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Using the Hamiltonian formalism of gauge field thee6es I derive a quark-confining wave equation for a
gauge-invariant amplitude describing a system of a ~rk and an antiquark connected by a linear electric
Aux. I obtain an exact potential in the form of the Sri8ouin-%igner series, which I make finite and well

defined by introducing a finite radius to the tube of the electric Nux as a dynamical parameter, to be
determined from the stabihty of the solution. The petential is shown to vanish at the origin and become
linear at a large distance. The confmement solution is compared with the norraal positronium solution to the
wave equation with the Coulomb potential, and He hatter is shown the stabler of the two for g, '/4m & 2
where g„ is the renormalized coupling constant. Foe g„ /4n & 2, the eoefineiaent solution is the only possible
one. Essential differences between Abelian and non-Abdian gauge Aekh are poiated out. A possibility of g„
being replaced by g,ff in the sense of asymptotic freedom is pointed out also.

I. INTRODUCTION AND SUMMARY.

There has been a large amount of literature on
the possibility of confinement of quarks in field
theories. The existence of such confinement was
shown in particular by Wilson' and also by Kogut
and Susskind' using the lattice model of the gauge
fields. In this paper I will not introduce a lattice.
Instead I introduce a gauge-invariant two-body
amplitude corresponding to a stringlike electric
Qux. My approach to the problem of confinement
is analogous in many respects to the BCS treat-
ment' of the superconductive ground state. There
the Fermi sphere, appropriate as a zeroth-order
approximation to the ground state in the normal
phase, is no longer useful to describe the super-
conductive ground state. One has to introduce the
BCS ground state, which is related to the Fermi
sphere not by perturbation but by collective excita-
tion. Now in considering a quark-antiquark system
interacting via an Abelian or non-Abelian gauge
field an appropriate zeroth-order amplitude to de-
scribe the normal Coulomb solutions (or we may
call them positronium solutions), which should
certainly obtain for a small coupling constant g,
will be the Bethe-Salpeter (BS) amplitude

X „(1,2) = (+., (q(1),q'(2)).+) (1.1)

where 4 is the positronium state under considera-
tion and 4, is the vacuum. q(x) is the quark field
and the symbol ( ), stands for the time ordering of
operators inside. In the above, the Coulomb gauge
is assumed, where no gauge freedom is left, so
that the amplitude (1.1) is gauge invariant by it-
self. In the confinement solutions, on the other
hand, the electric flux is squeezed into a string
connecting the quark and antiquark, according to
the lattice model mentioned above. The stringlike

electric flux must involve both the longitudinal and
the transverse parts of the field, and therefore
must involve the creation of an infinite number of
photons from the vacuum. An appropriate zeroth-
order amplitude to describe such a state of collec-
tive excitation turns out to be, in the case of quan-
tum electrodynamics (QED),

x(1,2)=(q'. q(1 2)~) (1 2)

where the gauge-invariant bilocal operator q(1, 2)
is defined by

2~
q„(1,2)=e 2 (qf Atx) d» q (1)q, (2). (1.2)

1

q(1, 2) and X(1,2) should then be considered as 4
x 4 matrices. In the Coulomb gauge, A(x) t«he
above expression would express the transverse
part. In this paper, however, the Coulomb gauge
will not be adopted. Assuming that the state 4
represents specifically the system at rest, I
choose in this rest frame a "spatial" gauge

A, (x) =0. (1 4)

In this gauge all three components of A(x) are in-
dependent dynamical variables and one is still left
with the freedom of a local gauge transformation
for which the amplitude (1.3) is invariant.

In the following I consider q(1, 2) and x(1, 2) only
on the equal-time plane

This is appropriate in the Hamiltonian formalism.
Also, it was shown in a previous paper by the au-
thor' that the amplitude x(1, 2) is nonvanishing
only on the equal-time plane in a theory of absolute
quark confinement. The amplitude (1.2) still de-
pends on the path of the line integral. The known
meson spectrum, on the other hand, seems to be
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consistent with the two-body description with no

extra degree of freedom needed. Thus we have to
eliminate the path dependence of the amplitude. To
obtain a path-independent amplitude which depends

only on the coordinates x, and x„ I may either re-
strict the path to a special one determined uniquely

by x, and x„or average the amplitude over all
possible paths with a certain measure. In this pa-
per, I will restrict the path to a straight line con-
necting points 1 and 2.

That amplitude (1.3) is appropriate for the de-
scription of the confinement states can be seen by
commuting the Hamiltonian with the biocal opera-
tor (1.3}. We find that the commutator of the elec-
tric field energy with the exponential factor in

(1.3) yields a potential term,

expressing the concentration of the electric-field
energy along the straight line connecting points j.
and 2. In the above

k =~g 5 (0), (1.6)

x exp(-g'Ar/8v), (1.7)

where the symbol: 0: represents the Wick-product
expansion of an oyerator O. The cutoff parameter
A should go to infinity, so that any matrix element
of (1.7) between states involving only a finite num-
ber of photons vanishes. Since the positronium
states involve only a finite number of yhotons on
the average, amplitude (1.2) would vanish for such
states. Conversely, the BS amplitude (1.1) would
vanish for confinement state 4', as can be inferred
by setting

2

4'-exp -ig Ax ~ xq~ 1q 24, ,
1

and using (1.7) again.
In the above discussion I took the case of @ED

purely for the sake of simplicity of presentation.
The case of non-Abelian fields can be discussed
in an almost parallel way. Whether or not @ED
yields a valid confinement solution is an entirely
different matter which will be discussed later.

The equation for X(1,2) involves a coupling to
other channels represented by an infinite set of
amplitudes:

and 5 (0) can be interpreted as the inverse of the
cross section of the string.

