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This paper studies the characteristics of an ultrarelativistic charged particle in a general, large-scale,

electromagnetic field, taking into consideration the effects of strong radiative damping. Formal solutions of
the Lorentz-Dirac equation in an arbitrary external field are given. They are applied to cases of
astrophysical interest. The final energy of the particle and the rate and characteristic frequency of the
radiation are derived.

I. INTRODUCTION

Recently there has been a resurgence of inter-
est in the electrodynamics of relativistic charged
particles in intense external fields. This was
prompted by a number of astronomical and labor-
atory developments such as the discovery of neu-
tron stars with a surface magnetic field as high
as 10"6, and the generation of transit magnetic
fields with strength up to a few MG by the flux-
compression technique.

In an earlier article' we studied the character-
istics of an ultrarelativistic electron in a uniform
magnetic field, taking into consideration the ef-
fects of strong radiative damping and quantum cor-
rections. In the present article we shall extend
our previous calculation to a general, large-scale,
electromagnetic field. Whereas the effort of Ref.
1 was aimed at obtaining results to test the validity
of the Lorentz-Dirac equation at strong radiation
damping in the laboratory, the practical purpose
of this article, in addition to obtaining a formal
solution to the Lorentz-Dirac equation, is to de-
termine the effects of radiation damping on the
acceleration and the radiation spectrum of elec-
trons in cases of astrophysical interest.

In Sec. I we review the validity. condition of clas-
sical electrodynamics. Quantum corrections and
radiation reactions are discussed. In Sec. II we
present a mathematical analysis of the Lorentz-
Dirac equation; formal solutions of the Lorentz-
Dirac equation in an arbitrary external field in-
cluding strong radiation damping are given. In
Sec. III the formal solutions obtained in Sec. II
are applied to a case of special astrophysical in-
terest: relativistic electrons riding with the low-
frequency wave emitted by a rotating neutron star.
The final energy, the radiation rate, and the
characteristic frequency of the electrons are ob-
tained and compared with results obtained by pre-
vious authors, assuming weak or no radiation re-
action.

In classical electrodynamics an accelerated

is the effective field which results in acceleration
perpendicular to the motion of the particle, which
is the main cause of radiation. The dynamics of
the particle's motion can be best summarized in
Fig. 1. Link 1 indicates the effects of an exter-
nal field on the particle; link 2 indicates the field
produced by the particle; and link 3 indicates the
feedback on the motion of the particle by the re-
sulting field. Thus classical electrodynamics con-
sists of two basic sets of equations. One specifies
the motion of the particle (represented by link l
and link 3), whereas the other describes the field
generated by the particle (link 2). The latter are
the Maxwell equations which have been firmly es-
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FIG. 1. Act~on and reaction on a classic point charge
in an external field.

charged particle radiates energy. In return, the
radiation affects the motion of the particle. The
radiation depends on the magnitude and direction
of acceleration but not on the specific cause of
acceleration. Thus analyses of the effect of radi-
ation reaction on a relativistic charge in a gener-
al electromagnetic field is parallel to that in a
pure magnetic field except to replace 5 by H*,
where

a*= p" E.H
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is the electromagnetic field tensor in frequency
units, &o, =3mc'/2e', and u„ is the four-velocity.
Equation (2) has often been referred to as the
equation of motion for a charged point particle,
but the arguments leading to this equation are not
without an ad hoc flavor. Dirac himself made the
point perfectly clear; at a crucial point in deriving
Eq. (2), he let a perfect differential B„e qulaku„
by the argument of simplicity and elegance. ' Thus
it is not surprising that over the years many new
inventions have been claimed on this fundamental
problem and several "new" equations have re-
sulted. In an earlier article' we have shown that
one of the proposed new equations of motion gives
the same observable results as that of the Lor-
entz-Dirac equation within the realm of classical
electrodynamics. We can now show that for any
covariant equation of motion satisfying the gener-
al conservation law

tablished both through experimental verification
and mathematical deductions. The opinion on the
former, the equations of motion, however, is much
more controversial. Acceleration by the applied
field (link l) can, no doubt, be represented by the
Lorentz-force equation, but expressions to des-
cribe the feedback from the radiation (link 3) often
lead ta difficulties, such as runaway solutions.
There is the so-called Lorentz-Dirac equation,
derived by Abraham, Lorentz, Dirac, and others,

equation is restricted only by the requirement
that quantum effects be negligible. For a radi-
ating charge moving in an external field, there
are, in general, two sorts of quantum effects.
The first effect is on the nature of the particle;
for equations of motion to be meaningful, the
de Broglie wavelength of the charged particle
must be much less than the characteristic wave-
length of the system, so that the charge can be
considered as a classical particle with definite
trajectory. In a large-scale field, i.e. , the scale
length of the inhomogeneity is large in compari-
son with the radius of curvature of the particle's
motion, this requirement can be expressed as

ymc'P 5
eH* ymcp (5)

For the highly relativistic case p-l, Eq. (5) re-
duces to

y'» H*/H„
where

H = m'c'/eK = 4.4 x 10"G.

