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We study vacuum tunneling of non-Abelian gauge theory directly in Minkowski space. We do this by
constructing a family of field configurations which connects vacuums of different winding numbers and which
satisfies conditions necessary and sufficient to produce maximum tunneling amplitude. Using these explicit
configurations we obtain explicitly the potential-energy barrier in winding-number space, through which
tunneling occurs. We finally discuss the possible connections among the tunneling solution, the classical
solution, and the full quantum-mechanical solution to the field equations.

I. INTRODUCTION

Recently, much progress has been made in un-
derstanding the nature of the ground state for a
non-Abelian gauge theory. The discovery of
Euclidean solutions,!”® the pseudoparticles, and
their possible interpretation as tunnelings among
vacuums with different winding numbers®~!° stim-
ulate many speculations and excitement. In our
opinion, there are many features concerning these
pseudoparticle solutions which still need to be un-
derstood. In particular, the detailed mechanism
of the vacuum tunneling in Minkowski space!® and
its relation to the pseudoparticle solution deserve
a thorough investigation. We address ourselves
in this paper to the following questions:

(1) What field configurations provide the vacu-
um tunneling, and what are the conditions for a
maximal tunneling amplitude?

(2) In what space does vacuum tunneling take
place, and what is the potential barrier in this
space?

(3) To what extent can vacuum tunneling be un-
derstood as a solution to the field equation?

Our results provide partial answers to these
questions. It is our hope that our work will stim-
ulate further research on this topic.

In Sec. II of this paper, we formulate the vacuum
tunneling as a quantum-mechanical transformation

of field configurations from one vacuum to another.

In Sec. III, we work out the necessary and suffici-
ent condition for a family of field configurations to
achieve the maximal tunneling rate. The proof

is simple in Minkowski space, and the physical
picture is clear. We work out an explicit example
in Sec. IV for a @ =1 vacuum tunneling which gives
rise to the maximal tunneling rate. We then ex-
plore in Sec. V the mass parameter and the poten-
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tial barrier associated with vacuum tunneling in
the winding-number space. We work out the poten-
tial barriers explicitly, and also plot them in
graphs. In Sec. VI, we discuss the validity of the
method and the possible interpretation of the vacu-
um tunneling as a simplified quantum-mechanical
solution to the full field equations. We discuss and
speculate on various topics in the last sections.
We also include an Appendix A to illustrate several
interesting features of vacuum tunnelings in a
simple ¢* theory, and an Appendix B (added in
proof) to clarify the relation between the tunnel-
ing and the Euclidean solutions.

II. FORMULATION OF THE PROBLEM
We consider a non-Abelian (Yang-Mills) gauge
theory! described by
£==3 8w, @.1)

amam, (2.2)

abc“p v

f(lfz:aua(,f) —a,,af,‘”+ge

with @ as an isospin index, and u,v as Lorentz
indices. In terms of matrix notation,

F,,=gfl%) 41", (2.3)

A, =gd® ir°, (2.4)
we have

1 2

L=~ gz'TI‘(Fu,, (2.5)

and
1
Fup=0,4,-3,A,+ 7 [4,,A,]. (2.6)

In (2.3), 7@ (a=1,2, 3) are Pauli matrices. It is
often more convenient to introduce

E;=Fy;, Bi:%Ei!kFﬂz’ (2.7)
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where E and B are generalizations of the electric
and magnetic fields. In terms of E and B, we
have the Lagrangian density

£= %Tr(ﬁz -B), (2.8)
g
and the Hamiltonian density
3(:=%Tr(f:2 +B%)>0. (2.9)

One can define the winding-number difference be-
tween two spacelike surfaces ¢,,0, as!

Q=z—1—2Tr f"z dxE-B. 2.10)
T a

If F,,=0 ono0,,0,, then Q is an integer. Equation
(2.10) also tells us that if the vacuums at o, and o,
give rise to a nonvanishing @, there must exist
some regions between o, and o, such that F,,#0.
Since the energy density 3 [see Eq. (2.9)] is posi-
tive-definite and vanishes only if Fu,,--O, the ex-
istence of such a region (region with F,,#0) can
only occur during a tunneling process. For a
sourceless classical theory, Fu,,=0 on o, (or a,)
implies F,,=0 everywhere. Thus, it is impossible
to change the winding number of a classical ground
state. However, as a quantum system, the winding
number of the ground state may change due to
quantum fluctuations. This phenomenon can be
understood as a tunneling in some collective mode
in the field configuration. Recently, Gervais and
Sakita studied the vacuum tunneling and its quan-
tum corrections by means of the collective-coor-
dinate method.!® The readers are referred to that
paper for details.