It should be noted that the amplitude (1.2), ap-
propriate to describe a quark-confined state 4,
vanishes if 4 is a positronium state. This follows
from an observation that

2

exp ig Ax ~ dx =:exp ig Ax dx-
1 1

(1 8)

where the state 4„represents, for example, one-
gluon states, two-gluon states, two-pair states,
and so forth. These couplings to other channels
can be eliminated successively and one obtains the
wave equation for X (1, 2) in a closed form:

(-io ~ g, +p~)X(1, 2)+ X(1,2)(-i& ~ V, —pm}

= [M —V(r)] X(1, 2) . (1.9)

Here a and P are the Dirac matrices. m is the
quark mass and M is the energy eigenvalue of the
system which is taken to be at rest. The potential
V(r) which may involve the Dirac matrices in gen-
eral consists of the confinement potential (1.5) and
a contribution coming from the coupling to other
amplitudes (1.8). The latter contribution can be
given in a form of the Brillouin-Wigner series. '
[See Eq. (2.25) in Sec. II.] Equation (1.9) was pro-
posed and investigated in a previous paper by the
author, ' who showed that in spite of the Klein para-
dox associated with an ever increasing potential
such as (1.5}, one can still obtain a meaningful
solution to the equation which meets all the phys-
ical requirements. The equation has many novel
features which were explored in an expanded form
by Geffen and the author' (referred to as GS in the
following). The wave equation (1.9) with noncon
fining potential V is nothing new. In fact, the
Breit equation for positronium' has exactly this
form, allowing V to depend on the Dirac matrix a.
The equation has also been applied for the study of
the meson spectrum, ' but with no confining poten-
tial. The potential V(r) in QED will be evaluated
in the static limit. However, the series (2.25) is
not well defined because of the ultraviolet diver-
gences. Of these divergences, those associated
with the vacuum polarization can easily be isolated
and absorbed into the charge renormalization. The
other renormalizations could possibly be done al-
so, but the renormalization based on the perturba-
tion expansion may not be appropriate here because
of the strong electric field already present in the
zeroth-order approximation. Therefore, I intro-
duce a cutoff by assigning finite radius a to the
string of the electric flux. This is realized by
changing a straight-line integral in (1.3) into a
bundle of line integrals in a sausage-like tube con-
necting points 1 and 2 [see Eq. (3.8)]. It is impor-
tant to recognize that the cutoff is not the modifi-
cation of the gauge field itself, but is the modifica-
tion of the zeroth-order approximation to the state

Whether or not such a tube-like electric flux
is realizable is a matter of dynamics, which can
be determined in principle as discussed later. The
introduction of the finite width of the string can be
done in a gauge-invariant way. However, for the
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sake of simplicity, I shall employ a square cutoff
in the momentum component perpendicular to the
direction of the string. This particular cutoff does
violate gauge invariance and as a result the gauge
transformation on a state produces a local phase
transformation. Such a degeneracy is again rem-
iniscent of the BCS solution, which also violates
gauge symmetry superficially.

With the introduction of the cutoff corresponding
to a finite string width, every term of series (2.25)
for the potential is now finit;e. In the static limit
the series can be summed, and for a large distance
r I find, to all orders in the coupling constant g
(there is no charge renormalization in the static
limit of QED) that

(1.10)

Here A' is given in terms of the unrenormalized
constant g' and the radius of the string a (I/« =A
= cutoff momentum) by

k =g /6«a,
which replaces relation (1.6). If I pick out just
terms of order g', on the other hand, I find that

(1.12)

where the last term represents the electrostatic self-
energy of the quarks. The potential series (2.25)
involves the interaction kernel I(2, 1) which is
given by the line integral of the fields between
points 1 and 2. Hence I(2, 1) 0 as r 0, and we
must have

(1.13)

This condition on the potential was derived pre-
viously' from the requirement of the axial-vector
divergence relation. Here it is more generally a
consequence of the finite width of the string. Piec-
ing together relations (1.10), (1.12), and (1.13),
with some additional considerations, I arrive at an
electrostatic potential valid for all ranges of r:

(1.14)

where the function C(x) is assumed to behave like
C(x) - const&x' for x «1 and bounded for large x.
g„ is the renormalized coupling constant, which
should replace g in (1.12) if the vacuum polariza-
tion is taken into account In gues.sing at (1.14) I
have assumed that the perturbation expansion in

g„ is valid at a short distance, and that the self-
energy in (1.12) is reduced by taking into account
the magnetic interaction.

Once the potential and the wave equation are
given as in (1.14) and (1.9), the relative stability
of the confinement solution versus the positronium

solution can now be settled as a dynamical prob-
lem. In the positronium states we have a pure
Coulomb potential [h' = 0 and C(x) = I] in (1.14),
and the equation has no solution for g, '/4«& 2.
This is due to the well-known Klein paradox at the

origin, which arises for a large Coulomb potential.
In the confinement solution, g„' can take any value
as long as a is finite so that the condition (1.13) is
satisfied. Hence, for g„'/4«&2, the confinement
solution is the only possibility. It is interesting to
note that the numerical fit of the low-lying I =1
meson spectrum given in GS favors the value of

g, '/4«slightly above the critical value 2. If we
know the explicit a dependence of the yotential
from (1.11) and (1.14), and if we assume that nei-
ther g„' nor g' is dependent on a, then we should
in principle be able to determine whether or not a
finite optimal value of a that makes the energy of
the confinement-state minimum exists. The affir-
mative anser would give a justification for intro-
ducing the finite width of the string. I will show
using the numerical analysis of GS that indeed
such a minimum exists for states other than the m

meson. Although the analysis is based on a par-
ticular choice of C(x) in (1.14), the conclusion
may be considered more general if we note that
because JP =g'/8«a' (1.11), the confining potential
becomes infinite as a-0. The m meson is an ex-
ceptional case because in GS it was treated as the
Nambu-Goldstone boson. For g„'/4«&2 both types
of solutions coexist, so that one has to compare
their energies. For this, I consider the limit of
the vanishing quark mass. Then, I know that all
positronium levels coalesce into the zero-energy
state M = 0. I will show that for a particular model
potential of the form (1.14), there exists no con-
finement solution with M=m=0. Thus, for g„'/4«
&2 the Coulomb solutions are the stable ones. Ac-
cording to the asymptotic-freedom argument, the
renormalized coupling constant g„ in the above,
which corresponds to subtraction on the gluon
mass shell, would be replaced by the effective
coupling constant g,«, which is a function of the
distance r, or average momentum exchange be-
tween the quark and the antiquark. For heavy
quarks then g,«'/4v can be less than 2 even if g„'/
4m &2. Then the preceding argument on the rela-
tive stability would have to be revised. The deriv-
ation of g,« in the present formalism will be dis-
cussed elsewhere.