(6)

The second quantum effect is on the nature of the
radiation; in classical electrodynamics an accel-
erated charged particle radiates continuously,
whereas in quantum electrodynamics the radiation
consists of discrete steps. A charge in an exter-
nal field drops to a lower energy state by emitting
a photon and it will stay in that state for a finite
time before making another transition to a lower
state by emitting a second photon. In order for
the classical description of radiation to be valid,
the effect of quantum recoil must be small, or
(fur), the average energy carried away by a pho-
ton, must be small compared with the energy of
the particle itself,

y 2eH*ymc'» P mc

8 Tuu pu (4)
or

where T is the total momentum flux tensor com-
posed of a parti~le term and a field term, the
discrepancy between the results derived from
such an equation and the Lorentz-Dirac equation
is smaller than the correction introduced by
quantum effects by a factor of a = e'/Kc =+, ,
Therefore we can now move one step further
than we had done in Ref. 1 to claim that, within
the realm of classical electrodynamics, the Lor-
entz-Dirac equation is "indeed" the exact equation
of motion for 8, point charge. Together with the
Maxwell equations, they form a rigorous base for
classical electrodynamics, one of the most beaut-
iful theories of natural sciences.

Therefore, application of the Lorentz-Dirac

ft, =F„/Fl= y'aH" /H„— (8)

one sees that for a relativistic charge the particle
can always be considered as a well-localized point
charge. The radiation process may need to be
treated quantum mechanically, but if y&137, it
is also possible to have strong radiative damping
with negligible interference from quantum effects.
The significance of radiation reaction and quantum

yH*/H, «1.
It is clear that for a highly relativistic particle,

Eq. (7) is a more stringent condition than Eq. (6).
Since in the classical Lorentz-Dirac equation the
ratio of the reaction force F„ to the Lorentz force
F~ is given by
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FIG. 2. Regions of applicability of different levels of
electrodynamics: {a)classical electrodynamics with
negligible radiation reaction, {2)classical electrody-
namics with strong radiation reaction, {3)quantum
electrodyn~mies. a, b, c, and d, represent four typi-
cal astrophysical situations: a represents the cosmic
ray electrons in the galaxy; b represents relativistic
electrons in the crab nebula; c represents the magneto-
sphere of a white dwarf; d represents the magnetosphere.
of a pulsar.

corrections on the motion and radiation of a
charged particle can be best described by the en-
ergy-field-intensity diagram presented in Ref.
1, which also indicates the validity domain of clas-
sical and quantum electrodynamics, with or with-
out radiation reaction. For reference purposes
a simplified version of this diagram is reproduced
in Fig. 2. In region 1 of Fig. 2, aykH»/H, «1,
classical electrodynamics is valid and the radia-
tion reaction is small. The Maxwell equations
and Lorentz equations adequately describe the phys-
ics. In region2, y'H»a ~H, &1andyH» ~H, &1, class-
ical electrodynamics is still valid but the radiation-
reaction force becomes stronger than the applied Lo-
rentz force. The physical equations of this region are
the Maxwell equations and the Lorentz-Dirac equa-
tion. In region 3, yH/H, &1, the energy carried
away by the emitted photon becomes comparable
to the energy of the emitting electron. Thus,
although the electron itself is still a mell-localized
classical particle, and its motion can still be de-
scribed by the Lorentz-Dirac equation, the radia-

tion process must be calculated quantum mechan-
ically, i.e., one has to calculate the spontaneous
transition rate from the Dirac wave equation to
determine the radiation rate and its spectrum.

II. FORMAL SOLUTION

It is not possible to solve the Lorentz-Dirac
equation exactly, since it involves cross products
of second-order differentials. However, within
the reals of classical electrodynamics this equa-
tion can be expanded in powers of y ',

u„=v, „u"—Eu„+o(y-'),

where

K = ((d„Q (d 8 y}/(doC

(9)

'-1. /a
n(r) I + 2((g ck)- ~ f l~kmf dr (12)

represents the damping effect.
Therefore, once the solution of the Lorentz

equation is found, at least a formal expression
(correct to the order of y ') can be readily written
down for the solution of the Lorentz-Dirac equa-
tion.

Let us consider the case of a constant electro-
magnetic field. Utilizing the fact that co„„is anti-
symmetric and u„N" is symmetric, and the pro-
duct of a symmetric tensor with an antisymmetric
tensor gives identically zero, we find

( (g f l ~k1llf ) 2 ~ f I ~ktllf 2 (gklllf f P

l.e., co»f '(d~ f is a constant of time. Therefore,
in a constant field

q(v)=[1+2((o,c') 'co f'&ok f r] '/' (12a}

is the radiation reaction.
The derivation of Eq. (9) is given in Appendix A.

