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We study the model which results from quantum electrodynamics if all photons are replaced by their
longitudinal parts — iAk,k,/(k ?)>. The model is formulated in terms of a Lagrangian which features the
higher-order or “grandfather” potential S which becomes a local field after quantization and from which the
vector potential is derived by 4, =9,S. The grandfather potential provides a convenient control over
ultraviolet and infrared divergences, for its free propagator — (1/2)iA(@/dk *)[k *In(—a *k * — i€)/

(— k ? — i€)?] already contains the parameter a ~' with dimensions of mass which otherwise only appears

in the theory, after regularization, as a renormalization mass. It produces much needed states, for we prove
that there is no charged state satisfying the Gupta-Bleuler condition in (4 ,y), the closure of the space
obtained from the vacuum by applying polynomials in A and  (the charged spinor field), but such states are
easily found in D(S,P). As the lesson from the model, a new Lagrangian for quantum electrodynamics is
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exhibited, which features the grandfather or Hertz potential [1** = —II"#, from which the vector potential is
derived'by A" = g,I1"*, and which is expected to yield corresponding advantages.

I. INTRODUCTION

We present a soluble four-dimensional model
field theory which presents many formal similari-
ties to quantum electrodynamics. It is renormal-
izable in the ultraviolet limit without being super-
normalizable. It possesses similar infrared singu-
larities in the Green’s functions and the state
space. It possesses a physical subspace provided
by the Gupta-Bleuler condition whose quotient
space by the vectors of zero norm is the space of
free electrons and positrons. In fact, the model
may be derived from quantum electrodynamics
(QED) by replacing all photon propagators by their
longitudinal parts —ixk, k,/(k?)®>. The interest of
the model is not so much in solving it, which is
easy enough, but rather in formulating it in such
a-way that the ultraviolet and infrared mechanisms
become clear so that the lesson learned from the
model may-be applied in QED.

The characteristic feature of our formulation is
that the vector potential A, is derived from a
higher-order or “grandfather” potential S by the
Lagrangian equation of motion A,=98,S. The ad-
vantage of the grandfather potential is that it intro-
duces states into the theory from the start which
otherwise only appear after renormalization of di-
vergent quantities. The mechanism by which this
occurs is that the free propagator of the field S,
which is

—(167%) " "AIn(-pu3x? +i€) (1.1)

in position space, already contains the parameter
1 with dimensions of mass which otherwise only
appears as a renormalization mass after regulari-
zation of divergent graphs. Thus, we expect use
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of this propagator to lead to a perturbation series
which is finite in every order, as we have con-
firmed in low order. Similarly, the real'infrared
divergence is eliminated when the discontinuity of
this propagator in moment space is used for the
inner product. Among the states produced by the
grandfather potential which are not otherwise
available are all charged states which satisfy the
Gupta-Bleuler condition. For we prove in our
model’'? that there is no charged state satisfying
the Gupta-Bleuler condition in D(A, ¢), the closure
of the space obtained from the vacuum by applying
polynomials in the vector potential A and the
charged field y, but it is easily solved in (S, ¥).

As the lesson learned from our model we exhibit
an analogous Lagrangian for QED depending on the
grandfather or Hertz® potential II"? = -II"* and
which yields as an equation of motion A”=9,11"7,
Corresponding advantages in quantum electro-
dynamics are expected to accrue from this formu-
lation.

The model presented here resembles the Schroer
model” in that the vector potential is the gradient
of a scalar field. However, in that model, the
scalar field satisfies 8°¢ =0 and the coupling con-
stant is dimensional, whereas in our model the
coupling constant is dimensionless as in QED and
the scalar field satisfies 8°5S=0, which describes
a dipole ghost. In that respect it resembles the
Froissart model® which contains a field that sat-
isfies (8% +nf)’S=0, the massless case being more
singular. The kinematics of a field satisfying
8°82S =0 in four dimensions recalls the kinematics
of a field satisfying 8¢ =0 in two dimensions, so
our model bears some resemblance to two-dimen-
sional soluble models.® It is closely related to a
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model introduced by Ferrari” in a study of the
Higgs phenomenon, from which the present model
is distinguished by coupling to the spinor field ¢,
our interest being the analogy to QED.

The plan of the work is as follows. The re-
mainder of this section is devoted to the Lagran-
gian which defines the model, and to the resulting
equations of motion. In Sec. II the field com-
mutators are found, and in Sec. III the Wightman
and Green’s functions in position space. In Sec.
IV we obtain the momentum-space propagator cor-
responding to —(167%)~"AIn(-p3x®+ i€), namely

K [k“ln(—azkz—ie)] ,

-3 —3 (12 — i) (1.2)

ak"

where a=e?"V2(2u)!, y is Euler’s constant, and
3/0k" is a weak derivative, and show how it yields
an ultraviolet-convergent perturbation series. In
Sec. V the representation space with indefinite
metric is reconstructed from the Wightman func-
tions. In the Appendix, a positive form is intro-
duced which promotes the representation space in-
to a Hilbert space. In Sec. VI the physical sub-
space is identified and defined by a Gupta-Bleuler
condition. It is shown that there are no charged
states satisfying the Gupta-Bleuler condition in
D(A, y) defined above and, in the Appendix, the
proof is extended to the closure D(A,y) in the
Hilbert-space topology. In the concluding section,
a new Lagrangian for quantum electrodynamics is
exhibited which embodies the wisdom learned from
the model, namely that the vector potential should
be derived from a higher-order potential.