Although the formal derivation of the confine-
ment equation is carried for the case of @ED, the
actual quark confinement cannot possibly be ex-
pected for this case. According to the asymptotic-
freedom argument" the perturbation expansion is
not valid at a short distance in QED, so that the
potential, such as (1.14), cannot be expected to be
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valid. Furthermore, the ratio g'/g„' should be
greater than 1 or possibly infinite in QED,"lead-
ing to too large a value of k' for a given constant

2

The derivation of the confinement equation will
be repeated for the case of a non-Abelian gauge
field [color SU(3) group for example], and it can
be carried almost in parallel to the case of QED.
However, there appears an extra complication in
this case, arising from the contributions of color
nonsinglet states. Only in the static limit and in

the classical limit of the color spin does one obtain
the same result as in QED.

In Sec. II, I derive the confinement equation in
QED. In Sec. III, I introduce the radius of the

string, derive the confinement potential, and dis-
cuss the stability of the solutions relative to the
Coulomb solutions. In Sec. IV, I treat the color
SU(3) gauge field. Appendix A gives the summa-
tion of the Brillouin-signer series for the static
potential. In Appendix 8 I treat the confinement
equation for m = 0.

II. DERIVATION OF THE EQUAL-TIME TWO-BODY

CONFINEMENT EQUATION

Hquark = d &Q x Q' -&V-gA +Pm g x

The equations of motion guarantee that

G(x) =gqt(x) q(x) —V ~ E(x)

is a constant of motion and

G(x) = i [H, G(x)] = 0 .

(2 4')

(2.5)

(2.6)

G(x) is the generator of the local gauge transform-
ations. Namely, the unitary operator

[ (])=t2e 2
'

J (x) Gl )22), '* (2 'f)

where (d(x) is a c-number function, generates the
gauge transformations

A'( )=U[ ]A( }U '[ ]=A( )-V ( ),
and

q'(x) =U[(d]q(x)U '[(d] =e a t"'q(x}. (2.8)

The two-body operator q(1, 2} defined in (1.3) is
obviously gauge invariant under (2.8). All physical
states must satisfy

G(x)4' = 0, (2.9)
For the sake of simplicity in presentation I will

take QED in this section and demonstrate a formal
derivation of the wave equation satisfied by the
amplitude X(1,2) given in (1.2). As will be dis-
cussed in the following section, however, one can-
not expect a real confinement solution in QED.
The derivation for the case of a non-Abelian gauge
field will be given in Sec. IV. In the spatial gauge
A 0= 0, all three components of the vector poten-
tial A are independent dynamical variables. The
Lagrangian is given by

because otherwise U[(d]4' will give an infinite set
of degenerate states.

Row I am in a position to derive formally the
wave equation satisfied by X(1,2). For the general
amplitude X„(1,2) defined in (1.8} we have

(W -W„)y„(l, 2) = (212„, [q(1, 2),H]%'), (2.10)

where W and &„are the energy eigenvalues of the
states 4 and q„, respectively. From (1.3) and
(2.4') 1 obtain

[q(1, 2),H~~), ] = ( ia ~ V, -+ pm)q(1, 2)

I.= d'x & E'x -8'x

~ 22(2) ( —~ u ~ ( +(2A)((Pm 2(2)I, -
(2.1)

—q(1, 2)(ia ~ V, + jin))

+ U(2, 1}a~ [i V, -gA(l)] q(1)qt(2)

+ q(1)qt(2)a ~ [i V, +gA(2)]U(2, 1),

where

E(x) = -A(x), B(x) = V && A(x) .
The canonical momentum conjugate to A(x) is
-R(x), and we have a commutation relation,

(2.2) where

3~
()(2, 1)=222((Z X(X) dx

j.

(2.11)

(2.12)

[A, (x), Z, (x')] = i5„t)'(x--x') .
The Hamiltonian is then given by

H =
2

(f'x [E'(x) + B'(x)] + Hq

with

(2.3)

(2 4)

The modification of the line integral to accommo-
date the finite radius of the electric flux will be
made in the next section. Since the line integral is
always defined along the straight path connectifIg
the end points, U(2, 1') involves a new straight
path 1'-2, if we displace 1 into 1'. Thus, using
Stoke's theorem, one finds
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2

V,U(2, 1)= i-gU(2, 1) A(1) —— ~x —x,(B x dx
I(2, 1) = e(2, 1)+br, (2, 1) a~+Ss(2, 1).a„.

(2.23)

(2.13)

(2.14)

where

and the corresponding equation for V,U(2, 1). In-
troducing (2.13) into (2.11), I obtain

[q(1, 2),II~„„]= (-ia ~ V, +pm)q(1, 2)

—q(1, 2)(za V, +pm)

+b~(2, 1) ~ aq(1, 2)

+ q (1, 2)b„(2, 1) ~ a,

In the above I have introduced an operator conven-
tion that all operators with suffix L (8) are to op-
erate on x(1, 2) from the left (right). The simul-
taneous set of equations (2.21) can be solved for
X(1,2) -=Xo(1, 2) (4'„=Co), eliminating successively
the other amplitudes X„(2,1) (ne0) that enter into

the interaction term. The result is

(W-k'~ —36n) X(1, 2) =XX(1,2), (2.24)

where X has the form of the Brillouin-Wigner ser-
ies

2

b~(2, 1) = — dxx B(x)ix-x i,

2

bz (2, 1}= — dx x B(x}( x -x, ( .
(2.15)

with

1 ~' 1 1

n n, " n Dn

(2.25)

The magnetic field energy commutes with q(1, 2).
For the electric field energy, I obtain

[U(2, 1), l f E'( ) d' ] =-' f d' [[ U(2, 1), E( )] E( )]

+ f d'x E(x) ~ [U(2, 1), E(x)] .
(2.16)

The commutation relation (2.3) gives

2

[U(2, 1), E(x)] =g dx'5'(x' -x}U(2, 1}. (2.17)
1

The double commutator term then gives

V(r) = k'r + g,(r) . (2.27)

The interaction kernel I(2, 1) is a line integral in-
volving E and B as seen from (2.15), (2.20), and
(2.23), so that X(1,2) 0 as r= )x2-xJ-O, pro-
vided the series (2.25) is well defined in this limit.
With this qualification we have

D„=W-W„- k'x -X,. (2.26)
I

The summation symbol Z means to exclude the
vacuum state 4', in the summation. Equation (2.24)
is exactly the wave equation (1.9) and the potential
V(r) is now identified with

2 2

V = — dx dx'5'(x-x') =—5'(0)r=k'r.
2 2

V(0) =0

as mentioned in Sec. I.