It is important to point out that in deducing Eq (9).
no approximation has been made on the magnitude
of the damping forces. The only requirement is
yH»/H, «1, which limits the validity of the Lor-
entz-Dirac equation. Since the ratio of the damping
force Eu„ to the Lorentz force cd„„u" is of the order
of R, ~y'aH»/H„ it is possible that It, is great-
er than unity, even though yH»/H, «1. Refer-
ring to Fig. 2, Eq. (9) is applicable to all
classical domains, including both region 1 (weak
damping) and region 2 (strong damping).

It can be easily verified that if the four-vector
f„ is a solution of the reactionless Lorentz equa-
tion f, = &a,„f", then

s„(v) =n(r)f„(r)
is a solution of the Lorentz-Dirac equation in the
form of Eq. (9), where
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and u„can be explicitly expressed in terms of

[1+2(&o,c') 'or~,f 'v~f r]'~' ' (14)

Although the remarks made above are derived
for a constant electromagnetic field, they are
also applicable to a slowly changing inhomogeneous
field. In general, if (d„„ is small but not zero,
one would have

The radiation effect K(7), which is generally given
by

K(r) = q'(u" f g/&u, c',
now reduces to

K(o)K('-1.2K(o). (16)

where K(0) represents the radiation effect at r =0.
Two interesting physical implications can be

readily drawn from Eq. (16):

q= 1+2(&o,c') '(&u~, f'ur' f„},~

where

(f )
1f

(21)

aa+
H~ 22ex

F (r}=
I &,.u" I=I",.f"I/[1+2K(0}r}'"

F.(r}= IKu. I =1K(0)f.l/[1+2K(0)r]"'

(18)

(19)

(1) Radiation from a relativistic electron de-
creases with time.

The timelike component of the Lorentz-Dirac
equation gives the radiation rate

c
dW =/me'.

Radiat ton

Since K=K,/(1+2K, r), one sees that the radiation
rate is a monotonically decreasing function of
time. This is true even for cases where the part-
icle is being accelerated (in a cross field, for
example). This is because, although the radiation
rate is proportional to the square of the particle's
energy, the field always orients the direction of
the particle's motion fast enough to diminish the
radiation rate.

(2) Relative influence of the radiation damping
force on a relativistic charge also decreases with
time.

Owing to the fast orientation of the particle's
motion by the field, both the Lorentz force F~
and the damping force F„decrease with time,
but

Thus in a slowly varying field, where the effective
Larmor frequency is

eH*
v* = » any other frequency,

ymc

and the effective Larmor radius is

ymc'r* = — «any other length,eH*

the expression K(r) =K(0)/[1+ 2K(0)r] still holds.
To compute u„, one needs to find f, first. For

a charged particle in a constant electric and mag-
netic field this has become a standard textbook
exercise. ' The usual procedure is to solve the
Lorentz equation in a reference frame moving
with a velocity p = (1+p') [h x H/(E'+ fP)] relative
to the given frame, in the new reference system
the electric and magnetic fields are parallel and
the solution can be easily obtained. Transforming
back to the original frame gives the trajectory of
the particle in parametric form. Not only is the
process tedious in such an approach but the solu-
tions also look rather clumsy. A more elegant
method for obtaining formal solutions to the Lor-
entz equation is to utilize projection operators.
In general, the Lorentz equation can be written
as

and their ratio is f.=e"'"'f (0} (23)
F„(r) F„(0)

( ) F (0) (1+ 2K, r) (20)

Thus the effect of radiative damping (as measured
by the relative strength of the damping force to
the Lorentz force) is also decreasing with time.
Since within the realm of classical electrodynam-
ics R, /y must be smaller than+», a particle which
starts at rest in a field of strength less than 4.4
x 10"G will never encounter strong damping (i.e.,
F„&F~), even though it later may be accelerated
to a very high energy.

where &u„„ is the matrix operator and f„(0) is the
initial value of f„.

Equation (23}has the same form as the trans-
formation of a vector f„(0) in the four-dimension-
al space, with ~„„as the transformation operator.
Following a proof first given by Rosen' for a Her-
mitian matrix, one can easily show (see Appendix
B) that if the eigenvalues G, of ~,„obey the char-
acteristic equation

4

g(~„„—G I) =o, (24)
jul
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f. = e"""'f„(0)= ge'/'P, f„(0), (25)

where I is the unit matrix, then one can express
the transformed vector f„ in terms of a complete
set of projection operators and its appropriate
eigenvalhes:

ly be deduced directly from u„without further in-
tegration. Since characteristics of the radiation
depend only on the magnitude and direction of the
velocity and acceleration but not on the specific
cause of acceleration, and the four-acceleration
of a charged particle in an electromagnetic field
ls

where

(26)

are the projection operators.
Direct computation gives the following eigen-

values for the matrix co„„:

-A + (A2+ 4Ha)a/2-i/2
G =+

mc 2
(27)

u„(r) =Q ec/'q(r)P/u„(0), (29)
fA

where G/, q(v'), and P/ are given by Eq. (27),
Eq. (12a), and Eq. (26), respectively. The special
case where E and H are mutually perpendicul. ar
and equal to the above expression is not applicable,
and the correct solution is given by multiplying
Eq. (28}with q(v).