In this paper, we concentrate on the vacuum
tunneling by considering only a single collective
mode. We shall write down the rules for obtain-
ing the maximal tunneling amplitude. In Sec. VI
andthe Appendix A, we demonstrate in a simple ex-
ample that the vacuum tunneling is consistent with
finding a first-quantized solution to the field equa-
tions.

For simplicity, we choose o, and ¢, as surfaces
at equal time (¢, and #,). We work in the Coulomb
gauge, A°=0. We denote the vector potentials on
0, and 0, as A¥ and A . We require that A% and
A(ﬁ’ are associated with pure gauge transformations
such that F,,=0 on both ¢, and 0,. The winding-
number difference @ can be written as the differ-
ence of two surface integrals®

7
Q:E—Z-(f _f )douEpUXoTr(AuAXAo)
T\ o,

- 12’1,2(]‘ —I)daxe“,,Tr(AiA,Ak). 2.11)
2 1

Thus, @ is independent of the intermediate field
configurations as long as A, is regular inside the
region.

The procedures for obtaining the maximal single-
mode tunneling amplitudes are as follows:

(1) We introduce a family of intermediate field
configurations as

4, =0, (2.12)
Alx, 1) =1(x, A (1)), (2.13)

where ) is a parameter describing the field con-
figuration within the family. We require that

=A% ata=),, (2.14)
=A@ ata=n,, (2.15)

and thatf varies continuously from A® to A® as
X varies from A, to ,. Given (2.12) and (2.13),
we obtain

E, = %&i’x, (2.16)
, 1
Bl=5€i!k<ajfk_akf]+?[f] 1fk]>- (2.17)

The field variables E and B for intermediate values
of X usually do not vanish.

(2) From E and B, we construct a single-param-
eter Lagrangian and Hamiltonian as

L=3m()N%=v()) (2.18)
and
H= by +V(1) (2.19)
2m(\) ’ .
where
2 af \2
m(k)=?fd3xTr<a—)\> , (2.20)
2 -
V) = Ez—fd“xTrBz, 2.21)
oL .
D= éT:m(X)R. (2.22)

A typical potential V() is shown in Fig. 1.

To obtain the tunneling amplitude, we treat
(2.19) as a quantum-mechanical Hamiltonian. With
appropriate orderings of the operators, we can
make H Hermitian. We can now obtain the tunnel-
ing amplitude by solving an ordinary Schrddinger
equation. At the weak-coupling limit in which the
tunneling amplitude is small, we can compute the
tunneling amplitude by the WKB method as ¢ ® with

R=f)2az>~[2m(x)v(>~)]‘/2° (2.23)
Xy

(3) By varying the field configurations f( x, A(¢)),
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we can find the conditions for obtaining the maxi-
mal tunneling amplitude. In Sec. III, we shall ob-
tain the necessary and sufficient conditions for
the maximal amplitude. In Appendix B (added in
proof), we clarify the relation between the maxi-
mal tunneling configuration and the Euclidean sol-
ution.

III. VACUUM TUNNELING IN MINKOWSKI SPACE

Now let us compute the WKB vacuum-tunneling
amplitude due to a partxcular family of field con-
figurations [ 4,=0,A =f(x, A(t))]. The total Ham-
iltonian H associated with {f} is

Py
2m(n)

with m (1), V(A) as given in Egs. (2.20) and (2.21).
The first term of H denotes the kinetic energy
with a A-dependent mass m(\), and the second
term denotes the potential energy. It is easy to
see that

Vix,)=V(,) =0 (3.2)

H=

+V(n), (3.1)

and
V(x)>0 whenever B#0, (3.3)

The WKB tunneling amplitude is P=¢ ® with

A2
A[2mn)v()]/?

[Trfd x( >Trfd sz} v
dt (Tr f d°xE? Tr f d3x§2>1/2. (3.4)

We can interpret

R

1]
P

A\

I
g A,
2f‘2
g,

Tr f d®x(x)- blx) =

as a scalar product with a positive norm, i.e.,
|a®|=a- a>0,

for every a#0. This implies that the Schwarz
inequality holds for every a and b,

(@] 16*))*2>a- b].

The Schwarz inequality implies in the present case

2 = 8n?
r>% Trfd“xE»El=%lQ|, 3.5)

Thus, for a given winding-number difference @,
R is bounded from below by (872/g%)|Q|, and
hence, the WKB tunneling amplitude is bounded
from above by

= ,-R 8n?
P=e¢R<exp —?-lQI . (3.8)

In addition, R reaches its minimal value R = (872/
2319l (or P reaches its maximal value) if and
only if £ is proportional to B for all X and ¢ with
an x-independent proportionality constant. The
problem of finding the fastest WKB tunneling
rate is equivalent to finding a set of field config-
urations which gives rise to parallel E and B.
Note that even though E and B are gauge-depen-
dent quantities, the relevant quantities such as
L, @, and the condition E||B are all gauge inde-
pendent. Hence, the WKB tunneling amplitude is
gauge invariant. In the following section we shall
present field configurations which give rise to the
maximal tunneling rate for @ =1, and motivate the
construction of such configurations,