(1.13)

e(2, 1) =g dx E(x). (2.20)

Introducing (2.14) and (2.19) into (2.10), I obtain

(W- W„—k r) X„(1,2) =XIX„(1,2)

+Q I„„.(2, 1)x„(1,2),

(2.21)

(2.18)

Thus from (2.16), (2.17), and (2.18) I obtain

[q(1, 2), 2 fE'(x) d'x] = [k'r+e(2, 1)]q(1,2),

(2.19)

where

III. CONFINEMENT POTENTIAL AND THE STABILITY
OF THE CONFINEMENT SOLUTIONS

To obtain an insight into the physical meaning of
the higher-order corrections to the potential X, I
will take the static limit in this paper. This means
that in the energy denominator (2.26) KD-2m and
W-RD- 0 so that

D„- -(W„+k'x) . (3.1)

I will also set n-0 and the magnetic field no long-
er contributes. Hence I (2, 1)- e(2, 1). (The mag-
netic interaction will be evaluated to order g' later
to compare with the Breit potential. ) In this limit
I also neglect all quark-pair states in the inter-~ I
mediate-state summation Lr „. Then in the first-
order correction

where I have defined operators 3Ce and I(2, 1) by

X~= (-iaz, .V, +Pzm) —(i' ~ V2+Pz m) (2.22) On D noy (3 2)

only one-photon states contribute. (In the non-
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Abelian case, the situation is different because of
the contribution from the gluon-pair states. ) Al-
though the longitudinal part of A is a dynamical
variable in the present gauge, the subsidiary con-
dition (2.9) eliminates the logitudinal degree of
freedom. [Since I(2, 1) is gauge invariant, all the
intermediate states should be gauge invariant and
satisfy (2.9)]. Thus, in the summation (3.2), I sum
over only transverse photons. Noting that all the
physical quantities introduced so far are unrenor-
malized, one obtains

(T, ZiE(x)i0) =iZ, ' '(I/2)'i'e(1)e" ' ", (3.3)

where Z, is the renormalization constant. To be
consistent with neglecting the pair states in the
summation (3.2), one should put Z, = 1 in the case
of QED. However, the effect of the charge renor-
malization will be taken into account at a later
stage. Note that in a non-Abelian gauge theory,
gluon loop diagrams do contribute to Z, even in
the static limit. Using (3.1), (3.3), and (2.20), I
obtain

g' ~ l ll,
2 ~g l+k'r '~ l2

2 ( 2

dx; dx'e " ~"

I(i)
2

5 (0}r- ———+X . (3.4)4~ r O

The first two terms of the last line are obtained
by replacing the energy denominator l+k'r by l.
It is then obvious that @' is of order g'. Thus to
order g', I obtain the following from (1.6), (2.2'l},
and (3.4):

V(r} = -g'/4', (3 5)

where I have dropped the electrostatic self-energy.
The fact that the same potential as for the BS am-
plitude was obtained in this limit should not be
generalized. It happens only to order g2 and in the
static limit. For large r, the higher-order terms
are crucial to determine the potential. Also, as
will be shown later, the magnetic interaction gives
a potential entirely different from the one for the
BS amplihide even to order g2. There is no reason
to expect the same potential for the two entirely
different amplitudes.

The perturbation series (2.25) is not completely
well defined because of ultraviolet divergences
such as the electrostatic self-energy term in (3.4).
Except for divergences associated with the vacuum-
polarization diagrams which can be incorporated
into the charge renormaLization it is not obvious
how the other divergences can be renormalized in
the present formulation. The difficulty is avoided

&(t'i)d'5i =1. (3. I)

Under the gauge transformation (2.8), U(2, 1)
transforms into e" ' " ""U(2, 1), so that (I(1, 2)
is still gauge invariant. The derivation of the
wave equation given in Sec. II can again be carried
through, with appropriate changes in (2.18), e(2,
1), and bs z(2, 1). Namely, instead of (2.18), one
wiLL have

V = d'$ d'g'cr g a $'1,dx(s, K,) dx'(s', 5,')
ds ds

x 5'(x(s, t~) —x'(s', ti)} .

Instead of (2.20) one has

e(e, (}= ((f e*(. ((,)-
(3.8)

t3.9)x ds E(x(s, gj)} ~

0 ds

Similar changes must be made for be r(2, 1) also.

by introducing a finite width to the string of the
electric flux, which will serve as a cutoff in mo-
mentum space. Each term of the series (2.25)
is now finite; this is achieved without ever modi-
fying the gauge field itself, which would destroy
the gauge invariance. Instead, I am assuming
that in the actual state of the system of the con-
fined quark and antiquark the electric flux is con-
centrated in a tube of radius a, which is then a
physical parameter to describe the system. The
potential will now be a function of a, the value of
which couLd, in principle, be determined by solving
the confinement equation (2.24) and examining the
stability of the solution against the change of a.

The above program can be realized by modifying
the line integral in (1.3) and (2.12) into a bundle of
line integrals. For instance I may choose as the
modified line integral

1

U(2, 1) =exp ig d'(io($i) A(x(s;$~)) ~ ds
0 ds

(3.6)

where

x=x(s; t'i), s =[0, lj
is a parametric representation of a path connecting
points 1 and 2 for a fixed two-dimensional para-
meter g~. The latter is a parameter representing
the path's position from the straight line connecting
the two points. o($i) is the density of the paths,
normalized to unitg
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For a practical reason of computability, however,
I will replace all the paths by straight lines paral-
lel to n = (x, —x,)/r. Then I obtain

t~ =xj =x —(n x) n,

where a =1/A by definition. Also, instead of (2.20)
I obtain

2II

e(2, I) =g d'x~(T(x ) E(x) ~ ndx„. (3.16)
"yll

Introducing (3.16) into (3.2), I obtain
d X (S x ()) d X))

ds ds
=n (3.10) 2

l

with xl[ =n x. Furthermore, I will introduce a
straight cutoff in momentum space:

s(ij.) = e(A —li ), (3.11)

where the Fourier transform (y(l) is defined by

(3.12)

V = r I d2x~a(x~)2= r=k'r. (3.14)

It should be stressed that approximation (3.10) is
being made in order to be able to evaluate inte-
grals such as (3.8) and (3.9) in a simple way. The
approximation of replacing a curved path leading
from 1 to 2 by a straight line parallel to the one
connecting the two points should become better
for a large separation of the two points. If this
approximation were made at the stage of defining
U(2, 1), it would correspond to

2

U(2, 1) = exp ig d'x, a(x,) A(x„x(() n d2
((

Jg

(3.13)

which would destroy the gauge invariance of q(1, 2).
Under the gauge transformation (2.8), q(1, 2) would
now transform such that

X(), X)- xp(irf d'* (x, )(tx(x, x )-x(x, x,)

—tx(x, ) x (x,)))X(1,2) .