Quantities of astrophysical interest, such as
the radiation rate, the frequency spectrum, and
the energy change of the particle, etc. , can usual-

where A =E' Han-d 8 =R ~ H are the two invari-
ants of the field tensor. Hence, unless A and B
are both zero (in which case, h and H are equal
and mutually, perpendicular}, all G,.'s are distinct.
Substituting the values of G/ from Eq. (27) into
Eq. (24) shows that &u„„satisfies the characteristic
equation. Therefore, except for the case where
R and H are perpendicular and equal to magni-
tude, solutions of the Lorentz equation are
given by Eq. (25). In the exceptional case R
perpendicular to 5 and ~X ~=~H ~, the solutions of

f, are particularly simple. Choosing the x axis
along 0 and the y axis along H, we have

f,(r) =f,(0) + no(u//T ~

f.(&) =f.(0),

f, (v) =f,(0)+f,(0)&s„r+-,' n, (~sr}2,

f,(v) =f~(0}—f, (0)(u„v ——,'no((o„r)',

where n, = —[ f~(0)+ f,(0)] and ar„= eH/mc = eE/mc.
[Equation (28) differs slightly from the solution
given in Landau and Lifshitz, where the authors
have implicitly set f,(0} equal to zero. ]

Therefore, in a constant field the general solu-
tion of the Lorentz-Dirac equation, correct to the
lowest order of y ', is given by

2

~u„~' =,~ [(u x H+E)' —(E u)'],

formulas for quantities related to radiation can
be readily obtained by replacing x H with

[(tI x H+E) —(E ~ p) ]'/' (or H by H* if one neglects
y ' terms) in formulas for synchrotron radiation
derived in Ref. 1. These are summarized below:

1. The radiation rate. The radiation rate is
given by

dS'
=(m~, ) &u„„u"&u uq(

p jib

Radiation

C
y'[(P x H+ E)'- (E ' P)'1'

(20)

it is not affected by radiation reaction. Physically
this is because the forces exerted by radiation
reaction are parallel (and opposite) to the direc-
tion of P. The radiation generated by the force
which is parallel to the velocity is a factor 1/y'
smaller than the radiation generated by the force
which is perpendicular to the velocity. Since with-
inthe realm of classical electrodynamics the ratio
of the damping force F„ to the Lorentz force F~
is R, =(yn}(yH*/H, )«yn, the modification on the
radiation rate by radiation reaction is in general
smaller than (ny) ' unless the perpendicular ac-
celeration is identically zero. En that case, both
Fu and F~ are parallel to P, but then the ratio
FR/F~- &o „/&o, - nH"/H, «1. The effect of radia-
tion reaction on the instantaneous radiation rate
is again negligible.

Z. The radiation sPeetmm. The standard form-
ula for the radiation spectrum of an accelerated
charged particle in units of energy radiated per
solid angle per frequency interval is

2 00 2
I(m) = + n x (n x p) exp[i&@(t —n ~ r/c}]dt

&00

The integrat;ion over time covers the whole
duration of particle's acceleration. For cases
where particles lose energy rapidly, the char-
acteristic of radiation may change significantly
within the period of observation, then it is more
meaningful to find out separately the instantaneous
power spectrum and (he cumulative spectrum.
The instantaneous spectrum
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I(e, t}= + [nx(nx p}jexp[t&o(t' —n r/c)]dt'
e'oP

Xr Sn'c
(33)

where b T is chosen such that AT» u& ', but
~
dP/

dt ~b T/P«1, a condition which requires the ener-
gy change of the particle within one period of the
wave to be negligibl. e. The cumulative spectrum
integrates I(&u, t) over the observation time T (or
the time the emitting particle stayed in the ob-
servation region if it is shorter than T),

(33)

which is given explicitly by u„. The instantaneous
radiation spectrum is similar to the ordinary
synchrotron radiation, which has a maximum at
-0.3',. Below 0.3', its intensity varies as co' ',
where above 0.3w, it drops exponentially as
-&u'~' exp(-3u)/3(u, ).

