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Self-dual Yang-Mills fields in Minkowski space-time
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We exhibit a complex, self-dual gauge field configuration in Minkowski space-time, with the property that

its real part satisfies the Yang-Mills equations of motion.

The notion of self-duality has proved very fruit-
ful in the study of Yang-Mills gauge theories. The
dual *E,„of the field strength E,„=S,A„—BQ,
+ [A„,A„] is defined as *F,„=-',e„„"E„.We shall
generally call self-dual a field configuration where
F„„and *F„„areproportional. Because of the
Bianchi identity D„„F„=O,if F„„is self-dual,
it satisfies the Yang-Mills equations of motion.

In Euclidean four-space, the eigenvalues of
&E„„"are +1 and the condition of self-duality is

pa
&pa ~

A„=QA„'—'. , (2)

a &aF+v —~FJive '

We shall consider an SU(2) gauge group in this
paper. o„a=1, 2, 3, are then the three Pauli ma-
trices. It is apparent that the equation

Pff
~v=~~2~v Fpg

This set of first-order nonlinear differential equa-
tions has been analyzed in great detail since the
work of Belavin, Polyakov, Schwartz, and Tyup-
kin, ' where the relevance of self-dual field con-
figurations was first recognized. A large class of
solutions to Eq. (1) has been constructed, ' their
properties and physical implications have been ex-
posed, ' and existence theorems for more solutions
have been given. 4 In a very interesting recent de-
velopment, moreover, it appears that the most
general solution to Eq. (1) can be constructed by
methods of algebraic geometry. '

In Minkowski space-time the eigenvalues of
&e„„"are +i and the condition of self-duality, E„„
= +i F„„,can be satisfied only if the field is com-
plex. A clarification of our conventions is in order
here. We represent the gauge potential A„and
field strength F„„asmatrices in the space of in-
finitesimal group generators

can be implemented only if the potentials A„' are
complex, or, equivalently, if the gauge group is
extended to a larger noncompact gauge group, in
our case.SL(2,C).

The fact that in physically interesting situations
one usually deals with compact gauge groups
seems to make self-dual solutions in Minkowski
space-time scarcely relevant, but some procedure
might exist to obtain from a complex self-dual
gauge field a real field, which still solves the Yang-
Mills equations of motion. ' In the Abelian case,
where self-dual field configurations describe
photons of definite helicity, one can trivially ex-
tract a real solution from a complex self-dual one
by taking its real part. In the theory of non-Abe-
lian Yang-Mills fields, the nonlinearity of the
equations of motion in general bars this simple
procedure. The experience with self-dual fields
in Euclidean four-space has shown, however, that
after a suitable choice of superpotential functions
an effective linearization of the equations of motion
occurs. What we have in mind is the possibility
that, after some analogous linearization, self-dual
field configurations can be superimposed to obtain
real solutions of the Yang-Mills equations. Given
the simpler structure and geometrical meaning of
the self-duality condition, this would imply a sub-
stantial step towards the solution of the classical
theory.

The purpose of the present communication is to
exhibit a self-dual field configuration of high sym-
metry in Minkowski space-time, with the remark-
able property that its real part is also a solution
of the Yang-Mills field equations. The real part
is gauge equivalent to the solution recently dis-
covered by de Alfaro, Fubini, and Furlan. ' On
the other hand, the full self-dual field configura-
tion can be considered as the analytic continuation
to real time of the single-pseudoparticle solution
in the Euclidean domain presented in Ref. 1. This
estabilishes a new, interesting relation between the
pseudoparticle and the solution of Ref. 7.

The complex self-dual solution is given by the
expression
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f(t,x')
(1-x')'+ 4tm
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(10}
A, = (r,+R,)a, +r, (A0 —ao),

A, = (r,+&0)A, -R,(Ao —ao),

and is identical to the relation between 8„and 8„,

From a„and A, one constructs an "electric"
field

with E,„=n,a„—B„A,+ [A„a„], (1la)

~2 g2 x~2
7

f(t, x )=1- 2it
(6)

2x 1+x2
r g p tp

2t 1 -x2
lx

(7}

with

The real part [i.e. , the anti-Hermitian part of A„,
according to our conventions, see Eqs. (2).and. ($)]
is obtained replacing f with its real part, 1.

Exhibiting the solution is less informative than a
clarification of its symmetry properties and of the
method by which it has been obtained. The field
configuration of Eq. (5) is characterized by being
self-dual and invariant, up to a gauge transforma-
tion under the O(4) subgroup of the O(4, 2) group
of conformal transformations. A convenient for-
malism to exploit this invariance has been very
recently introduced by Schechter' and, indepen-
dently, by t.uscher. ' We summarize here the as-
pects of the formalism necessary to our construc-
tion (we follow the notation of Ref. 8).