IV. AN EXAMPLE

An explicit family of field configurations which
gives rise to the maximal vacuum-tunneling ampli-
tude for Q =1 is

O %xF .
A= i2+)\3+a2)\’ (4-1)
K = AT HXXT AT +XXT (4.2)

Eiia

The vector potential A, given in (4.1) and (4.2) is
not in the Coulomb gauge. We can transform it
into the Coulomb gauge A} = (0,A’) by a gauge
transformation U,

A,=U(8,-iA)U], (4.3)
with

(4.4)

_ iX-7 - A
U—exp[(iz T AN tan @ +a2)”2]
The Coulomb gauge vector potential is quite com-
plicated. Since both the Lagrangian L and the

V(X)

-\
A N
FIG. 1. A typical potential barrier associated with
the vacuum tunneling. The parameter A denotes the
change of field configurations. Note that the potential
V(A) vanishes at A=A, and \A,, and that it is positive-
semidefinite, V() =0, for A;<A<A,.



17 VACUUM TUNNELING OF GAUGE THEORY IN MINKOWSKI SPACE 489

winding number @ are gauge invariant, we can
compute them in the original gauge specified by
(4.1) and (4.2). We can evaluate the vacuum-tun-
neling amplitude once L and @ are known. Using
(4.1) and (4.2), we find

- 22N .
E--@orear (4.5)
B= 24" 7 (4.8)

which are indeed parallel to each other. The ef-
fective one-parameter Lagrangian L and the Ham-
iltonian H are

1 -
= ?Tr f d3x(E2 - B?)

__ 3n%* 2o 3n%q*
gz()\z +a2)5/2 gzo\z +‘12)5/2
=3m )X = V(r) (4.7)
and
H= 25y (4.8)
2m(\) ’
respectively, with
6n2at
m(\) = W , (4.9)
_ 3n2a*
Vv(x) = W ’ (4.10)
pr=m X, (4.11)

For an intermediate value of A(¢), we define a
winding-number variable g(\) as

1 ¢ -
q(X)EWTrf dtfdaxE-B. (4.12)
For E and B given in (4.5) and (4.6), we have
_ ba* ? 3 A
q\) = - J:wdtfd BT R

_6a* [ 3 1
_?j;mdxfd x(iz+>3+a2)“

1 a’
=%+%a—2—+az—)lrz—<'x2—+a'§'+2>. (4-13)
According to the definition (4.12), we have
xlim q) =0, (4.14)
1x1_r.n q(\) =@ (=1 here). (4.15)

We can use g(A) as a dynamical variable to de-
scribe the vacuum tunneling in the winding-num-
ber space.

We can obtain the vacuum-tunneling amplitude
by solving the one-dimensional quantum-mechan-
ical system described by (4.7)-(4.11). The WKB
tunneling amplitude is P =¢~® with

R =fmd7\[2m(7\)V()\)]‘/2

= Sn*a _ 8n°
= gz . O\T+az—)55 - gz ,
which is indeed the maximal tunneling amplitude
associated with a @ =1 transition. Qur result
agrees with the action integral over a @ =1 Eucli-
dean pseudoparticle solution, and provides a just-
ification for the usual interpretations of pseudo-
particles as vacuum tunnelings. By working out
the vacuum-tunneling amplitude in the Minkowski
space, we also obtain an explicit expression for
the potential barrier V.

If one considers a set of gauge potentials A, (%, ¢)
and A, (X, ), the formulas that give E, =F,, and
B, =3€,; F;, are the same, irrespective of the
metric, Minkowskian or Euclidean, of the space.
The constraint E; = B; defines a self-dual field
configuration in Euclidean four-space, whereas
the constraint E; = a(¢) B; guarantees that the bar-
rier for tunneling is minimal in Minkowski space.
Thus the most probable escape path in Minkowski
space may be obtained from a self-dual field con-
figuration in Euclidean space by replacing ¢ by
A(f) and multiplying A (%, A(f)) by A(t). For then
one automatically gets

E(x, ) =AB(%, 2 (2).

This explains the forms of Eqgs. (4.1) and (4.2)
above, which are obtained from the pseudoparticle
solution of Ref. 1 by the use of this procedure.
See also Appendix B (added in proof) for a general
discussion.