Our model is defined by the Lagrangian density

L=-Bo,A* + ]\B* —1*(4,-4,5)
+P(i g +ed-my (1.3)

which is invariant under the restricted gauge
transformation of the second kind,

b~ yexp(ied), S—S+A ,
(1.4)
Ay~Ay+9,A, B-B, Iu"Iu s

where A(x) satisfies 82A=0. For a physical inter-
pretation, observable quantities may be defined as
those that are invariant under this transformation.
On varying, successively, with respectto /,, B
A,, S, and ¢y we find

’

3,S=A, , (1.5)
3:A=)\B, (1.6)
0, B=1I,=—edyd, (1.7)
0,1"=0, (1.8)
(iB+ed-my=0. (1.9)

The equation of motion for y implies current con-
servation

8, J =0, Ju=—ePyud . (1.10)

The divergences of Eqgs. (1.7) and (1.5) yield, re-
spectively,

3°B=0, (1.11)

8%S=)B, (1.12)
and thus

8%9%5=0 . (1.13)

We assume X # 0 since otherwise the relations be-
come trivial.

If the fields were classical, the Dirac equation
would be solved by

¥=y, exp(ieS) , (1.14)

where i, is a free Dirac field satisfying (ig — m)y,
=0. The solution of the quantum field theory is
similar.

II. FIELD COMMUTATORS

The Lagrangian (1.3) is a first-order system of
the form Y pg — H(p,q). Thus we identify the can-
onical ¢ variables as A° and S, which are con-
jugate, respectively, to the canonical p variables
—~Band I°. The remaining variables A* and I¢,
i=1,2,3, are determined by constraint relations
of the form 8H/8¢" =0 which are contained in the
equations of motion (1.5) and (1.7). The canonical
equal-time commutation relations are thus:

[-B(,%), A%, 9)]=11°(,%),5(,9)]

=-i6&-73) , (2.1)
[B(,%),5(,9)]=[A°¢,%),5(,7)]=0, (2.2a)
[1°(t, %), A%, ) 1= [1°¢, %), B(¢,§)]=0 . (2.2b)

The equal-time anticommutation relations of y and
y are standard, and y and § commute at equal
times with S, A°, B, and I°.
From the equations of motion B=J,+1, and
8°B=0, we find for all x and y
[B(x), S(y)]==iD(x-y) . (2.3)
Here D(x) is the Pauli-Jordan function satisfying

8°D(x)=0, D(0,%)=0, D(0,%)=6%%), (2.4

D(x) = (2m)~'6(x®) sgn(x°) . (2.5)
From the equation 8°S=XB, we have
[B(x), B(y)]=0, (2.6)

which shows that there will be an indefinite metric
in the representation space. From the equation of
motion $=A° we find [$(¢,%), S(¢,7)]=0, which to-
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gether with 8S=)B gives, for all x and y,

[S(x),S(y)]==ixE(x-y) . (2.7
Here, E(x) is the invariant function defined by
8%E(x) =D(x), E(0,%)=E(0,%)=0 (2.8a)
or by
3%3°E(x) =0 ,
(2.8b)

E(0,%)=E(0,%) = £(0,%) =0, E(0,%=56%%)
with solution
E(x)=87)""6(x?) sgn(x°) . (2.9)

The commutators of A, follow trivially from A,
=9,S,

[A,(%),S(y)]==iro,E(x-y) , (2.10)
[A,(x), B(y)]==-ixa,D(x~y) , (2.11)
[A,(0),A,(y)]=ir8,8,E(x~y) . (2.12)

Finally, the commutator of these fields with y
may also be found. From B=J°+1I° we find

[B(£,%),9(t,9)]=°¢, %), ¥(¢,§]

=e6X-F)(t,9) , (2.13)
which with 8°B=0 gives, for all xand y,
[B(x), y(y)]=eD(x -y)¥(y) . (2.14)
Similarly, from $=A° and 82S=xB, we find
[S(x), ¥(y)]=erE(x -3)y(y) (2.15)
and hence also
[A, (%), ¥(y)]=exa, E(x —y)p(y) . (2.16)

The anticommutators of y and y with each other
turn out to be noncanonical, as the following sec-
tion shows.

III. WIGHTMAN AND TIME-ORDERED FUNCTIONS

We wish to find the Wightman functions of a
Hermitian scalar field S(x) satisfying

8%9%5(x) =0 (3.1)
with commutator

Bx),S(y)]=-irE(x-y) , 3.2)

E(x)=(87)"'0(x?) sgn(x°) . (3.3)

For this purpose E(x) is decomposed into its
positive- and negative-frequency parts, each of
which is analytic in the past and future tubes, re-
spectively,

E(x)=E(x) + EM(x) , (3.4)
EC)(x) = =(167%) "1 In(-u2x? +iex) , (3.5a)
EM) (x) = [EC) ()] * = =E()(~x) , (3.5b)

with
2o () o DB (e T 1
°E'*) (x) =D'*) (x) 7 i il (3.6)
8%92E(*) (x) =82D(*) (x) =0 . (3.7

The separation into positive- and negative-fre-
quency parts is indeterminate to within a poly-
nomial in x which is usually chosen for dimen-
sional homogeneity. However, in the present
case, no such argument precludes the presence
of an arbitrary constant term in E(7)(x), re-
flected in the term —(167%)~'Inu®. Here p>0is a
constant with dimensions of mass, required for
dimensional reasons. Its presence will be of ut-
most importance in the following. Corresponding
to the decomposition of the commutator, the field
S(x) is similarly decomposed into negative-fre-
quency (annihilation) and positive-frequency
(creation) parts,

S(x) =8 (x) + S (w) (3.8)

S () =[s()]" (3.9)
with commutators

[S7(x), 8 (9)]= =iAED (x ~y) , (3.10a)

[0, s ()]=[5"(x), 57 (y)]=0 . (3.10b)

Let the vacuum vector 2 be defined as the vec-
tor, unique to within a phase, satisfying

s (x)Q=0, (3.11)

(Q,9=1. (3.12)

The gauge invariance of the Lagrangian under the
transformation S-S+ A, Eq. (1.4), is spontaneous-
ly broken by the existence of such a vacuum state.®
In particular, a shift of S by a constant A corre-
sponds to a change in the dimensional parameter
i, introduced in the last paragraph, as will be
clear from an inspection of the Wightman func-
tions.