One introduces coordinates

and a "magnetic" field

H„„=s,a„—s„a„r„-a„+r„a„+[a„,8„]. (lib)
A

Both are tangential, i.e., r"H„„=x"E,„=R'E,„
= 0, and the name is derived from the fact that
near the origin E„and H, &

are proportional to
the electric F«and magnetic E& components of
F

O(4)-invariant field configurations are obtained
setting'

a„=if(8)a„„r",

A, =O,
(12)

with R,=cose, R, =sin8. As shown in Refs. 8 and
9, the Yang-Mills equations of motion reduce then
to

f"+ 2f(f+ 1)(f+2) = 0

and the solution of Ref. 7 is gauge equivalent to the
field configuration obtained with f= -1.

In the hypertoroidal formalism the seLf-duality
constraint can be written

(14)

This is checked by noticing that near the origin
(R,=r, = 1, R, =O, r=0) this equation reduces to

X = (1 —x')~+ 4t~ (8)
$/A xA y

One verifies easily that r„r"=r,'+P= 1, RJP=R,'
+R,'= 1, and that the whole Minkowski space-time
is mapped, two-to-one, onto the hypertorus r„~"
=Rp'=1. The action of the O(4) xO(2) subgroup
of conformal transformations is then represented
by independent rotations of r„and R,.

The ordinary derivatives 8/sx" and gauge poten-
tials A„are mapped into derivatives and gauge
fields tangential to the surface of the torus. These
are denoted by

(9a)

or

+ts=i~isa a~ (16)

in terms of the ordinary components of the field
strength F„„,and that it is manifestly invariant
under O(4) x O(2) transformations.

With the ansatz of Eq. (12) the self-duality con-
straint reduces to the equation

d
d

= -i(2f+f'),

which is solved by

8 a 8
8R~ 8R (Qb)

~ i(8 ep)
f(8)=-

cos(8 —8,}
(18)

Q~y Q~t = 0, (Qc)

A„AQ' = 0. (Sd)

The relation between A„and a„,A, is given by

The real part of f(8) is -1, precisely the value
that reproduces the solution of Ref. 7.

The expressions of A and A, in Eq. (5) are ob-
tained projecting back to Minkowski space-time
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~(~-&p)
IJ

cosh(r —r, )
(19)

which noir satisfies the self-duality condition in the

the field given by Eq. (12) and Eq.(18) with 8, = 0.
It is clear from Eq. (12}, although not manifest
in Eq. (8), that the field configuration is left in-
variant (up to a gauge transformation) by the O(4)
subgroup of the conformal group. The real part
of the solution has a larger group of invariance,
O(4) xO(2), but this does not extend to the complex
self-dual solution.

Notice that the self-duality constraint is invari-
ant under the full noncompact SL(2, C) gauge group,
whereas the definition of the real part of the field
is invariant only with respect to the compact SU(2)
gauge transformations. The choice of the SL(2,C)
gauge is therefore relevant for our construction.
The appropriate choice of gauge appears quite sim-
ple in the hypertoroidal formalism which puts into
evidence the symmetry properties of the solutions,
but is not immediate in the ordinary formalism.
[Indeed, the solution of Ref. 7, as presented in the
original communication, makes use of complex
fields, and an SL(2, C} gauge transformation is
required to make it real."]

Finally, a continuation to Euclidean four-space
is performed by replacing time t and R, with iI;
and iR, . Euclidean four-space is then mapped on-
to the hyperbolic noncompact space defined by r,'
+ r'~ 1 and R,'-R, '=1. Setting 8=fr, Eqs. (18)
and (12) give

Euclidean domain. The comparison with the stan-
dard expression of the pseudoparticle solution is
most conveniently made by using the following
equations to map the x„space onto the r„,R,
space:

Rp= cosh7',

Ri=s nh

(20}

MX2 X2

Substituting from Eqs. (19) and (20) gives

2i
A 0'

+2+ y2 gi

g2~ e27p
7

(21)

(22)

where one recognizes the pseudoparticle solution
of Ref. 1.
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with r =-, lm', x'=x'+x, '. [Equation (20) can be
thought of as obtained from Eq. (7) by replacing
first t, R, with ix4, iR, and then performing a con-
formal transformation which maps the points x4
=+I, x= 0 into the points at ~ and the origin. ]
@lith this parametrization, the relation between
the gauge fields becomes
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