Hence the state 4 could no longer satisfy the sub-
sidiary condition (2.9) because otherwise Z (1, 2)
would vanish. Thus U[&]4 would produce an infin-
ite set of degenerate states. The situation mould
be very similar to the BCS solution for the super-
conductive ground state, where the gauge symme-
try is destroyed and the electron number is super-
ficially nonconserved.

With the approximation (3.10) and a particular
choice (3.11), I can now evaluate (3.8) and (3.9).
For the confinement potential (3.8), I obtain

x
kr -0 (Ar» 1) (3.19)

so that

V(r)-k'r (r» A '). (3.20)

The potential to order g' is obtained by adding
(3.14) and (3.18), which yield (1.12). This potential
is positive because of the Coulomb self-energy
term, whereas the nonrelativistic treatment of the
charmonium spectrum" indicates a potential con-
sisting of the confinement and the attractive Cou-
lomb potentials. In order to infer the overall be-
havior of the potential, two additional factors which
have been neglected so far must be considered.
One is the renormalization of the coupling constant
g' and the other is the magnetic interaction. As
seen from (3.3) the coupling constant defining the
interaction kernal I(2, 1) must be the renormalized
one g, = Z, ' 'g, whereas the confinement potential
k'r should remain to be defined in terms of g as
in (3.15). According to the asymptotic-freedom
argument, ' the perturbation series will be valid
at a short distance in the case of the non-Abelian
gauge field, so we may expect that in the static
limit

all
x dx))dx)) exp[-il)((x)) —x())],

~ jll

(3.1 I)
where l ll and l~ are components of 1 parallel and
perpendicular to n. Comparing with (3.4) I find
that the only change is the cutoff in E~. Again
splitting (I+k'r) ' into I ' and -k'r[l(L+k'r)] ', I
obtain

X(1) g Q g g 1-8 (I)
8w 4m

(3.18)

which replaces (3.4).
In order to find the behavior of X for large r,

the series (2.25) must be summed. The summation
of the series (2.25) in the static limit is done in
Appendix A, where I find that

Hence

g'A' g'
8g 8'~ ' (3.15)

(g2 g 2)A2r g 2 1 e )(x

8~

(3.21)
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instead of (1.12}. The perturbation calculation in-
dicates that g'«g„' for the non-Abelian case and
g» g„ in QED. In either case, the potential
rises like V(r) -k'r for r « I/A. In the former
case it turns negative for r & 1/A and turns posi-
tive again for r» 1/A because of (3.20).

The magnetic interaction changes the short-
distance behavior significantly. It can be evaluated
by keeping kz z(2, 1}terms in (2.23), and then ne-
glecting the recoil and k'r term in the energy de-
nominator of (3.2), just as was done before. This
is the same approximation as was made to derive
the Breit potential for the BS amplitude (1.1). It
gives

2

2 ~ +DL +D L
Dr

px g 8(A' —I,')

22

x dzdz'D(z)D'(z')e"~~' "&
t

gx

(3.22)

where I have taken n =(x, —x,)/r as the z axis; D
and D' stand for either R or L; D(z) =(z, —z ~(~z
—zj) if D=L (R) also a, =a —(n ~ a)n. Using
n~+ = u« =2 and rearranging the terms I obtain

2 2 2

Xm JC
(j.) (x) gr

4w
r+(1 2aLJ. aR 4n'

x r+ —,(1 —e ")
6 Ar

(3.23)
where st,"& is (3.18) without the X"' term and with

g replaced by g„. Hence to order g„',

V( )
(g'-2g, ')A.

Sn'

+ (I —z &I.i ' am) 4m'

P2 Z ~ Ag 2r+ ——,(1 —e «')
6 y Ay2

(3.24}

Comparing with the purely electrostatic potential
(3.21), there are important differences. For an ex-
tremely small r we obtain

V(r) (g —2g„)A r (1,~ )
g„A'r

8

(r «A). (3.25)

V( )
(g'- g', ')A.

8m

+(1—a ari'am) 4 - +
4n o

(3.26)

Compared with (3.21) one finds that the Coulomb
self-energy has disappeared. Furthermore, the 1/
r term has changed sign. However, because of the
large negative linear term - g„' A'r/4 v, the poten-
tial is negative as a whole. For r»A ' the poten-
tial should approach (3.20). It should be noted that
potential (3.24) is totally different from the Breit
potential. ' There is no reason to expect that they
are the same, as stated earlier.

Summarizing the results of the above analysis, I
may require as the key features of an effective sta-
tic potential: (1) V(0)=0, (2) V'(0) -g,'A'/4v, (3)
V(A '}--g„'A/4v, and (4) V(r)-k'r (r»A ') with
k'=g'A'/8s. It is not clear at exactly what point
the last stage sets in. In the analysis of (1.9) by
GS, a model potential of the form

2r
V(r) = k'r

4v(r'+ a') (3.26)

was employed. It certainly satisfies all the con-
ditions above if g„'/4va'&k'. A numerical fit of the
I= 1 meson spectrum by (3.26) determined the value
of g,'/4w to be about 2.3, slightly larger than the
critical value 2 discussed below. The value of k2 is
determined by the asymptotic slope of the trajec-
tories and is about 0.1 (GeV)'. The parameter a
was determined to be extremely small, a
& 10 ' QeV ' for the case of the m' meson. The solu-
tion is certainly consistent with g' «g„2. The anal-
ysis made above also clearly shows that even
though one can derive the confinement equation and
the potential formally in QED one could not expect
any real confinement to happen. The perturbation
series are not expected to converge according to
the asymptotic-freedom argument, and also g'
pg 2

The stability of the confinement states obtained
by solving (1.9) with a potential such as (3.26) can
be determined by comparing the energy eigenvalues
with those of the positronium states for the same
coupling constant g„'. For this purpose I take a
state of total angular momentum J= 0, charge-con-
jugation parity C= 1, and parity P = —1 (v meson).
The reduction of the Wave Eq. (1.9) for this state
was done previously' ' and we obtained the eigen-
value equation

d E 2 V' dF, + —+ —+ [—,'(M —V)' —mz]F = 0,
Since 1 ——,'Z~, e~ is effectively positive with a
maximum value of 2, the slope of V at the origin
V'(0) is negative if g„'&g (non-Abelian). For r
&A ' we obtain subject to the boundary conditions

(3.27)
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F(r) =const (r=0),

F(r)- (r R—)' (r R),
(3.28)

terms of R by (3.29) and using (3.26), I obtain (see
Appendix B for details)

where R is defined by

V(R) =M. (3.29)

2

R(M- V) =Q(l —z) I+q (3.31)

For the pure Coulomb potential V(r) = —g„'/4vr, the
indicial equation for a regular solution F = r'(a,
+ar+ ) is

m2
m' R'= k' (3.32)

1 g2
s(s+2)+ ——" =0.