Ulq)t

.o

" L L

o 1 2 3 4 5 & 7 8 9 10g

FIG. 2. The potential barrier as a function of the
winding number ¢ for a ©® =1 vacuum tunneling. The
winding number g is defined in Eqs. (4.12) and (4.13).
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V. WINDING-NUMBER SPACE

In Eq. (4.10), the potential barrier is described
as a function of . Note that the winding number
g(7) is also a function of A. Combining Egs. (4.10)
and (4.13), we have a parametric definition of the
potential energy V as a function of ¢. In Fig. 2,
we plot the scaled potential,

2
vi)=E22, (5.1)
m
as a function of g. We can also express the kinetic
energy term (FEy) into the standard form

Ex=3m'(a)¢, (5.2)
with
2
12 3210 ey g2ysl2, (5.3)
3g%a*

Equations (5.3) and (4.13) define m’ as a function of
g. In Fig. 3, we plot 3g%m’/327%a as a function of
g. We can view the vacuum-tunneling process as

a particle of g-dependent mass going through the
potential barrier V(q).

We would like to point out that the expression ¢
defined in (4.13) is not the only possible definition
of the winding number. In fact, any function ¢’(A)
which agrees with g on integer values is an equally
acceptable definition of the winding numbers. We
may write

q’ =q¢(q)3

1 1 1 1 1
(0] 0.2 04 0.6 0.8 1.0 q
FIG. 3. The effective mass parameter as a function of
the winding number g for a @ =1 vacuum transition.
F(q) is defined by F(q) =3g*m’ (q)/327%.

with
¢(n)=1 for n=integer.

A simple example of ¢(n) is cos®nm. Even though

q and g’ agree on integer values, their behaviors
for noninteger values are entirely different. We
can use this degree of freedom to define a new ¢’
which gives rise to a ¢’-independent mass. Indeed,
if we require

3n2qt . o
Ex= grpes @y ¥ memta (5.4)
with m” being a constant, and
q'(—"") =Oy ql(°°)=1, (5.5)
we obtain
6112a<1"(1/2)1"(3/4))2
”—
m re TG/2) R (5.6)
‘o r'/2) Ma gt
T=TARTGE/A )., @+1)/°
signx
=%+ZB(1 gzr:3 1) Bg(%;% ’ (5.7
where
XZ
=g (5.8)

and B,(a,b) is the incomplete beta function. In
terms of the new winding number ¢’, the potential
barrier U(g’)=g2aV(q’)/372 is a smoother function
of ¢’ near ¢’ =0, and 1. We have plotted U(q’) as
a function of ¢’ in Fig. 4.

VI. FURTHER INTERPRETATIONS

In this section, we shall explore further the
meaning of the vacuum tunneling. For notational
simplicity, we denote the field variables as A(x, ),
and the initial and final field variables associated
with the different vacuum modes are A® and A®),

u(q")
1.0

.8¢

.6

at

.2F

L 1 1 I 1 1 1

O I 2 3 4 5 66 17 8 9 q

FIG. 4. The potential barrier as a function of a
modified winding number ¢* The variable ¢’ is de-
fined in Eq. (5.7).
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We can express the transition amplitude from A®
to A® in the path-integral form as
4(2)

<A<2>|A(”>=fm S)Aexp{ifL(A,A)dt:l, (6.1)
A

where L is the Lagrangian. We have also sup-
pressed a gauge-fixing d-function term for nota-
tional simplicity.

For all paths connecting from A®) to A®), we
can parametrize A(x,f) by a set of variables
{f@x,x, (1), a,,a,,...}, where f(x,\(2)) denotes a
family of field configurations connecting A®’ to
A® anda; (i=1,2,...) represents the remaining
variables describing the fluctuations around the

path f(x,x(f)). We can express the transition
amplitude as

(A(z)lA(l))::f DN(T)Da (A, a;)

xexp[ f (iL1+iL2)dt], (6.2)

where J is the Jacobian describing the transform-
ation of A to {f(x,)),a;},

L, N=LA,A) | sencen (6.3)
and
L,(\,\,a)=L-1L,. (6.4)

Now we integrate out the variables a,’s, and ob-
tain an effective action AS:

f‘.Da,J()x,aQexp(ifdet>=exp[iAS(h)]. (6.5)

We can write the transition amplitude as
(4|40 = [ oA(1) exp [i [ (Ll(x,i))dnmsm]

(6.6)

Note that our result (6.6) is still general. The
result does nof depend on the particular choice of
the field configuration (collective coordinate)
f(x,7(¢)). On the other hand, we can see easily
that L, obtained here depends crucially on the
choice of f(x,X(¢)). The difference in L, due to
two choices of f(x,\) is compensated by the dif-
ference in the correction term AS. For some
choices of f, AS may be small. We conjecture
that the particular choice of f(x,A(¢)) which max-
imizes the transition amplitude

(A‘“IA‘”)“”E[Dl(t)exp[if Ll(x,i)dt] (6.7)

gives rise to a small correction term AS. For
this choice of f(x,)(¢)), we can ignore AS and
write

(A‘2’|A(”)uf:m(t) exp[ile(k,i)dtJ. (6.8)

The integration over the one-parameter function
(path) r(¢) leads to a one-dimensional quantum-
mechanical transition amplitude. This result

is equivalent to our calculation given in the pre-
vious section. We wish to emphasize that the
smallness of AS is at the moment a conjecture.
The above assumption is equivalent to the dom-
inance of the “most probable escape path” (MPEP)
in the function space.'? We believe that this con-
jecture is a reasonable one.