In fact, the generic Wightman function
(2, S(x,)* * *S(x,)) is easily calculated in the usual
way by commuting all the S{=)(x) to the right and
all the S¢*)(x) to the left. The result is the Wight-
man functions of the generalized free field with 2-
point function

W(x-y)=(Q,S(x)S(y) = —iAE ) (x-y) ,
(3.13)
W(x) = ~(167%) "\ In(-u2x2 +i€x°) (3.14)

by Eqgs. (3.10) and (3.5a).
For the time-ordered 2-point function, or
Green’s function,

T(x —y)=(Q, T[S(x)S(y)] Q) (3.15)
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one has

T(x) = —iAE(x) , (3.16)
where E (x) is the causal function

E (%)= 0(x°)E) (2) + 6(=x)EM) (1) , (3.17a)

E (x)==(167%)"" In(—p3x? + i€) , (3.17b)
which satisfies

0E,(x) = Dy(x)= 2 —— (3.18)

47° —x°+ie

3%0%E,(x) = 9°D (%) = 6%(x) . (3.19)
Thus we have

T(x) = =(167%) "\ In(—p*x 2 + i€) , (3.20)

3292 T(x) = —irb%x) . (3.21)

The Wightman and Green’s functions for the fields
A, and B are easily obtained from A, =98,S, B
=A"ta-A=x""0%S.

The commutators of S, A,, and B with the
charged field ¥, Eqs. (2.14)-(2.16), are obviously
satisfied by posing

¥(x) = Po(x): explieS(x)] : , (3.22)

where i, is the canonical free Dirac field of mass
m that commutes with S, and

:explieS(x)] : = exp[ieS(*) (x)] exp[ieS) (%)] .
(3.23)

With this definition  commutes with itself and
with S at spacelike separation, so it is a local
field. It satisfies

GF—mpp=—e:Ap:=—e(d DYp+ydD),  (3.24)

which replaces the corresponding classical equa-
tion of motion.

All vacuum expectation values of the fields S,
A,, and  may be calculated using formula (3.22).
In particular for the 2-point functions, one has

(2, P(2)P(0y)

= (—p2x? +1€x0) ~(OMIM(Q W (2)P,(0)R) ,  (3.25)
(@, T[H(x)P(0)] @)

= (—p2x?+i€)~ (M /MQ Ty (2)1,(0)]2) , (3.26)

where « =e?/4r is the fine-structure constant.

We see that the charged field y has picked up an
anomalous dimension ax/4r. The engineering di-
mensions are maintained by the normalization con-
stant p°*/47, Thus the dimensional constant p
which appears in the 2-point function of the free
field S as an additive constant of the form Inp.?
shows up as a multiplicative normalization con-
stant of the field y. If the Green’s functions had
been obtained instead by summing renormalized

perturbation theory, the dimensional constant
would have arisen from a renormalization of the
electron propagator, at some renormalization
mass proportional to u. This suggests that the
ultraviolet divergences will be removed from per-
turbation theory provided that, in the expression
for the photon propagator

Dy (%) ==8,9, T(x)
=(167%)~8,,9, In(—u2x 2 +4€) , (3.27)

the derivatives are understood to be weak deriva-
tives. In other words they do not act on the loga-
rithm considered as a function, for then the de-
pendence on u would disappear. Instead, a partial
integration is understood. However, perturbation
theory is more familiar in momentum space, to
which we now turn.

IV. PROPAGATOR IN MOMENTUM SPACE AND
FINITE PERTURBATION THEORY

The propagator G(k) of the field S is introduced
according to

T(x)=@2m)~% e *"*G(R)d k. (4.1)

Because T(x) satisfies 8%9°T(x) = - ix0%(x), 9°T (x)
=—iAD,(x), we see that G(k) is a solution of
KG(k) = :k_;L_

- ie ’ (4'2)

FPR*G(R) = —iX . (4.3)

The error which must at all costs be avoided is to
conclude from this that G(&) is given by
—iA

(_kZ_ie)Z (4'4)
This expression is not a distribution since
Jd*k(—k* —i€)~? is infrared divergent, and further-
more, the dimensional parameter y which appears
in T(x) is absent. If one attempts to calculate
G(k) directly from the Fourier inversion formula

G(k) = —(16n2)">»feik FIn(~-p’x® +i€) (4.5)

one encounters a divergence because, considered
as a function, In(-u%x%+i¢) does not possess a
Fourier transform, as will shortly be apparent.
However, considered as a distribution, its
Fourier transform is guaranteed to exist.

It is convenient to express G(k) as a derivative
of another distribution which is less singular at
k=0. For this purpose we write

T(x)

=2
T(x) =-x - S

SO



G(R) =0, °H(R) , (4.6)
= inex In(=p’x%+ie)
HE) = 5 fe R g, @

In evaluating this integral it is helpful to put

In(—p3x*+i€)  In(e +ip’x®) +in/2
—pix %+ e ile +iu’x®)

and to use the formula

1“—“” - -f ds e In(e” s/b) (4.8)
for a=€ +ip’x?, wherey= —fodse'slns is Euler’s
constant. The integration over d °x may then be
effected by Gaussian quadrature with the result

—iX In[e?Y(-k® —i€)/4u?]