4 4n'
(S.30)

where

Q=k R,
Hence the regular solution exists only for g„'/4z
&2. This limit on the strength of the Coulomb po-
tential is similar to the well-known Klein-paradox
phenomenon at the origin in the Dirac equation for
the hydrogen atom where Zo. &1 is required. Thus,
the positronium states do not exist for g,'/4z & 2.
In the confinement equation, however, the potential
satisfies V(0) =0, so that there is no limit to the
magnitude of g„'. For g„'/4v&2 the confinement
states are the only possible states, and as men-
tioned above the numerical fit of the meson spec-
trum does give the value of g„' in this range. For
g„'/4v &2 both types of solutions are possible, so
that their energy eigenvalues must be compared.
I take specifically the limit of the vanishing quark
mass m =0 in Eq. (3.27). Then, for the Coulomb
case, I know that all the positronium levels co-
alesce into the zero-energy state M=0. I will show

in Appendix B that Eq. (3.27) with potential (3.21)
does not yield a solution m =0. Thus I infer that
the confinement solutions have higher eigenvalues
than the Coulomb solutions in general. According
to the remark made about Eq. (1.7), any matrix
element between a confinement state and a Coulomb
state with a finite number of photons should vanish.
This means that for g„'/4v&2, it is impossible to
create a confinement state from the normal states
by perturbation. If somehow a confinement state
is created, it will decay into a normal state emit-
ting an infinite number of photons.

In the analysis made in Ref. 7 the potential para-
meters k', g„', and a in (3.26) were regarded as
universal constants independent of the states. No%'

I have shown that k ~ 1/a' and I have also proposed
that the radius of the strong a be regarded as a dy-
namical parameter whose value should be deter-
mined so as to make the eigenvalue minimum. I
will show below that it is indeed R workable pro-
gram for potential (3.26). If we introduce a dimen-
sionless variable

where R is defined by (3.29), than Eq. (1.9) or the
reduced wave equation (3.27) involve parameters
in two forms, R(M- V) and mR. Eliminating M in

2
gr

4z(k'a'+Q} '

a2 k2a2

R' Q
(3.33)

Hence by solving the eigenvalue equation we deter-
mine the eigenvalue Q in terms of three indepen-
dent parameters as

Q = Q(g„~, k'a', m2/k2). (3.34)

Q = Q(g„',g,', m'a'/g, '). (S.35}

Therefore, the dependence of Q on m' for fixed g„',
k', and a' is the same as the dependence of Q on o'
for fixed g„', g,', and m'. Now I know the depen-
dence of M on a' because

M= V(R) =k'R(l —q)
2

go~@ 1 g„1
g 4n' go2+ Q

(3.36)

The numerical solutions obtained ia GS show that
WQ increases linearly ia m'. Hence there must ex-
ist an optimal value of a for which M is the mini-
mum. The extremely small value of a obtained to
satisfy the Nambu-Goldstone condition applies only
for the n-meson state.

Equation (3.36) suggests a scaling law M/m = in-
dependerrt of m. This follows fr om the assumption
that g„' is independent of a or M. As the asymp-
totic-freedom argument suggests, however, g„'
would be replaced by g,«' if one takes into account
the higher-order terms of X (for instance, two-glu-
on intermediate states). The effective coupling-
constant g,«would in general depend on a and also
on the average momentum exchanged, which in turn

For fixed values of g'„, k', and a', Q will in general
increase as m'- ~. It will have a finite value for
m =0 except for the case of the n meson, where one
imposes the Nambu-Goldstone condition M =m = 0.
Now replacing k' by

k =go /a

where go' is a constant related to g', I obtain
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EV. THE CASE OF A NON-ABELIAN GAUGE FIELD

I will sketch the derivation of the confinement eq-
uation in the case of the non-Abelian fields. For
example, I take the standard Lagrangian for an oc-
tet of color gauge fieMs (a = 1, 2, . . . , 8) as follows:

dsx —,'Sa E"v+qy ~a~ @~A" q4 gv

where

-mqq (4.1}

(4.2)

()&,}is a set of color spin matrices and f,~, is the
structure constant. I shall use a convention such
that

would depend on M. Therefore the scaling men-
tioned above will break down. g„,'/4n' could be less
than 2 even if g„2/4s&2. The relative stability of
the two kinds of solutions given above will have to
be reexamined in this case.

A'(x)' = U[&4) ]A'(x) U '[v]
= A'(x) —V&()'(x)+gf, ~,&4)~(x) A'(x), (4.11)

q'(x) = Uko]q(x)U'[~]= [1—fg&d(x)lq(x), (4 12)

where the unitary operator U[&2)] is defined by

g( 1 =(~f ( ) q '( lg '*) . (4.13)

As a bilocal operator replacing (1.3) for QED,
I take

2

q(1, 2)= exp igf X(x) gx q(l)q~(2). (4.14)
1 +

The quark field operator q()&) has three sets of in-
dices, corresponding to spinor, color spin, and
flavor components. In (4.13) q(1)q~(2) should be
considered a matrix in these three sets of indices.
The ordering symbol ( ~;), means the ordering
along the integration path, which I again take as
a straight-line connection of points 1 and 2. Ex-
plicitly I define the ordered product by

P ~o,=o.
a

(4.3)

2

g(2)) (e~ (g,f =X(xq qx
1 +

Again I take the spatial gauge

Aoa= 0 (4.4)

in the rest frame of the hadron. The canonical mo-
mentum conjugate to A'(x) is A(x) = —E'(xj and I
have the commutation relation