In Sec. OI we shall use the general formulas
obtained in this section for practical applications.
However', one must be cautious about the validity
limit of those formulas. For example,

u„u" =f„f"q'(7) = -c'n'(7), (35)

which apparently violates the requirement

Q 'M = —Cp 2

'Ihe explanation is that Eq. (36) is an exact re-
sult, where u„, given by Eq. (11) is derived from
Eq. (9), which has neglected higher-order terms
in y ', thus u„ is correct only to the lowest order
of y '. Since u„-yc, the lowest-order term of
z„z" should be proportional to y'c, which van-
ishes as expected. The discrepancy between Eq.
(35) and Eq. (36) is introduced by the neglected
higher-order terms (although it appears as a con-
stant). One should keep in mind that the u„derived
in this article is correct only to terms propor-
tional to y.

where I(+,t} represents the spectral distribution
of radiation emitted at the instant t. Modifica-
tions by radiation reactions on 1(&g,t} are only of
the order y '. I,(oo) represents the observed spec-
trum of radiation. At strong radiative dhmping,
I(&u, t) changes rapidly with time; then the cumula-
tive spectrum I,(~) differs significantly from the
spectrum when radiation reaction is neglected.
(See detailed discussion given in Ref. 1.} Both
I(ur, t) and I, (&u) have been evaluated numerically
for a constant magnetic field in Ref. 1. For prac-
tical application in astrophysics, it is usually
good enough to know the critical frequency

co, =iuxui

= y'i p x (E +p xH)
~ e/mc, (34)

III. AFFLICATIONS

Then the four-velocity is given by

(ufo + ~oc&xX)}

Q2 —Q2P7/

(38a)

(38b)
2 2

Qpc&z X 9 y

2 2
0 1 X -1 (38d)

Zf3 =
Msp + M gp(d j )(' +

cdt
M4 = — = @40 —Qg 4)

T 0 1

where

z"dv, Z=z z» (38e)

q = 1+2KQ z'"dg (38f)

In Sec. II, solutions of the Lorentz-Dirac equa-
tion and quantities of physical interest are given
in parametric form. In order to compare with

observation one needs, however, to eliminate the
parameter v. and express them in ordinhry time.
The procedure is straightforward but laborious,
and it often leads to numerical instead of analyti-
cal results.

Let us choose a cross field as an example for
detailed study,

E =H(z)(1, 0, 0),
H =H(z)(0, 1,0),

where H(z) takes the form of Ho(z/zo)", and Ho and

z, are constant. Mathematically simple, the case
of the cross field offers the best possibility to
illustrate the subtle points of strong radiation
damping when a particle is being accelerated. It
is also of prachcal interest since particles which
enter a wave of large amplitude and low fre-
quency often lock themselves up with the wave
and see a nearly static cross field as it moves
along in phase with the propagation of the wave. "
Thus in the laboratory, as well as in cosmic
space, there are many cases resembling a charged
particle in a cross field. The characteristics of
motion and radiation of the charged particle in
the field are determined by the strength and the
scale length of the field, which, for convenience,
can be specified by the following two parameters
in frequency units:

eHQ
Q)g =

mc
c

472 =
zo
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o'0 ='ro(1 Pso}

2 2 1
KQ = QQ (l0$ QPQ

(38g)

(38h)

IO"-

IO

and the subscript 0 denotes the initial values of
u at Z =1 and 7 = t =0. Since y is an increasing
function of time, the particle moves mainly
along the z direction after a characteristic time
of the order y&1 Pl 0 corresponds to a con-
stant cross field, which is a field the charge would
see if it rides with a plane wave. In this case y
and v, and the integration of Eq. (38) gives

Io

to

N IO6

IPS

IO4

Ip3

w, t=a, g +a,g +a,g +a4,5 3 1

where

(39)
Io

2

Z

NQC01 C

4OZ'' '
0

2
QQ(a) 1

2 6g 5 10 2g0 0

2
(dl ulo(d1 ep(d1 C

3 ~ 40 2~ 8g'0 0 0

2
u104) 1 QPC01 C

3Z, i' '

(39a)

(39b)

(39c)

(39d)

FIG. 3. Energy change cg a charged particle in a con-
stant cross field.

(ii) ~,7'«l. In this long-time limit Eq. (39) re-
duces to

1/2~5/2
1 0

Kpt =ypT 1 — ~10 C01T+ '
2(d

%e have the energy change

r(t) =ro+(P»0/x-Ko)t

the radiation rate

(40)

(41a)

With the help of Eq. (39), s. can be eliminated from
u„and other relevant quantities. The asymptotic
behavior of these quantities at short- and long-
time limits are as follows:

(i) &ov'~1. In this limit Eq. (39) reduces to

and we have the energy change

r (t) (~,/0/, )"—(~,t)'~,

the radiation rate

=(&o'&u )' '(ao t) ' 'mc'dW
1 0 1

rIIid

the critical frequency

—(~ ao: 5)1/5(~ t)2/5~

the parallel velocity,

P, = (~./~, )"'(~, )'t",

(43a)

(43b)

(43c)

(43d)