H(.k) T4 -k —ie (4.9)
We thus find the desired propagator
Zid o etk —ie)/4p°]|
= 4.1
G(k) 4 8 1 _kz_ie s ’ ( 0)
1. 8 [K'In(=d’F —ie)
The constant
a=e’"?@u)t (4.11b)

has dimensions of length,

If G(k) were a function, the differentiation could
be effected with the result —iA(—%® —ie)~%, which,
as we have seen, is the wrong answer. Instead it
is a distribution and 8/8F" is a weak derivative
which means that for a test function f(k)

[G(k)f (k)d k= zled“k M;_)l;)

b5 B (4.12)
The extra power of momentum which appears ex-
plicitly eliminates the divergence at k=0.

We may now understand how the ultraviolet di-
vergences disappear from perturbation theory
when the appropriate free photon propagator

Dy, (B) = ky ke, G(k) (4.13)

is used. It appears as a factor in the integrand of
Feynman integrals,

1=fd4kD“"(k)RM(k) . (4.14)

If the remaining factor Ru,,(k) were in fact a test
function, one would find by partial integration that
ky b, G(k) gets replaced by —i\k,k,(—k —i€)~? be-
cause of the extra powers of k. However, in gen-
eral, R, (%) is not a test function, which is the
basic reason why a renormalization prescription
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is conventionally required. Let it instead be left
in the form

2
I—szfd‘*k In(- "k ")“)

x k* —A[k“ R, ,(B)] . (4.15)

Observe that the operator £*3/ak" annihilates all
terms of degree zero in k, which are the loga-
rithmically divergent ones, whether in the ultra-
violet or the infrared. This in fact eliminates all
divergences which appear in calculating Green’s
functions because the photon propagator is longi-
tudinal, so electron loop insertions and electron
mass renormalization are automatically zero. We
have verified this by explicit calculation to order
e’ and by superficial inspection to order e’. Feyn-
man integrals involving the propagator (4.15) are
conveniently effected using the exponentiation
formula (4.8) and others derived from it, after
which integration over d*k may be effected convar-
iantly by Gaussian quadrature. Alternately, the
logarithm may be represented by

Ina=1lim, ,,(8/8v)a”, and integrating as in analytic
regularization.

V. RECONSTRUCTION OF THE REPRESENTATION SPACE

The problem at hand is to reconstruct the repre-
sentation space of the field S from its Wightman
functions. Because the commutator [S(x),S(y)]is
a ¢ number, the representation space g, of the
field S breaks up into orthogonal subspaces O
labeled by “photon” number »=0,1,2,... . The
n-photon sector is spanned by vectors of the form
S(f)e ST (f,)9R, where STV (f) =[S (x)f(x)d ',
and f(x) is a test function f< 8§(R"). Thus, the prob-
lem reduces to the reconstruction of the one-
photon subspace 94" consisting of vectors of the
form SV (f)Q= S(f)Q

The inner product of two such vectors
(S(f)9,S(2) defines a Hermitian symmetric form
(f,2 =(g,f>*, on the space of test functions whose
kernel is the 2-point Wightman function

(f, =(S(NQ,S(2 , (5.1)
<f,g>=fd4xd'3'f*(x)W(x—y)g(y)- (5.2)

When this form is non-negative, (f,f) > 0 for all
f, the reconstruction is well described by Streater
and Wightman.® However, in the present case,

the form is indefinite, namely for some f, (f,f)
<0, which calls for a slight modification of the re-
construction principle. Before proceeding to a
concrete description in terms of wave functions,

it is worthwhile to pause and consider the general
method for reconstruction of an indefinite metric
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space from an indefinite form.'° If the form were
non-negative, it could be used to define a norm
£l =«f, /)2 In this case the vector designated
by S(f) is identified with the equivalence class
of test functions [f] which differ from f by a test
function of zero norm. Observe that when the in-
ner product is non-negative the Schwartz inequal-
ity holds, (f,f){(g,2 > [(f,2|*, and f is of zero
length if and only if it is orthogonal to every vec-
tor. (This is in fact the reason why the test func-
tions of zero length form a linear space and why
the inner product is nondegenerate on the space
of equivalence classes.) We adopt this as the
basic principle for reconstruction of the repre-
sentation space when the Wightman functions de-
fine an indefinite form, namely, the vector S(f)%
is identified with the equivalence class of test
functions [f] that differ from f by a test function
which is orthogonal to every test function,

s(r)e=[r]. (5.3)

On the space of equivalence classes the form is
nondegenerate by definition or, in other words,
the form :

(rl,lgh=(f,0 (5.4)

vanishes for all [g] if and only if [ f] is the zero-
vector [ f]=[0]=0. The class of test functions
orthogonal to every test function forms a linear
closed subspace X of the space of test functions
8(R"). The one-photon space 4" is the quotient
space

90 =8(RY)/5 . (5.52)

This space has a natural topology induced by the
projection @ of $(R") onto 4" defined by f—[ f].
Namely, let A be any set in 4!V, let B=¢~'(4) be
its inverse image in 8$(R? with closure B, then
the closure of A is defined by

A=¢(B)=¢((®"T4)). (5.5b)

We call this the induced test-function topology. As
a matter of mathematical convenience, the inde-
finite-metric space may be completed into a Hil-
bert space. This is done in the Appendix, where

a positive form (f,&) is defined which bounds the
indefinite form ¢ f, g according to

[Kf@l<lritlgl, Irl=0r)2.

