quantum potential W(P). The result is

sical theories. To explore this point further, con-
sider v' of the form (5) or (6). Near the vanishing
point of p, the equation for P' is

yl (y2)-1/2 +D((y2)1/2}
1

2'
and hence

P(x)- ' + ~ ~ ~ .
a

Note that in the limit P depends only on a, i.e., the
quantum effects from m' completely dominate the
effect of the potential. The energy density for x
-x, has the behavior

V'y(x) = W(y) .
dQ JC(x)-(4a!x —x,[) ' . (18)

The requirement that p approach a constant value
at infinity is that this constant F satisfy

w(F) =o. (14)

The equation for p(x) can be integrated once to
yield

—,'[y'(x)]' = W(y) —W(F), (15)

1X,(x) = V(F)+, v'(F! +[y'(x)]', (16)

where the last term is given by Eq. (15). It is easy
to show that this term vanishes like (P —F)' for
large g.

For the "vacuum" state, defined by p'=-0, the
energy density is constant and given by the first
terms. This is not the same as the classical re-
sult since F is to be computed by finding the min-
imum of the effective quantum potential W that in-
cludes effects of the n' term. The asymptotic field
is therefore renormalized. The energy, back on
the lattice, is

N

H, =age(x;)
1

and the field P is a solution of the familiar implic-
it equation

r
@(x)

dy[W(y} —W(F)]-'/' =~2(x —y) .
4(v)

The Hamiltonian density can be written as

VI. LINEAR LATTICE

Let us now turn to a more specific example, that
of KQ' on the lattice, and perform numerical cal-
culations in jg space in which the eigenfunctions of
D are used for the v(n) The .solutions for the vec-
tors v(n) if D is chosen to be the nearest-neighbor
gradient, (Vp;)'=(&f&, —Q,„)', are given in the Ap-
pendix, case (a}. We define

r„=v";Q;

and its inverse as

(19}

(t}~ =&s&n

These vectors satisfy

D;&v", =D„v

with

D„=4 sin'v(n —1)/N . (20)

The Hamiltonian of interest is then chosen to be

1
Hl = m r„+a D„rn2Q n=1

Therefore there is a logarithmic infinity in the en-
ergy arising from the forced vanishing of P(x).
One expects that quantum fluctuations will have
their largest relative effects when the field P itself
is small, and indeed this is the case. This diver-
gence may be due to the fact that our starting Ham-
iltonian was not normal-ordered and there is still
a mass renormalization to be performed.

=aNW(F)+a g[Q'(x;)]' . +ax P(P, '-f')' . (21)

This will now be examined for kink-type solutions.
For such a solution, i.e., in which P(s~) =sF,

the function &P must vanish at some point. Since
P =0 is a symmetry point, most choices for w'[P]
blow up there. This has an important effect on the
energy which is quite different from standard clas-

One can now proceed to minimize this function of
the r„(or equivalently the p,.). This can be done by
brute force, but it is helpful to have approximate
solutions to localize the search. Two such approx-
imate solutions will now be discussed.

For the vacuum state, and except near the sym-
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metry point even for the kink state, one expects
that the 4)' will be roughly equal (except for end ef-
fects). This suggests the approximation

The Hamiltonian is now an explicit function of the

r„. The minimization is now quite simple:

2 1
(5r„)' = (D„+8Kf') '}'

This should be compared with our earlier esti-
mates, Eqs. (23) and (24). These two approxima-
tions are similar in character, but not identical,
owing to the somewhat different estimates that
were used.

(38)

lowest order. Also, if Q,
' = constant, which is ex-

actly true for the (classical) vacuum, then the
solution for the 5r„'s is

(22}

The classical solution to this problem is P, =f
or ry WNf, r„=0 (pg&1}. Thus to force the quantum

solution away from these values we chose

1 1
20

(23),

and r, is the solution to

1r, (r, —vNf }'= 4a'a R' f'-
N

where R' =—Qr„' and must be determined self-con-
sistently from (23} and (24).

A second approach, which is very similar to the
expansion used by DHN, is to write P, = p';+ 5/, or
equivalently their transforms r„=r„'+~„, where
P'; (and r„') is the classical solution to the problem.
The conjugate momentum operator 9 is then cho-
sen so as to keep the 5y„'s from being too small.
In this case, the Hamiltonian becomes

This choice for n does not retain the original sym-
metry of the Hamiltonian under r„- -r„(all n si-
multaneously) but is closely related to the standard
expansion procedure. " A better choice would be
Eq. (6) withe. =nf' which would retain the symme-
try of the original Hamiltonian in r, .