=Kmc' =Kame'(1 y, 'K, t)-,
r~

the critical frequency

(t) = ooyo&os(1 + Pxoro Alt)

the velocity parallel to E

(41b)

(41c)

Pl P» (1 Pso P)r»o 0/lt (4 ld)

and the velocity perpendicular to both E and H

Ps = Pso+(&OP&0/yo)yo &st ~ (41e)

Equation (41) indicates, as expected, that within
the time t & yp&

' the energy change of the particle
consists of the gain (or loss) from the work done
by (or against} the electric field [the P»&u, t term
in Eq. (41a)] and the loss through radiation [-Kg
term in Eq. (41a)]. 'Ihe radiation rate decreases
with time where the critical frequency increases
and the particle is being forced to move along the
z direction.

and the velocity perpendicular to the electric and
magnetic field

P, =1 —((d /(d }' '((d, t) ' '. (43e)

y o 1/s(~ t)2/s

the critical frequency increases as

(44a)

All numerical factors of order unity are omitted
from Eq. (43}.

Equation (43) indicates that after a time t
&(u&our, ')' 2 =Ra 'y&o, ', the characteristic of the
motion and radiation of the particle are indepen-
dent of the initial conditions but are determined
by the competition between the radiation and the
work done by the field. The energy of the particle
keeps on increasing as t' ', where the radiation
rate drops as t '. The trend of the variations
is not much different from that when radiation
damping is neglected; there the energy increases
as
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&O -a 4/3(&0 t)3/3

the radiation rate remains constant,

=E,mc' = const,(
dE
dt

(44b)

(,44c)

P
—o 1/3(~ t) 1/3 (44d)

and the two velocity components are, respectively,

age of the particle through the field occurs in a time
which is short compared to the "orientation time, "
i.e. , the time needed to align the particle's motion
along the direction of minimum perpendicular
acceleration. In the present case, it is (ur, /u&, 3)'/3.

It is revealing to consider the ratio of the radia-
tion power Kmc' to the rate of the work done by the
field (eR ~ v). When both the damping and the Lor-
entz forces are included,

P 1 ~ 3/3(~ t) 3/3 (44e}

One of the main distinctions is that, neglecting
radiation reaction, the characteristics of the par-
ticle's motion are determined by the initial value
of a, =y, (1—P»), where at strong damping the
initial value plays a small role. (See Fig. 2.)

It is interesting to see that the results obtained
here take exception from a conclusion proposed by
Pomeranchuk. As restated in Landau and Lif-
shitz, 4 Pomeranchuk observed that the damping
force, being proportional toy', becomes the main
force acting on the particle in an electromagnetic
field when the energy of the particle becomes suf-
ficiently large. In this case the Lorentz force is
negligible and the change of the particle's energy
per unit length can be equated to the damping force
alone. Therefore, there is a constant limit y, on
the final energy of the particle after passing
through a general electromagnetic field. The up-
per bound of the energy is given by

00 ~1

y, = gz dz

where

and the integration is performed along the path
of the motion. The apparent discrepancy between
our result and that of Pomeranchuk originates
from the fact that the damping force not only de-
pends on the square of the energy of the particle
but also on the angle between the particle's motion
and the field. Being forced by the acceleration
and deceleration due to the Lorentz and the damp-
ing force, the particle tends to align itself to have
minimum perpendicular acceleration. As shown in
Eq. (20) of Sec. II, in a large-scale field the ef-
fect of the damping force (relative to the Lorentz
force) is a monotonically decreasing function of
time. Thus, even in a case where the radiation
damping is indeed the main force when the particle
first entered the field, the Lorentz force will even-
tually overtake the damping force. It is not justi-
fied to neglect the Loreatz force in the calculation
of the final energy of the particle unless the pass-

(dW/dt}, ~ n(0,3(u, 'mc 1
(dW/dt) „„&d1,p,mc' 4 ' (46}

i.e., three quarters of the work done by the field
is absorbed by the particle, whereas only one
quarter of the work goes to radiation. When the
effects of the Lorentz force on the particle's mo-
tion are neglected

(dW/dt), »
(dW/dt) „3 (47)

so all the work done by the field transforms to
radiation with the energy of the particle remak-
ing constant. On the other hand, if the damping
effects of radiation are neglected,

(dW/dt), » 5/3 1 11/
(dW/dt)

(48)

1/a
q(r) = (1 ~ 2K, f 3 'dr (49)

Normally as &o,y»1, 2K, J Z 3dv becomes large
and the unity term in 3i can be neglected (this is al-

This is because the work done by the electric
field diminishes as the cross field forces the par-
ticle to move in a direction perpendicular to R
and 5, but the radiation rate remains constant
because the effect due to the increase of the energy
balances that due to the decrease of the perpen-
dicular acceleration. Since Eq. (48) indicates that
the radiation loss exceeds the work done, one
would expect the particle to lose energy. The root
of inconsistency between Eqs. (48) and (44a) orig-
inates from the fact that the energy is not con-
served in the framework of the Lorentz equation
and the Maxwell equation.