We shall now obtain a concrete description of the
one-photon space in terms of on-shell wave func-
tions. Because the Wightman function satisfies
8°8°W(x) =0, the structure of the inner product
(f,@ = [d*xf*(x)W(x-y)g(y)d’y is apparent in
momentum space. Put

W(x) = (2n)"‘fﬁ/<k)e""*‘rd4k, (5.6)

HOE (2n)‘3/2fei""‘f(x)d“x , (5.7)
which gives
(f,@=@m" f dRW(R)F*(R) 2(E) . (5.8)

Instead of calculating W (k) directly by Fourier
transform, we use

W(k)=G(k), - G(k)_ , (5.9)
where the discontinuity is evaluated along the right-
hand axis of the %° plane. Insertion of the identity

Ina=lm — g (5.10)

v—>o, 9V

into formula (4.10) yields

G(k) = —Zlaze a—i— 0, 2(~a’ek® —ie)~'*v oo
(5.11)
Gr= 2 2y ,,2[ (—azezkz—ie)”]
16 av v(l+v) v=or s
(5.12)
which gives
ww=% Lo, 283[% (azekz)”e(kO—w)-J s
(5.13)
where w=|Kk|, or
W(k)=8"'mrd,%, }[0(k° - w) Ina’k?] . (5.14)

This is a well-defined Lorentz-invariant dis-
tribution, but the fact that it is a solution of

FPEW(R) =0 (5.15)

and thus has its support on the light cone is not
manifest. For this purpose some manipulations
are required with the result that, for a test func-
tion F(k),

f d R W(R)F(E)

-_2m fd“k %—):’)
i (35-25)- (% - 2]
(5.16)

The support of W(k) is now clear. On putting F
= kG, we verify
W (k)= -2mx(2w) "6 (k° — w) . (5.17)

The inner product, Eq. (5.8), is now expressible
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in terms of the on-shell quantities,

FIR) =7, B) ooy, (5.18a)
foE®) = [aféio’ k) - af(ak:)’i)] o (5.18b)
by
<f,g>=-xf (52{:\—};2 In2wa 52— [ F*®)g®)]
+3f M (K)E) + 3 *®)g' &
(5.19)

Here we have used the fact that 8/6k°+8/8w is the
tangential derivative along the light cone given by

[afk"ok) f(k",E)] _ R (5.20)
ok ow 2O =w ow

A convenient form of the inner product is obtained
by integrating the last pair of terms by parts on
w?

o=t [ é’;j— 1n(2a0)

%o [ RE) + O E)] . (5.21)

Here we have introduced a convenient pair of wave
functions

FHE) =7 (B, B) ooy, (5.22a)

FiE) = (-kf’% + Z:lki a‘z,. +i>f(k°,E)

kO=w
(5.22b)

It is easy to verify that the form is nondegenerate
on this pair of wave functions, so we write, for
the unique vector associated with the test function

/>
S() =[f1=(®),r3®) . (5.23)

In other words, the equivalence class of test func-
tions consists of those whose Fourier transforms
coincide on the future light cone, together with a
nontangential derivative there, and each equiva-
lence class is conveniently represented by a pair
of wave functions which are their common values
there.

The off-diagonal form of the inner product is
characteristic of dipole ghost states and occurs
also in finite-dimensional indefinite-metric
spaces'' where the equation A%y=0 for symmetric
A does not imply Av=0.

The necessity for two complex wave functions
arises because the generic classical solution to
8%9°S =0 is determined by 4 real functions at ¢=0:

S(0,%), S(O %), 5(0,%), S(O X); whereas for the

wave equation 8%¢ =0 the one complex wave func-
tion is determined by two real functions at ¢=0:
#(0,%), ¢ (0,%). The two wave functions represent
the two nonphysical degrees of freedom of the
photon.

The Poincaré transformation laws of f'(k) and
(k) are easily obtained. In particular, for the
translations we find

1 E) - e—ik'dfl(E)
") e—lk a[f

P =(w,K), with an analogous form for the homo-
geneous Lorentz transformations. This triangular
representation possesses an invariant subspace
defined by

fi&)=0 (5.25)

(5.24a)

) +i(wa®+K-A)fF(K)] , (5.24b)

in which the inner product vanishes identically.

From the one-photon space 9(7" , the Fock con-
struction yields the many-photon space g9,. We
introduce the notation

[ dk o*®)y(E)

2)\] 1n2aw [(,0* ®uEk)] (5.26)

to facilitate writing the inner product (5.21) which
becomes simply

<f,g>=fdk[f‘*<ﬁ)g2

Creation and annihilation operators, a§(¢) and
a;(¢), i=1,2, are introduced which satisfy

&) +F*[K)g'(&)] . (5.27)

[a,(¢), af¥)] = [a.(¢), al(¥)]=0 (5.282)
[a,(9), al@)]=[a.(¢), al(¥)]
= fdk o*E)y(E) (5.28b)

where the integral on the right-hand side has just
been given the special meaning (5.26). Obviously,
the commutator could be diagonalized by suitable
linear combination, but the off-diagonal form will
be kept because of the importance of the invariant
subspace (5.25). The vacuum vector 2 is defined
by

a;(9)=0, i=12, (5.29)

and the many-photon space g, is spanned by apply-
ing creation operators to the vacuum.'?
The field S(x) is represented by

fd ' SWF(x) = S(f)
Zzl D +a(f9], (5.30)
i=

1}
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where the f! are defined in Eq. (5.22). The action
of the field B is also of interest. From B=x"'5%$
we find B(g) =1"'S(d%¢), so with f=x"'9% we have
f(B) = -x~'k*2(k) and so we obtain, by Egs. (5.22),

f‘(E):O, FAR) =2"'2w)%g' (k) , (5.31)
B(g)=2""[a;(4w?g") + a,(4w?s")] . (5.32)

The space 9, on which our model quantum elec-
trodynamics is defined, is the product

9-9,0¢8, (5.33)

of the photon space 9, just constructed with the
space £, of free electrons and positrons on which
the free Dirac field y, is represented in a stand-
ard way. The charged field acts on 9 according

to ¥(x) =4,(x): exp[ieS(x)]:. Thus we have a repre-
sentation space, with nondegenerate but indefi-
nite inner product, on which all the fields of the
theory are defined.