= » IIem4$((. ) (]...- (.)], (4»)"n 0

where g„=(n/N)(x, —x,)+x, with $0=x, and $„=x,.
The product is ordered from right to left with in-
creasing n. The bilocal operator is not gauge in-
variant. Under the infinitesimal gauge transform-
ation (4.11}, U(2, 1}transforms as follows:

[Ag&(x)) E~q(x)] = —i6&P,~6'(x x'), — (4.5) U(2 I) e &gqg& )U-(2 I)e&gs& ) (4.16)
and the Hamiltonian

H d p tr E x + 8 x + HqIIzs&

with

(4.6)

It will be recognized that the ordering of U(2, 1)
is necessary to obtain this transformation proper-
ty because of the color rotation of X'(x) represented
by the third term of Eq. (4.11). q(1, 2) transforms
as follows:

H „„= d xq x a -V-. gAx +'3m qx . q(1 2) eHg &»q((g1 2)e&gqqQ)

The magnetic field 8' is defined by

B'(x) =v x A'(x) + —,gf A'(x) x A'(x).

The equations of motion guarantee that

G'(x) =J;(x) —V E'(x)

(4.7)

(4.8)

(4.9)

(4.1V)=q(1, 2}—fg[(4)(2)qq(1, 2)].
q(1, 2) consists of the color-singlet part and the
octet part linear in X,. The color-singlet part,
which is —,

' trgq(1, 2) (trg= the trace with respect to
color spin), is invariant, but not the octet part.
I keep the octet part of q(1, 2) because the inter-
mediate states necessarily involve the color-non-
singlet states. Now consider a set of amplitudes

is a constant of motion. Here the total charge den-
sity is given by

J~(x) =gqt(x) g X,q(x)+gf, ~,A~(x) ~ A'(x). (4.10)

(G'(x}}are a set of generators for the local gauge
transformations. For a set of infinitesimal c-num-
ber functions (&o'(x)} the transformations are

X.(I, 2) = (4'„,q(I, 2)4'). (4.18)

G'(x) 4' = 0, (4.19)

but 4„need not be a color singlet and hence need

The state + under consideration is a color singlet
and satisfies
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not satisfy (4.19).
Now I evaluate the commutator of q(1, 2) with

the Hamiltonian H (4.6). As in Sec. II, E(I. (2.11}
still holds if X is replaced by X and if it is under-

stood that U(2, 1}stands always to the left of
q(1)q~(2). The evaluation of the gradient of U(2, 1)
is very involved but can be done. Here I shall
give only the results. Instead of (2.13) I obtain

2

V, U(2, 1)= ig-U(2, 1)X(1) i -— dx x U(2, x)I(x)U(x, l) ~x-x,
~

1

and a similar expression for V,U(2, I). Inserting these into (2.11), in place of (2.14) I find

[q(1,2},H „„]=(-ia V, +Pm)q(1, 2) —q(1, 2)(ia 02+Pm)

+b~(2, 1) aq(1, 2)+b„(2,1) q(1, 2}a+[X(2),q(1, 2)] ~ n.

(4.20)

(4.21)

Here
2

b ' = — gxx ~xzA x x-x
1

(4.22}

where R~ is given by (2.22); but for the interaction
kernel f(2, 1) I obtain

I(2, 1) =e(2.1)+b~(2, 1) a~+b„(2, 1) as
2

b (2, ()= —J dxx ()'(x)-', &,( ) )x —*, (,
j.

where A, (x) is defined by

A, (x) = U(2, x)X U '(2, x). (4.23)

U 2, 1, 'x, 'x d'x

2 X
dx dx'5'(x-x')g U(2, 1)

2 1 2

with

=k xU(2, 1), (4.25)

Note that the last term of (4.21) drops if q(1, 2) is
a color singlet. The magnetic field energy again
commutes with q(1, 2}. For the electric-field
energy, I obtain

2

[U(2, 1),2'(x)] =g d F5'(x x'}—
1

x U(2, x')—', X,U(x', 1). (4.24)

Hence for the double commutator term in (2.16) I
obtain

+ (-,'~„--,'x )n„X'(2). (4.29)

The last term will drop in (4.28} if )I'„ is a color
singlet, because then )f„(1,2) is an identity in

color spin and [X„)f„(1,2)]=0. However, in the
series (2.25), this last term in I will contribute
unless all the intermediate states are limited to
the color-singlet states for which G'(x}4(=0. The
latter situation will arise if the energy of the color-
color-nonsinglet states are infinite so that the en-

ergy denominator is infinite. Then, for instance,
a one-gluon state will not be present in the inter-
mediate states and one would obtain a completely
different behavior of the potential at a short dis-
tance compared to the case of QED. The analysis
given in Sec. IG would be valid in this case only
if the color spins are replaced by constant c num-

bers, the classical limit of the color spin. An

extensive study of the non-Abelian case is neces-
sary before making any concrete statement. I
have not given the prescription of how to define a
bundle of line integrals to replace (4.15). It will
be discussed elsewhere.

k'=-', ~ 5'(0). (4.26) ACKNOWLEDGMENTS

2

e(2, 1)=g dx f'(x)zA (x).
1

(4.27)

Introducing (4.21) and (2.19) into (2.10) I obtain

(W- W„- k'r) )f (I, 2) =3Cng„(1, 2)

+ Q I~ (2, 1)y. ~ (1,2), (4.28)

The factor & is g (X'/2)'. I again obtain (2.19) with
e(2, 1) now defined by
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APPKNDIX A

I try to sum the Brillouin-Wigner series (2.25},

g 1 1X= I „—I + I —I~ —I„,
n ns tf fI

(Al)

The last term is I and from (A8) and (AS)

f, , =g„&(r —I,) — [c,(1} n]

@j l gag ef l ga'2

(All)

in the static limit of QKD where

D„=—(W„+k'r)

I(2, 1) =e (2, 1).

(A2)

(A3)

where I have taken n as the z axis. The modes
$J & A ar e not exc ited and can be neg lected. Now I
diagonalize (A10) in the standard way:

—D+I = k'r+g 8 (r —I ) In~t(1)n, (T)
l, i

State I then must represent a certain number of
photons. In (Al), Q excludes the vacuum state
by definition. Instead of (Al) I will evaluate where

(A12)

1 1
X= I~ —I~+ Ioyf

—I~ D I„so+

(A4)

(A13)n, (T) =a, (T)+fia, /I.