Next let us consider the case of n =1, which
corresponds to the case of a charged particle
carried by a spherical wave. The four-velocity
is given by Eq. (SS) with X = J Z 'dv. The short-
time (10,X«1) behavior of 35„ is similar to that
of the n =0 case, for the particle hardly travels
far enough to feel the gradient of the field. The
long-time behavior, though, is quite different.
The cumulative radiation-reaction effect on the
motion of the particle is represented by the
2K, JZ dr term in
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ways true in the case of a constant cross field},
but because of the inverse-square power of Z in

the integral, for a certain initial condition [as we

shall show, it is (2, & ((d53(d» 5(d2')(/5] 2K5 J Z 2d7'

can be small even at v, )t » 1. (Decrease of the
field intensity along the Z axis coupled with the
forced orientation of the particle's direction of
motion limited the effect of damping. ) Thus,
even at e,x» 1, one could have small cumulative
damping,

I OI I

}OIO

9

ip

N (p6

)p5

}O4

damping

damping

g =-1+K0 g 'dV'=1. (5O)
l05

r(z) = r, —(2,'((d, '/(d. ~.),
where

y, = [(2,((d, /(O, )']"',
the radiation rate is

(5la)

(51b)

It should be emphasized that large and/or small
cumulative damping are not the same as strong
and/or weak damping. The latter is determined
by the ratio of the reaction force to the acceler-
ating Lorentz force and specified by the param-
eter R, =y2(d„/(d„where the former is determined
by the cumulative radiation effect over a distance
l and specified by (ysr„2)(I/c(d, ). One could have
strong damping along a part of the passage but
still come out with small cumulative damping; the
converse is, of course, also possible.

For practical purposes it is usually more con-
venient to find u„and relevant quantities as a func-
tion of Z instead of t. Since no matter what the
initial direction of motion is, the particle soon
orients itself to moving along the Z direction,
this purpose can be achieved simply by replacing
t by s/c in the long-time limit. When the cumula-
tive radiation-reaction effect is small, we obtain
from Eq. (38) that at Z» 1 the energy changes to

}p2

FIG. 4. Energy change of a charged particle in a cross
field which varies as Z ~.

cumulative damping is large or small depends on

whether the initial value u0 is larger or smaller
than the critical value (2, = (((),3&u2/(d, ')'/'. Similar
to the case of constant cross field, when the damp-
ing is significant, the asymptotic behavior of these
various quantities does not depend on the initial
condition of the particle but is determined solely
by the intensity and the gradient of the field. On

the other hand, because of the weakening of the
field as the particle moves along the Z axis, the
final energy of the particle does approach a con-
stant as it moves into a weaker and weaker field.
(See Fig. 4.)

The above analysis can extend to cases of arbi-
trary n to obtain asymptotic solutions. From Eq.
(38}we have at the long-time limit

(2,((u, /(u2}2( fy 'Z"dZ) '
2[1+2(K5/(A)2} f y 'Z'"dz]'/'

and the critical frequency is

(2 5/3(~ 5/~ 2)1/3Z 1

(5lc)

(51(i)

n& -1,
n&

where

At negligible damping Eq. (53) gives

91/3 z2(3%)/3
Yg

(54)

On the other hand when the cumulative damping
effect is large, we have, at large Z, the energy

2" j./3
0 j.

2(n+ 1}' (55}

y (+ 2+ /~ 3)1/5 (52a) With significant damping Eq. (53}gives

the radiation rate

(+ 2+ 2~ 2)1/5Z 2~C2
(
dW
dg 1 0 2

rad
(52b)

y f, (n}, n&-1

y(Z) = r, f,(n)Z""""'

f ( )Z(2 +3)/5

-g &n& -1,
1n& -g

(56)

and the critical frequency

(d =((d 3(d '/(d ')'/'Z ' (52c)

From Eqs. (38) and (51), we see that whether the

where yz=((d, 2(d, )'/2 and f,(n), f,(n), and f,(n) are
functions of n with values of the order of unity.
Therefore we arrive at the general conclusion that
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y =y, [1—(n, /n, )"'], (58)

where

y g[n (~ /ar )']' '=10'n ' ' (59)

in Eq. (58) -(a,/n, )'~' represents the damping
effect.

If a, /a, &l, thedampingforce dominates the mo-
tion of the particle at first but is diminished to
equalize the Lorentz force at an energy,

y = n = ((o &o /&o ')' I ' = 2 x 108 (60)

There are two other quantities of astrophysical
interest, the total energy converted from the low-
frequency dipole wave to the high-frequency radia-
tion by an electron before it reaches the outer

in a cross field of equal intensity, the energy of
the particle approaches a constant if the field drops
faster than Z ', and the energy of the particle in-
creases indefinitely otherwise.