Operationally, what we have done is to replace
A by A(x,?)=f(x,2(#)), and suppress all other vari-
ables. We would like to point out that the integra-
tion over A(¢) for a given A =f(x, x(?)) still includes
many paths in the original (x,?) space. Namely,
to each function \(¢), it corresponds to a path in
the (x,?) space. It is the integration over these
paths which makes the quantum tunneling possible.

For transition between vacuum with different
winding numbers, there is no classical path which
minimizes the action. However, it is possible
that there exists a two-dimensional surface (or
more generally, an N-dimensional hypersurface)
such that a path outside the surface gives rise to
a larger action than that obtained from its projec-
tion in the surface. If such a surface does exist,
the path integral will be dominated by the paths
lying within the surface. If {a,} measures the vari-
ations of a path perpendicular to the surface, then
the action is dominated by the surface A =f(x, A(¢)),
{a;}=0. Thus, we obtain naturally a semiclassical
approximation by setting all a; =0 (classical limit),
but keeping the integration over A(¢) exactly. This
semiclassical approximation is precisely the meth-
od used in the previous section.

The above interpretation also suggests that, with
a proper choice of f(x,\(t)), A(x,?)=f(x,x(t))
should obey the field equation F, ., =0. Now the
relations among our tunneling solution, a classical
solution, and a fully quantum-mechanical solution
are transparent.!> All three solutions obey the
field equation F, ., =0. In a classical solution, the
field variables are ¢ numbers. In a fully quantum-
mechanical solution, all field variables are ¢ num-
bers and they obey the canonical quantization rela-
tions. In the tunneling solution, one pair of dynam-
ical variables (A,)) are treated as quantum oper-
ators, and the remaining variables (the a;’s) are
treated as ¢ numbers. At the moment, we have
not yet found the proper parameterization which
makes this interpretation manifest in the Yang-
Mills theory. However, we are able to provide
suchapicture ina simple ¢*theory. See Appendix A
for detailed discussion of this model.

We can generalize this physical picture to multi-
pseudoparticle solutions. In an N-pseudoparticle
solution, the field equations F,,,, =0 are still sat-
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isfied, but there are N pairs of dynamical vari-
ables being treated as quantum-mechanical oper-
ators.

VII. DISCUSSION

A. Relation to the pseudoparticle solutions

We have shown in Sec. V that the weak-coupling
tunneling amplitude obtained from our solution
agrees with the Euclidean action integral over a
pseudoparticle solution. Thus, our solution pro-
vides a direct verification that the pseudoparticle
describes the vacuum tunneling. The Euclidean
description is valid if the tunneling is weak such
that the WKB approximation is reliable. In the
strong-coupling case, the WKB approximation is
no longer reliable. We expect that the Euclidean
version is not reliable either, and one has to solve
the tunneling amplitude in the Minkowski space
exactly. In the following, we shall examine the
connection of the WKB and the Euclidean solution
closely.

In the Minkowski solution, we do not have the
self-dual condition E =B as given in the Euclidean
solutions. We have instead a weaker condition
E B for all x and £. Combining the condition
E |IB with Egs. (2.16), (2.20)-(2.22), we have

i=§li2m+&))]1/2;\

p
B v @1

which should be viewed as an operator equation.
We can recover the self-dual condition and the
Euclidean solution from (7.1) by noting that, in
the WKB approximation, we may interpret form-
ally the momentum p, during the tunneling to be
imaginary,

Py =i2mV)/2, (7.2)

Note that this is only a formal, operationally con-
venient identification. The true quantum-mechan-
ical operator p, is self-adjoint, and does not have
any imaginary eigenvalue. Accepting this formal

identification, and substituting (7.2) into (7.1), we
obtain the self-dual condition

E=4B. (7.3)

Indeed, if we apply this formal identification to
our solution in Sec. IV, we obtain

A=i (7.4)
and

; i2a®
E—Zﬁ——m)—z?, (75)
which is precisely the analytic continuation of the

pseudoparticle solution to the Minkowski space.
See also Appendix B (added in proof).

B. Nonoptimal solution

In Secs. IV and V, we concentrate on the vacuum
tunneling through an optimal path, i.e., the maost
probable escape path.!? In reality, tunnelings
through nonoptimal paths are also possible, but
they give rise to slower rates. In the following,
we shall provide an example for such a path.