The solution for n&1 is

VII. THE DHN PROBLEM

In their classic papers' on the subject, DHN gave
an analytic solution to the (continuum) problem
posed by the HamiltonianH, +H, . In order to com-
pare with their results in detail let us first consid-
er this reduced problem. Our procedure is as fol-
lows:

First, we solve for the classical solution to the

lattice problem by finding the minimum of H, as a
function of the g (or the r„') [because of the lattice,
the kink solution is somewhat different from the

expected f tanh(v2gfax;)J. Then the minimum of H,
as a function of the Or„was found numerically using
for initial (trial) values those given by Eq. (28) and

then letting the program find the true minimum.
The results for the difference between the

vacuum and kink-state energies per site are
given in Fig. 1 for the values Xa= 8, ~= 1 and
for a range of values of f'. These values do not
change significantly by letting X change from 8
to 16.

The analytic values given by DHN are, of course,
infinite due to renormalization effects. If their
formulas are arbitrarily cut off at a P value of 9,„
=2m ja, in order to correspond to the effect of the
lattice, one finds (N= 8) for the energies of the
non-normal-ordered Hamiltonian"

l. 5

I.O—
H~ =H, +H, +H

H, = g —,'aD„(r'„}'+axP [(g)' f']', —

where

(25)
0.5—

bJ
I

H
1 ~ 1

4(5 }
+aD (6r } -05—

+2«2[3(4 } f](~0}-(26) —I.O
0

I.
4

H, =6a~ p 4)(64, )'+ax g (64, )' .

If the 5Q's are small, thenH, can be neglected to

f2

FIG. j.. The difference between the energy per site of
the vacuum and the kink states for the truncated prob-
lem of DHN with v= 1, N = 8.
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E(kink) —E(vac) 4v 2

Pic
=

3 m 2

3&2f '0 (ff)'+ 2}v, (q'+1)(q'+4)'I'cd

(29)

where q, =k,„/v2Kf -2v/v2zfa. A rough estimate
(for g =1) of the integral shows that (29) vanishes
for f'-1.4. Our calculation also has such a cross-
over, at a value of f' -1.6, as is evident from Fig.
1.

While it is very difficult to include the H, terms
in an exact treatment, it is a straightforward mat-
ter to include them in the semiquantum approach.
The results for the energies are shown in Fig. 2

for N= 8. The full energy values have risen slight-
ly and the crossover has moved to f '- 1.2.

To find these minima of H~ we have used a com-
puter program based on a quasi-Newton method
that minimizes a scalar function of N variables.
The method is iterative and therefore requires an
initial estimate of the position of the minimum.
Since the function to be minimized must be contin-
uous with continuous first derivatives, we have
regularized the kinetic energy term by adding a
small positive parameter (=10 ") to the denomi-
nators. Changes of the value of that parameter do

not change the solutions. The initial estimate of
the minimum is multiplied by a parameter that is
increased by steps from 10 ' to 1. The kinetic
energy term is also multiplied by the same pa-
rameter and the search is started at one of the
classical solutions, either constant or kink. 1he
search stops when all components of the gradient
are smaller than 10 '.

Since the P s are linear combinations of the r&'s,
there are several local minima depending on the
signs of the r s. To find the true minimum we
have started the search with each of the 2 possible
combinations of signs. Because of end-point ef-
fects, we have selected only those solutions that
maintain the constant or kink character as the ab-
solute value of f' is decreased to well below the
critical point.

VIII. THE STOECKLY-SCALAPINO PROBLEM

A quantum-mechanical solution to an interesting
one-dimensional lattice model, a truncated A. P'
theory on a ring, has been discussed by Stoeckly
and Scalapino (SS).' In order to facilitate compari-
son with their work, the Hamiltonian will be re-
written in their notation

H =H c+H

where the classical and quantum Hamiltonian are
(a=1)

H, = g[,'c(V g—)'+—,'r(g)'+-,'(g) ]

Complete Hamiltonian

ff, =Q [—,'v„'+-', (r +cD„)(Fir„)']

+ Z I.-'(4")'(&0 )'+ 4l(&e;)'+-'(&el)'] .

The relation to the DHN problem is obvious. The
estimate of the energy due to the conjugate mo-
mentum is chosen to be the familiar

0
0

f2

FIG. 2. The energy per site of the vacuum and kink
states for the complete Hamiltonian of the DHN problem
for ff:=1, +=8.

It is now a somewhat simple matter to solve for
the minimum energy configuration by varying the
5r„. However, the transformation between the co-
ordinate- and momentum-space field variables,
r„=v";P;, depends now on the boundary conditions.
The vacuum state requires symmetric boundary
conditions on the ring, whereas the kink state de-
mands antisymmetric boundary conditions. The
solutions for the v's for these two situations are
given in the Appendix cases (b) and (c). Note that
since the problem is posed on a ring, there are
many translation and inversion degeneracies in the
solution.
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O4

O.a—

—Stoeckly

dimensional Ising model. Since the kink energy
goes as (r, —7) for 7-"- r„we obtain from our so-
lution a value of P =8 which is the Qnsager result.