The last term of (A12} can easily be evaluated to
give

where Q mcludes the vacuum state. Obviously,
I& I'

w(r} -=-Q
l

l ~ 5

X X 1+ X j (A5} g„' ~ &, &, 5 I,L, 2(1 —cosl,r}
l~) ~]g 2 Sgtl) l,

where D, =-0'r. The matrix element X is related
to the vacuum expectation value of an operator
1/(D I) by-

g2 1=-g —r-~ -A" 8r (A14)

where

= —1+ —X (A&}
which is equal to the electrostatic value of X"'
(3.18}(replacing g by g„). Thus we obtain

-D+j=k r+w(r}

D=-jPy (A7)

I g d &p' ~,x nrem'

&1m

(A&)

R(z) = Q i — e, (T)[a,(T)e"*-H.c.];
lej

where i =1,2 refer to polarization states, I obtain

The operator D -I can easily be diagonalized.
Introducing creation and annihilation operators

a, (T) and at(T) as usual by expansions

X(z) =Q, ~, &,(T)[a,(T)e'I'*+H.c.]
fIi

(AS)

~0)=Nexp g I' nt(1) ~0),

where

~=exp --'I )1„,) r )i''
l ~ 5

(A16)

(A17)

Here both ~0} and ~0) are normalized to 1. The
matrix element (A&) can be evaluated using (A14),
(Al&), and a relation

+g e(r I,)fn[(T) n, (T).
l ~ 4

The vacuum state ~0) in (A6) is defined by a, (T)
~
0)

=0. The vacuum state ~0) is related to the vacuum
~0) defined by

n, (T) ~()I)=0 (A15)

through

le 4 (01ebae'"a 'e aa
I
0) = cease ~

(A18)

+ l )a] +BC. . (A10) which holds for any pair of operators n and Q. t sat-
isfying [n, n~] = 1 and n

~
0) = 0. Namely,
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where

p

ds 0 exp is k'r+sv r + la&~ n, 1 0 =+i dsexpis k'r+I) r +P s
l, f 0

{A18')

P(s) =g ' ' (e"' —1)= " ' dl, l, I dl,+, * [exp[is(l, ' +l,')' a] —I]
l «O «maO g

i'* dy ( ( —cos(* (st
( ] ~)4w' y .' x'(1+x')'a P r (A19)

with

=ir dt exp[i t[k'r'+ ra(r) ]+Q(t) I,
~ ~

0 0

(A20)

Q(t) = P(«)

g„""dy 1 —cosyx
4w' y x'(1+x')'I'

The last expression was obtained by a change of
the variables L, =xl, and l,r=y. Introducing a new
variable t= sir, I obtain

APPENDIX 8

r= Rz, (B1)

I will show that the confinement equation (3.27)
for the J= 0, C = 1, and P= —1 states with potential
{3.26) cannot give an eigenvalue M = 0 for the van-
ishing quark mass m = 0 if g„'/4w & 2. It was shown

already in GS that the solution M=m=0 exists
(Goldstone-Nambu condition) if g„'/4w &2. Thus I
conclude that the confinement solution gives eigen-
values of M&0 for g„'/4w& 2, making it unstable
relative to the positronium states. Introducing a
new variable z by

x [exp [ity(1+ x')' "]
(A21)

For any finite t, the real part of Q(t) behaves for
large Ar as follows:

where R is defined by (3.29) or

g„R
4w (a'+ R')

= k'R(1 —q), (S2)
2

Q,(t)- " Ar (Ar»1). (A22) with

Also ~k'r +nv(r) ~» 1 for Ar»l so that the phase of
the integrand oscillates very rapidly. Thus the
contribution to the integral in (A21) comes only from
t& (Ar) '. I can then replace Q(t) by

Here

@=k' R'

g, '/4w
jp2g2+ Q

'

(B4)

Q'{0)t = rP'{0}t= irp " = irw(r), (A23) replaces the eigenvalue M. Using (B2) and (3.26),
I obtain

and obtain

(A24)

M —V= k'R(1 —z)D(z),

with

(B6)

This mea. ns from (A6) that X/k'r 0as Ar-~and-
hence from (A5) that X/k'r-0. I have established
that V(r) - 02r for Ar» 1. The imaginary part of
Q(t) can be evaluatee explicitly. For complete-
ness, it is given below:

2

Im[Q(t)]=~ t(1 —e~")+
4w t

z 2

D(z) = 1+q z +y

Here

y' = a'/R' = k'a'/Q,

and the wave equation (3.27) becomes

(B6}

(B7)

d'E 2 1 —+ 4'Q'(I z)'D'F = 0.dz2 z 1 z D dz

This is the eigenvalue equation for Q for given po-
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tential parameters g„' and k'a'. Suppose the solu-
tion gives M=0 for certain values of the param-
eters. From (82) it corresponds to

q= 1, or Q=g„/4v -k a'-=Q, .

For this value of q, I have

(» y')'+(x y'}» (1-x)(x+y') 16 (x'+y')' '

(812}

Choose q so that P(x) has no 1/x' term in the lim-
it y'-0,

x(1 -x)
z'+y' or

q'+q+ ' =0, (813}

Introducing (89} into (88) and using a new variable
x = z', the equation reduces to

1 1 1 . . .(1-x)'
+ ~

+'+ '6 @0'
x 1 -x x+y jx+y j

(810}

I shall prove that there exists no solution of the
equation for @0~2 and hence certainly none for
g„'/4v & 2 from (89). Put

q= -4+ 2(1-aQ, ')'~'&0.

q is real since Q, &2. Multiply (811) by

x(x+ y')" "
p(x) =

and f, and integrate over [0, 1]. Using the boundary
conditions f(x)-(1-x)' for x-1 and f(0) = const
corresponding to (3.28), one obtains

E(x) = (x+y')'f (x),

so that f(x} satisfies

"0
dx p(x) [-f "(x)+ P(x)f '(x) ]=0.

Using the relation (813), I find that

(814)

f"+ —+ + 2 f'+P(x)f=0,1 1 2q+1
x 1 -x x+y'

where

(8.11)
p( )

y' 1 —
Q,' 1 —(1-x)'

x(x+y'}' (1 -x)(x+y') 16 (x+y')'

which shows P(x) & 0 since q & 0. 'Hence (814) can-
not be satisfied.
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