Consider the tunneling through the field config-
uration

A,=0, (7.6)
W+XXT
e (7.7

The field configuration X in (7.7) is identical to
that of (4.2). It is easy to see that the winding
number changes by 1(Q =1) as X varies from —«
to . The E and B fields obtained from (7.6) and
(7.9) are

_ (=2+%2+ ) F - 20X XT) ¢
T (X2 +22+a?)? A (7.8)
and
Bo_ . 2@ (1.9)

T
respectively. Note that E and B are no longer par-

allel to each other. Indeed, when we compute the
WKB tunneling amplitude, we find P =¢"® with

R=15.883172/g2>8m12/g2. (7.10)

At the small-g limit, P represents a much smaller
tunneling amplitude than the maximal tunneling
amplitude e-87/¢€Z,

C. The pseudoparticle density

In this paper, we consider the vacuum tunneling
describing the change of field configurations around
the origin (x* =0). Evidently, vacuum tunneling
can also appear at different space-time locations,
and the tunnelings at large separations (distances
>a) are dynamically independent. Also, tunneling
processes involving small space-time regions can
take place within the tunneling processes involving
large space-time regions. Using simple scaling
arguments, we expect that the total tunneling rate
due to a single pseudoparticle (i.e., @ =1 transi-
tion) over the entire space-time region and sizes is

Fx %;T— %‘3 em1or2/ a2, (7.11)
If the contributions due to different pseudoparticles
are independent as in the dilute-gas approximation,
we expect that the average densities of the pseudo-
particle and of the anti-pseudoparticle are the
same and are given by

d
dne E;-’ en1ort/ 8 (7.12)

(without quantum correction). The vacuum is thus
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filled with randomly distributed pseudoparticles
and anti-pseudoparticles as in a dilute gas. For
a fixed g, the density of small-size pseudopar-
ticles varies as the fifth power of 1/a. Presum-
ably, the quantum corrections will modify the
tunneling amplitude. It is reasonable to assume
that the higher-order correction will change the
coupling constant g in (7.12) to the running coup-
ling constant g, giving

dn _‘;Ta e-usr"’/?(zl)2 (7.13)

(with quantum correction). According to the per-
turbative calculation,'* one finds

8r2 _8m% 22 . aq,

RO R 1)
o812/ E2 =e-812/g2<_tf_>22/3, (7.15)
o

where g, is the length associated with the renor-
malization point. This correction is sufficient to
render the pseudoparticle density finite in the
small-a region,
a 44/3 2.2
dn —<a—> e1*?/¢% = const X @**/%da. (1.16)
0
It is generally believed that at large a, g(a)
becomes large too. Hence, the WKB tunneling rate
is no longer reliable. If we take the formula (7.13)
literally and study its large-a behavior, we find at
large a,

da
dn e 25

which gives rise to a finite density. This indicates
that the total density of pseudoparticles over all
sizes is finite.
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APPENDIX A: VACUUM TUNNELING
IN A SIMPLE ¢* THEORY

Consider a two-dimensional ¢* theory described
by the Lagrange function

£=3- 5(32) - tater- oy

+B(c®¢ - $¢%)+3Bc®, B>O0. (A1)

The field equation obtained from (Al) is

oo 2

F- ol g4 - N9-B(E@-¢9=0.  (A2)
It is easy to see that for a classical field both
¢ =c and ¢ =—c are stable minkna. Quantum
mechanically, the ¢ =-c state represents an
unstable vacuum, and the tunmeling to the stable
vacuum state ¢ =c will take place.'®''® We shall
consider the case of a small and positive B in
which the vacuum tunneling is weak. The Hamil-
tonian of our system is

N 2
se=td7+3(20) s bt - oo
- B(c*p - 3¢%) - 2B, (A3)

The energy density associated with the unstable
vacuum state, ¢ =—c, is chosen to be zero. The
energy density associated with the true stable
state, ¢ =c, is —€ with

€=4Bc*>0. (A4)

To understand the tunneling process, we note
that there are kink- antikink states, which are de-
generate with the ¢ =-c state. The exact form of
the kink-antikink states was worked out by Katz
in Ref. 16. For our purpose, we only need to con-
sider an approximate form. The kink-antikink
state centered at the origin is described approx-
imately by

b=c [‘ca,nh(—z‘i (x+ xc)> - tanh(él- (x - xc)> - 1] R (A5)

with

p=(2gc) /2, (A6)
A,=M/e, (A7)
u=2E girss (48)

In (A6)-(A8), pn denotes the mass (or frequency)
associated with small oscillations around ¢ =zc,
2, is the separation of the kink and the antikink,
and M is the mass of the kink. The total energy
associated with the field ¢(x) given in (A5) is

E=2M -2ex,=0,

as desired.