VI. PHYSICAL STATES

Physical subspaces are those whose vectors &
are positive on all the observables 6

(68,08)>0 . (6.1)

We take observables to be the quantities which are
invariant under the gauge transformation (1.4)
whose generator is G(A) = [,_,A(0)§,B(x)d *x, as
may be verified from the commutators of Sec. II.
It follows that the observables satisfy*®!*

[B(x), 6]=0 (6.2)

and hence, from Eq. (5.32) and the off-diagonal
commutation relations, that they are independent
of a, and af,

0= 0(“3: az) ) (63)

where dependence on electron-positron variables
is suppressed.

We will verify that the Gupta-Bleuler subsidiary
condition

B (x)®=0 (6.4)

provides a physical subspace 9,, which, further-
more, is isomorphic, modulo vectors of zero
norm, to the space of free electrons and positrons

g,=2, . (6.5)

The fact that photon variables disappear from this
physical space is an expression of the triviality of
gauge coupling. Note that, because [B(7)(x),6]=0,
the subspace 9, is invariant under the action of the
observables, so it will be positive on the ob-
servables provided only that it is a subspace of
non-negative norm. In terms of annihilation oper-

ators, the Gupta-Blueler condition reads
a,(@)¥=0", (6.6)

which must hold for all wave functions ¢. Here
a, plays the role of k- a in free-field QED. Be-
cause of the off-diagonal commutation relations
(5.28), the generic solution to this condition is

v=F(a})Q , (6.7)

where F(a}) is a power series in a] whose coef-
ficients are power series in electron and positron
creation operators. Again because [a,(¢), al(x)]
=0, we have

(¥, %) =(F ()R, FO) >0, (6.9)

where F(0) is the zeroth term in the expansion of
F(al). This expression is non-negative because
F(0) is a pure electron-positron state F(0)QRE £,.
Hence, 9,is a space of non-negative metric and,
on taking its quotient by the vectors of zero norm,
i.e., F(a))Q—~F(0)Q, the electron-positron space
£, results.

An important open question in QED"? is whether
there exist solutions of the Gupta-Bleuler condi-
tion with nonzero value of the total electric charge
@ = —e X (number of electrons —number of posi-
trons). In QED as presently formulated, the an-
alog of the grandfather potential S does not occur
and the full representation space is the closure
D(A, ) of the space obtained from the vacuum by
applying polynomials in A and ) smeared with test
functions in §. We shall show in the present model
that there exist no states with definite electric
charge @ #0 in D(4, ¢) which satisfy the Gupta-
Bleuler condition.

The annihilation operators a;(K), i=1,2, depend-
ing on a definite momentum K are defined by

a,K)Q=a,&)Q=0, (6.92)
[a,(K), al(¢)]=[a,(K), al(¢)] = (&) , (6.9b)

the other commutators being zero. [The Hermi-
tian-conjugate quantity a,T(E) is not an operator but
merely an operator-valued distribution.] From

[a,(®), S(F)]=f*(K) =F(F)|40-, (6.10)

we find easily, using A, =9,S, ¥=y,: exp(ieS): ,

[az(E), f Ay (%)" (x)d "x]

- @L:)fimfdue“'ﬁ“(x), (6.11a)

[a.®, [ z(x)w(x)d"x]

= (2m)%e j‘d e®* Y(x)Y(x) , (6.11b)
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where j", X are vector and spinor test functions.
In particular, the zero-frequency operator satis-
fies

|:a2(0), jA,, (x)7"(x)d “x] =0, (6.12a)

l:az(O), fi(x)zp(x)d “le: (2m)~¥%e fd X (x)P(x) ,

(6.12b)

which, together with 4,(0)2=0, shows that
a,(0)¥ = (27)"¥2%Q¥, all ¥ED(A, ) . (6.13)

On the other hand, the Gupta-Bleuler subspace 9,
Cd is the eigenspace defined by az(E)‘Il= 0. Hence,
no vector ¥ in D(A, ) with definite charge Q =Q’
+ 0 satisfies the Gupta- Bleuler condition since the
wave functions of D(4, y) are all continuous. (A
detailed calculation is presented at the end of the
Appendix.) The same conclusions hold in the in-
duced test-function topology defined in Eq. (5.5b),
for in this topology all wave functions are con-
tinuous, being restrictions to the future light cone
of test functions. More surprising is the fact that
the conclusion still holds in D(4, y), the com-
pletion of D(A, y) in a Hilbert-space topology, as
is shown in the Appendix. The reason is that to
ensure continuity of the inner product (f, g, the
Hilbert-space norm | f|| is required to dominate it
£l l&l=Kf,2|. Because(f,g is very singular
at w =0, the norm [|f| is correspondingly re-
strictive there, so no Cauchy sequence of vectors
I"cD(A, y) satisfying a,(0)¥"=(27)"¥/%Q'¥", Q'+0,
converges to one satisfying a,(¢)¥ =0 for all
psselh.