IX. CONCLUSIONS

0.2—

O. I

0

-O. I

6= (EK-Ev j
N=8
C =O. I

FIG. 3. The results of the semiquantum method for
the total energy differences are compared to the cal-
culation of Scalapino and Stoeckly for a range of 7- values.

The energies and configurations for the mini-
mum-energy vacuum and kink boundary conditions
we obtained numerically for N = 8, c =0.1 and a
range of v are compared with the results of SS
in Fig. 3. The kink energy is above the vacuum en-
ergy for sufficiently negative v but they become
equal for 7 -= -2.6. This is to be compared with the
calculation of SS which found this degeneracy oc-
curring at 7. = -2.2.

It is reassuring to see that, if as in the Stoeck-
ley-Scalapino calculation the energy of the vacuum
is taken as the origin of the energy variable, then
our calculation should give a lower bound to the en-
ergy of the kink, as is the case. Of course the two

problems are slightly different since SS obtain a
quantum-mechanical solution to a truncated prob-
lem. However, for small values of e (see Ref. 4)
the approximation of considering only the ground
state and the first excited state of each anharmonic
oscillator should be quite good and therefore the
truncated problem should be a reasonable approx-
imation to the full Hamiltonian.

In addition, Pfeuty" has shown that for the
ground state (p) -(T, —r)'~' for T &7„correspond-
ing to P =-,' in the Onsager' calculation of the two-

A simple semiquantum approach to lattice theo-
ies has been developed and applied to several ex-
amples. This approach provides lower bounds to
the true quantum energy (except for possible end-
point problems discussed in Ref. 1). Comparison
with the results of conventional treatments and so-
lutions of the examples shows reasonable agree-
ment. It is hoped that the semiquantum approach
can be used to develop insight and physical intuition
into the effects of quantum fluctuations on purely
classical solutions as well as to provide convenient
lower bounds to test the accuracy of conventional
calculations of the energies of quantum systems.
Further applications of the method to the sine-Gor-
don problem, fermions, etc. , may prove very in-
structive.

It may be possible to use these classical-like
configurations as a new expansion point for quan-
tum effects that are then treated perturbatively.
Such an expansion would be expected to converge
more rapidly since some quantum effects are al-
ready included in lowest order. As yet, we have
not been able to carry out this program satisfacto-
rily because of some formal problems. In any
case, the method stands on its own as a useful
technique to estimate and even to bound from below
the energies of simple field theories.
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APPENDIX

In terms of the field variables, the gradient term
in the Hamiltonian is written as

(A1)

where the matrix D depends on the boundary con-
ditions imposed.

We have considered three cases.
(a) Linear system with free end-point conditions:

i, j=2, . . . , +—1

i,j=1 or N

i=j+1
0, otherwise .
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(b) Closed ring with symmetric boundary condi-
tions:

251) ) i)j =1)

D,, =( -1, i=jul

& 0, otherwise .
(c) Closed ring with antisymmetric boundary con-

ditions (kink solutions):

~ 2O.. . i,) =1, . . . , N

The eigenvalue equations are

(2 D-„)v"; = v(„+v(,
with the following boundary conditions

case (a): v, =v, , v„„=v„,
case (b): v„„=v, , v, = v„,
case (c}: v„„=v, , v, = -v„.

Writing

v,". = M„sin(ja„+ Q„},
one obtains

-1, i=j +1

~ 0, otherwise .

D„=4sin'

and the following solutions for each case:

n-1
case (a): a„= v, n=l, . . . , N

1/2

N-n+1
.m, n+1

y, =v/2 .

case (b): &a, = w/4,

( y, =o,

~ M, =1/WN,

2(n —1)

(
P) N

7T

N
N

n=(
N+12). . . ) 2

)Ãodd

~N(2+i =& )

4N /2+1

2(nr -n+1)
N

wg
-2--+2, . . . , N, N even

y„=~/4,
N+3

2 , . . . , N, N odd

1 /2
n=2, . . . , N.



522 RICHARD BLANKENBECLER AND JOSE R. FULCO 17

r 2n-1
case (c): a„=

N+1
P„=-(2n —1) w, n =(

N even

N-1
1, . . . , , N odd

~(N~y) /p

Nm
4 (N+1) /2

1
(X+1)/2

P„=2(N —n + -',), n =(

M„= (

—+1, . . . , N, N even

N+3
2

'. . . , N, N odd .
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