We shall work out the tunneling amplitude be-
tween the ¢ =—c unstable vacuum state and the
state given by (A5). Once the field reaches the
field configuration (A5), a real kink and antikink
pair is produced. The kink and the antikink will
move away with an acceleration «O(B), and they
leave behind them an increasing region of true
ground state ¢ =c. Thus, the tunneling between
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the ¢ =-c state and the (A5) state represents the
vacuum tunneling that we are looking for.

The intermediate field configuration describing
the vacuum tunneling is the kink-antikink config-
uration located at A and —X, and moving with vel-
ocity £,

o il )1

(A9)

The 1/(1 - A2)!/2 factor denotes the Lorentz contra-
ction qf the moving kinks. [In the tunneling pro-
cess, X is imaginary and the factor 1/(1 - \2)!/2
is smaller than one. It actually describes a Lor-
entz expansion. See Ref. 16.]

After ignoring terms O(B?) or higher, we obtain
the effective Lagrangian as

L= [ dx [%JF— %(EY— 1g(¢?- e

ax

+B(9 - §6°+309)]

=—2M(1 - \2)/2 4 2¢x. (A10)

The first term in (A10) denotes the Lagrangian

of the kink and antikink moving with velocity A,
and the second term 2€X describes the volume
energy of the ¢ =c region between the kink and the
antikink. The Hamiltonian associated with our
system is

H=—X-L
A
=(p2+4M3)/2_ 2en, (A11)
where
L) 2M .
pE—.— = — A, (A12)

(1~ 7\2)1/2

We can identify tﬁe kinetic energy K and the poten-
tial energy V as

K=(p*+4M2)M/2_ap, (A13)
V=2M - 2€. (A14)

In Fig. 5, we plot V as a function of A. As we
vary A from 0 to A, V() first increases rapidly
to 2M indicating the creation of a kink-antikink
pair. V(\) decreases gradually to zero as X in-
creases such that the volume energy —2€X becomes
important.

We now treat L and H as those of a one-dimen-
sional quantum system, and obtain the WKB trans-
ition amplitude as P =e R with

Y
R =f *[4M2 - QNPT 2
o]

=mMN, /2 =TM?/2¢€. (A15)

As a quantum-mechanical system, A and p obey
the following Heisenberg equations:

S _ P

X—t[H, | —W (A16)
and

b=ilH,p]=2¢. (A17)

Equation (A16) is identical to the definition of p
appearing in (A12). We may express (A17) as the
equation of motion for a relativistic particle mov-
ing under the influence of constant force ¢,

= 5 (22). (a16)

The region A<, is forbidden classically by energy
conservation. However, vacuum tunneling can oc-
cur quantum mechanically, and it takes place
precisely in the forbidden region A<X,. The Hei-
senberg equations of motion (A16) and (A17) apply
equally well to the tunneling process as well as

to the real motions of the kink and antikink after
tunneling.

We would like to show that, with a slight modi-
fication, ¢ given in (A9) obeys the full field equa-
tion (A2) if A and X obey (A16) and (A17). For
simplicity, we shall treat X and A as ¢ numbers.
We expect that one can generalize the above result
to accommodate the operator nature of A and X.

To verify that the ¢ given in (A9) obeys the field
equation, we note that the kink and the antikink
solution in ¢ do not interfere with each other once
they are separated by a distance A>1/u. For-
tunately, the region A,>X>1/p is exactly what we
need to know for understanding the tunneling pro-
cess. In this region, we can treat the kink and the
antikink solution separately. We shall demonstrate
in the following that both the kink and the antikink
solution obey the full field equation (A2).

V)
|

2Mk

1

o I

e =X

FIG. 5. The potential barrier as a function of the
kink-antikink separation in a two-dimensional ¢* theory.
The variable A denotes one-half the kink-antikink separa-
tion.
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Consider the kink solution,

X+ A
qbk—ctanh[z Wm] . (Alg)
We have
. _CW 2 X+X :I by
®p= 9 sech [2 A—372) 1 Ry 72
cu 2 X+ ] X+ 5%
+Zsech|:2——x§5mﬂ)—3;§-(k)
(A20)

The first term in (A20) describes the c.m. motion
of the kink. The second term in (A20) describes
the change of shape of the kink as we accelerate
it. We can remove the second term readily by in-
cluding a small (~O(B)) shape-correction term in
the argument of tanh in (A19). In the following, we
shall ignore this term because its presence does
not affect our final conclusion, but only compli-
cates our discussion. With this simplification, we
have

cu X+

$1=%f seert [ & 2 |

+terms which can be ignored, (A21)

o _Cp 2[ X+ ] d A
Ox=g Sel| S W2 | at WX

cu? 2[ X+ ]
-3 sech’ 2——2-17—(1 )