It seems likely that this result holds also in
QED, namely that there are no charged states in
D(A, y) which satisfy the Gupta-Bleuler condition,
although a proof has only been given for states ob-
tained from the vacuum by local operators.! To
get around this difficulty, the author recently pro-
posed a modified Gupta-Bleuler condition,? which
would correspond in our model to a,(K)¥ = c(kK)¥.
For arbitrary fixed c(k) one can show that this
condition defines a physical subspace 9[c], just as
we have done above for ¢=0. On the other hand,
we have seen that in our model there is no dif-
ficulty in finding charged solutions to the Gupta-
Bleuler condition. This is because we obtain
other states by using the grandfather potential S
whose analogy is lacking in QED as conventionally
formulated. In the final section we will show how
a grandfather potential may be introduced in QED.

VIL. LESSON FOR QUANTUM ELECTRODYNAMICS

In 2 model with many formal similarities to
quantum electrodynamics, we have found (1) a
perturbation series which appears free of ultra-
violet divergences in all orders (Sec. IV), (2) a
representation space free of infrared divergences
(Sec. V), and (3) a physical subspace including
charged sectors provided by the Gupta-Bleuler
condition (Sec. VI). These features result from
the systematic use of the grandfather potential S,
which is a potential for the vector potential A,
=9,S. The field S has the propagator

H 27,2 .

G(k) = -Lin 5%[%9] , (1.1)
where the derivative is understood in the weak
sense, whose discontinuity provides the inner pro-
duct

(f,g)=—§:)\f (g;’;—zln(Zaw)

9

X 2ol RSER) +f R ®] . (1.2)

It is the appearance in the free propagator of the
parameter a™', with the dimensions of mass which
otherwise would appear in the theory as a re-
normalization mass, that leads to the attractive
features (1), (2), and (3), and which distinguishes
our model from QED as conventionally formulated.

We may expect to gain corresponding advantages
for QED by introducing the analog of the grand-
father potential S. This would be the Hertz poten-
tial® M*¥=-I"", from which the vector potential is
obtained by A”=9,I1"V, thereby making A" purely
transverse instead of purely longitudinal. This
may be achieved by adding to the Maxwell-Dirac
Lagrangian density

Lup= —SF (8,4, - 8, A,) +F*VF,,
+P(E P+ed —my (7.3)
the term
£,==1,(A" - 8,II"Y) (7.4)

where II,, and the new field J, are to be varied in-
depernidently. If this is done the equations of mo-
tion for II,, are incomplete, the time derivative
of II;, being undetermined. On adding the further
term

‘cZ:%H”V[nMu_(a#Uu_au U“)]+C8“ Uu ) (7-5)

where U,, H,,=-H,,, and C are new fields that
are varied independently, one obtains a complete
system of equations of motion with a time deriva-
tive for every variable that is not determined by a
constraint. The extra term is not a source of un-
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wanted complication. On the contrary, the equa-
tions of motion which result from the Lagrangian
density

£=Lypr £,+ L, (7.6)
lead to
A, =8%U, , (7.7)

which is more convenient to use than A”=28,1""
because U, is a vector field. It is a potential
which plays the role of a potential for the Hertz
potential, I, ,=9,U,-9,U,. An article is in prep-
aration which describes the virtues of a formula-
tion of quantum electrodynamics based on this
Lagrangian density.
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APPENDIX
We will construct a positive form (f, g) which
provides a norm | f || = (f,f)*/? that bounds the in-
ner product f, g according to

Kr.@l<lfllel, (Ala)
and which is nondegenerate and finite,
0<lfli<e (Alb)

for all f#0, f=4(". For this purpose we rework
the inner product (f,g, Eq. (5.21), to diagonal

J

<f’g> =A-f (g ?3

The first two terms may be rewritten

f:8.=3 f Zw)z [(FP+f)*(g°+g") = (f

so a positive form (f,g), which dominates it, ||f|,llll,> [{f,2,| with ||£], =

ing X to A| and - to +,

form.
We have

1,8 [ s [ @0+ 'R

-2 &lx®I°], (A2)
where f; is the value of the wave function at the
origin,

fo=f1(0)=£*(0) =f(0) (A3)
by Egs. (5.22). Here (k) is an on-shell test func-
tion

X(E) = i(ko) l‘E) ]ko =w
that satisfies

x(0)=1, (Ada)
3

J o n2aw) 2 [x@I*=0 (Ah)
o) n(2aw =0,

in which case Eq. (A2) agrees with Eq. (5.21), as
may be verified by partial integration on w. A
convenient choice is

R(k) = exp[-§b° (R +K?)] (A5a)
b=2ae""? | (A5b)

where y is Euler’s constant, y = —f;’ds e *Ins.
Corresponding to this test function are the wave
functions, Eq. (5.22),

X' (K) = X*(K) = exp(-3b°w?) . (A6)

We now shift the wave functions by subtracting out
a part which is finite at the origin

AR =f 1K) -fox(K) , (ATa)
FAR) =£*(K) —fox () , (Ab)

so the new wave functions f *(k) and f %K) vanish
like w at the origin. The generic state f€9%) is
represented by the triplet

F=fo,f 3(K), £ 4(K)) (A8)

of a constant f; and the two wave functions £ (k)
and f 4K). Interms of the new variables, the inner
product reads

*(R)g () +f *(K)g*K) +f #x *R) [ &E) + g1+ [ £3(R) +7 “®) ]*gox )} . (A9)

=g -2, (A10)

(f,/):*?, is obtained by chang-

(rgh= 3 [ EElrer () (o= -] - (a11)
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The last two terms of Eq. (A9) may be rewritten

(f,8.= 4k

f3+ E4 * g3+ 4
2 (2w ) {[(2“@)’:}(0)(*' (200))’ :I [(2W)Pgox+ ——&(2‘10))’ ]

- [(2aw)’f0x -éa—;)%] [(2aw)’gox - é—a;)%]} . (A12)