X+ X A2
xtanh [z - xzwz] T-%)7

+ terms which can be ignored, (A22)
where we have ignored shape-correction terms,
and terms of O(B?) or higher. Hence, we have, for
a single kink solution,

o “”'+g<¢k —c)g,-B(c? - ¢,2)

“sechz[ X+ 2 ](ﬂ A ﬂl)
T2 2 A- 2 N\ar A-372" u

=0. (A23)

The last relation follows from the equation of
motion (A18). Of course, the result applies equally
well to the antikink solution. We can now work

out the field equation of ¢ associated with a kink
and an antikink solution given in (A9) in a similar
way, obtaining

¢ - +g(¢2—cz)¢ B(c? - ¢?)
W X+ A
=—2—{sech2[2 o 2]

+sech2[2&—(1—’i—i%m}}

4__ A ?_Bﬁ]
x [dt -3~ g
=0, (A24)

provided that the Heisenberg equations of motion
are satisfied. Since the Heisenberg equations of
motion are satisfied for tunneling processes as
well, we expect that the full field equation (A24)
[or (A2)] is satisfied for the vacuum-tunneling
solution.

APPENDIX B (ADDED IN PROOF): MOST PROBABLE
ESCAPE PATHS AND EUCLIDEAN SOLUTIONS

As we have demonstrated in Sec. IV, a replace-
ment of ¢ in a Euclidean pseudoparticle solution
by an arbitrary function A(¢) gives rise to the field
configuration corresponding to the maximal tun-
neling amplitude in Minkowski space. In other
words, the most probable escape path (MPEP)
A= A(x T(t)) can be obtained from the Euclidean
solution A(x t) by this trivial substitution. We
would like to show in this appendix that this is in
fact a general result. We shall demonstrate this
substitution rule in a scalar field theory. The
result can be extended straightforwardly to a
non-Abelian gauge theory in the A°=0 gauge. Con-
sider a scalar field theory described by

2=t 2(22) v, ®1)

where U(¢) contains all nonderivative ¢ depen-
dences. Let ¢ =¢(x, (¢)) be a tunneling path, and
and let E be the energy of the system. The La-
grange function along the path becomes

=3 mOA2 = V() (B2)

with
m= f dx(-z%)z, (B3)
V= f dx[%<§§>2+v(¢)] . (B4)

The WKB amplitude associated with (B2) is
P =e"F with

R= f d{2m)[v() - E] P2, (B5)

The condition for ¢ (x, A(t)) to be an MPEP is
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5 f a\2m(V-E)M2=0. (B6)

The following result holds:

Lemma. For any solution to (B6), there exists
a parametrization 7 =7(\(f))=7(¢) such that ¢ (x, 1)
obeys the Euclidean solution

92%¢ 92 a0
S et e 5=0. (B7)
Conversely, if ¢ (x,T) obeys (B7), any parametri-

zation 7 =7 (A(¢)) gives rise to the variational re-
sult (B6).

The above conclusion is closely related to a re-
sult obtained by Coleman,'® who obtained the above
result by a formal substitution 7=¢¢ in the Euler-
Lagrange equation. However, the result can be
established directly without referring to any imagi-
nary-time formulation as follows.

The variational principle implies from (B6)

%(6_3?55 [2m(V — E)]/ 2> =52—)[2m(V—E)]” 2,
(B8)

Introducing a new parametrization 7()=7(A(t))
through

dT(h)_( m(\)
ax T \2[V(Q) -

1/2
we have

a3 (g antom -2 <5 (2 2) 51

K <a¢> dr 9%¢
T dx ar?

(B10)
and

%[2m(V—E)]”2=<ﬂ%5>U2< 8%¢ aa;)>
Z; < R :(:) (B11)

Equating (B10) and (B11), we obtain (B7).
To prove the converse, we multiply (B7) by
-3¢/87 and integrate it over all x, obtaining

%f"’x[ 2@?) +2< ¢> v(¢>)] ,  (BI2)
fdx{—%<:%¢>2+%<§%>z+v(¢)} =-E, a constant.

(B13)
Equation (B13) implies

9 \?
[dx<8—1-> =2(V—E) .
Thus, for an arbitrary parametrization 7=7(),
we have

(5] o) o).

ar m 1/2
ﬁ"(z(V_E > ’

which satisfies (B9) automatically. Now it is triv-
ial to verify (B6).

We remark now that Eq. (B7) is identical in form
to the Euclidean equation of motion for the field
¢ (x, 7) with 7(¢) replacing the Euclidean time. We
emphasize here, however, that () [or A(t)] is
not Euclidean time or an analytic continuation
thereof; it is a parameter which characterizes
the tunneling in Minkowski space. Details of this
work will appear in a separate publication.

(B14)

or
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