If p is a fixed real number satisfying

0<p<1,

(A13)

a finite positive form (f,g), which dominates ( f, g, is again provided by changing X to x| and — to +. The

cross terms cancel and one has

B 3 ol 12en FI4f o) 3, 4
(f;g)z'l)\lf(‘ziTI;a [(Zaw) X1 $go + ( +(2)aa§)82" +g):] . (A14)

A positive form of the required type is provided by (f,g),+

(f,£), but the final expression is simpler if we

add in
f,g)s I)‘If(z k g _fz)ao())2p ) (A15)
Then with (f’g)= (f7g)1 f:g)z f,g)s we have
dk 2 34y 3 A N 4y
(f,8) = l)\[{-—e"l"(p)f f 20)° [1+ (2aw)z,] [f**(R)g °(K) +£ * ®)g *(K)] } , (A16)

0<p<1. This is a convenient form which by con-
struction has the required properties (Ala) and
(Alb).

Completion of 4" in the norm ||f | =(f,f)"*
yields the one- photon ‘large” Hilbert space selh.
Its elements are the triplets (A8), (f,,f%K),f 4(k))
where f %K) and f %(k) are square-integrable with
respect to the measure d *k(2w)~*[1+ 2(2aw)~*],
instead of being restrictions of test functions, and
fo represents the coefficient of the wave function
x(K) which is singular with respect to this mea-
sure. The Fock construction provides the many-
photon Hilbert space 3¢,. The full Hilbert space
of our model is the product =3¢, ®3C,, where 3¢,
is the usual free electron-positron Hilbert space.

We may now answer the question whether there
exist any solutions to the Gupta-Bleuler condition
in D,(4, y), which is the closure in the Hilbert-
space topology of ©,(A4,y), the space obtained from
the vacuum by applying polynomials, of definite
electric charge g, in A and y smeared with test
functions in 8. Expressed in terms of the old
basis f'(K) =fox (K) +1 %K), f2(K) =f,x(K) +f “(K), the
Gupta-Bleuler subspace 3C,C3C consists, by Eq.

'

(6. 7) in the n-photon sector, of wave functions
freeeinR « o K ) which vanish when any index
za—l 2, a=1---n, takes the value {,=1. In par-
ricular, in the one-photon sector f 1(E) =fx (K)
+f3(K) =0, which means, in the topology of (A16),
fo=0, f3(k)=0. Here, electron-positron varibles
are suppressed. On the other hand, the elements
¥ of D A, ) consist of Cauchy sequences of wave
functions ¥ of D,(A4, ), which satisfy the co-
herence condition (6 13), a,(0)¥™ = (27)~¥/2ig¥(™,
The corresponding wave functions in the one-
photon sector, (™ (K)=[f " (k),r %™ (K)], there-
fore satisfy f{" =£ X" (0) = (2n)~¥?%gc™, where
c'™ is the no-photon amplitude and again electron-
positron variables are suppressed. The Cauchy
sequences f{", c‘™ converge to complex numbers
fo and ¢, characteristic of the generic state ¥
€5 (A4,y), which satisfy f,=(21)~¥%gc. Hence in
the charged sectors ¢ # 0 we find f,# 0 (if ¢ were
zero we would consider the leading nonvanishing
amplitude.) Thus there are no solutions to the
Gupta-Bleuler condition in the charged sectors of
D4, ).

*Work supported in part by the National Science Founda-
tion, under Grant No. PHY74-21778A01.

TPermanent address.

I Laboratoire Propre du C.N.R.S. Associé 4 1’Ecole

Normale Supérieure et 4 1’Université de Paris Sud.
Postal address: 24 rue Lhomond, 75231 Paris Cedex
05, France.

1t has been proven in QED that no charged state satisfy-



468 DANIEL ZWANZIGER 17

ing the Gupta-Bleuler condition can be obtained from
the vacuum by applying a local operator constructed
out of A and ¥: D. Maison and D. Zwanziger, Nucl.
Phys. B91, 425 (1975).

*The corresponding statement has been conjectured in
QED; D. Zwanziger, Phys. Rev. D 14, 2570 (1976).

3H. Hertz, Ann. Phys. (Leipzig) 36, 1 (1888). It is given
in covariant form by A. Sommerfeld, Electrodynamics
(Academic, New York, 1952), p. 221.

“B. Schroer, J. Math. Phys. 5, 1361 (1964), Eqgs. (30)—
(39).

M. Froissart, Nuovo Cimento Suppl. 14, 197 (1959).

8Such models are reviewed by A. S. Wightman in High
Enevgy Electrvomagnetic Interactions and Field Theory,
1964 Cargése Lecturesin Theoretical Physics, edited
by M. Lévy (Gordon and Breach, New York, 1967),
pp. 171-291.

'R. Ferrari, Nuovo Cimento 19A, 204 (1974). Iam

grateful to Dr. Ferrari for bringing this work to my
attention.

8See R. Ferrari, Ref. 7 for a discussion of this point.

%R. F. Streater and A. S. Wightman, PCT, Spin and
Statistics and All That (Benjamin, New York, 1964),
p. 117 ff.

G, Rideau, Lett. Math. Phys. 1, 17 (1975), realizes
the Landau gauge by the method described here.

UK. L. Nagy, State Vector Spaces with Indefinite Metric
in Quantum Field Theory (Noordhoof, Groningen, 1966).

125 guitable convergence condition as photon number
n—» is required. For this the Hilbert-space norm of
the Appendix could be used.

13This coincides with “strict gauge invariance” as defined
by K. Symanzik, DESY Report No. T-71/1 (unpublished),
Eq. (6.23).

4% Strocchi and A. S. Wightman, J. Math. Phys. 15,
2198 (1974), Eqgs. (2.183)—(2.187). -