One of the more interesting applications is to ap-
ply the above analysis to the acceleration and ra-
diation of electrons in the wave zone of a pulsar.
A pulsar is a magnetized neutron star which ro-
tates like a giant dipole generating very intense
electromagnetic waves with frequencies equal to
the rotational frequency of the star. Protons and
electrons streaming out from the magnetosphere
of the pulsar are swept up by the wave at the base
of the wave zone. As the particles ride with the
wave to the outer nebula they see a static corss
field similar to that given by Eq. (SV} with n = -1.
Gunn and Ostriker showed that if radiation from
the accelerated charge can be neglected, a particle
injected into the wave zone with an initial condition

a, will be accelerated to [n,(&u, /&u, }']'~'with &o, as
the frequency of the rotation. Later publications'
have included radiation as per turbations. How-

ever, the radiative damping parameter 8,
=y'&o„/v, can be very large for relativistic elec-
trons, for example, ~, for an electron =5X10 '
sec ' at the base of the wave zone of the crab pul-
sar. Therefore it is essential to take strong radi-
ation damping into consideration in the study of
electron accelerations. It should also be noticed that
a, = 2x10' sec ' for the crabpulsar, hence', /~,
= 10~ and the y = (m, /m, )f (yZ) 'dZ» 1 approxima-
tion is valid even for very-high-energy electrons.

Let us use co, = 5 x 10" sec ' and ~,= 2 x 10' sec '
in the formulas obtained in Sec. II to illustrate the
physical picture expected in the wave zone of the
crab pulsar.

If at injection the momentum of the particle is

n & n =((u '(u '/(o ')' '=2x10', (57)

and radiation damping is only a small perturba-
tion, the particle will be accelerated to

nebula, and the spectrum shape of this radiation.
The radiation rate of the accelerating electron at
~ is given by

2

n.«a,2 ~i &o

dE ~o

dt r
ll

-(&u '&u (u ')'~' ~ mc', n, » a, .
(61)

Thus, the "up conversion" of the energy from
the very-low-frequency wave to radiation well
extended into the x-ray range by a single electron
as the particle rides the wave out to the nebula,
ls

sZ= — dt

(n, (o, /(u, u), )mca, a, & n,

((o,'~, /(o, ')'~'mc', n, )n, . (62}

The frequency distribution of this radiation is
given by f(&u} = ff,(~, r)dr, where I, is the instan-
taneous radiation spectrum at r. Because I,
peaked at a critical frequency ar„which is in-
versely proportional to y, and because the inten-
sity of I, is inversely proportional to the square
of y, we find that

(1v)=( a'&o /&u &o ')' 'mc

and cut off at n,' '(&o '/&o ')' 'for n, & n„
(63)

I(&u) =~((o (o '&u } ' 'mc

and cut off at (&o,'ur, '/&a, ')' ' for n, )a, .

In conclusion, the final energy y, the radiation
rate (dE/dt), ~ and the characteristic frequency
~, of a relativistic particle moving in a cross field
varying as Z " are determined by three param-
eters: ~„ao„and ~„which characterize the
fundamental frequency of a free electron, the
strength of the field, and the gradient of the field,
respectively. In the limit

(u, =, =1.8 x 10" sec '»(o, = '»(o, = c/Z„
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(64)

explicit expressions of y, (dE/dt), ~ and ~, can be
derived; they are given in this section. For astro-
physical applications (a pulsar's magnetosphere,
for example) Eq. (64) is usually satisfied.
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APPENDIX A

We want to show that within the realm of class-
ical electrodynamics the Lorentz-Dirac equation
for an ultrarelativistic particle can be expressed
as

u„= a&~ u" —Ku„+ O(6), (Al)

where

+-M Cd u (0" u0 y& k

is the radiation reaction and

5 = y(d „/(do

(A2)

represents the ratio of the reaction force to the
Lorentz force in the rest frame of the particle.
For classical electrodynamics to be applicable,
6 must be smaller than e'/kc =,—,', .

Equation (Al) is not a new res~ult. In Landau
and Lifshitz it is derived by substituting

~.

u =cd~u' (A4}

Hf =y(H, +PE,), E,'=y(E, —PH, ),
H,

' =y(H, PE,),-E,'=y(E +PH ),
E& —E

(A5)

into the damping term ~, 'u" u„u„. Although later
on the authors explain that this result is valid
even, at strong damping, the proof itself is not
satisfactory at that limit, since when the damping
force dominates the Lorentz force, Eq. (A4) is ob-
viously incorrect.

A more rigorous derivation can be achieved by
recalling that u" u„ is a four-scalar. Thus u" u„
measured in the laboratory must be equal to that
measured in the instantaneous rest frame of the
particle. Let us choose a Z axis along the in-
stantaneous direction of motion; the fields in the
rest frame are

Transforming back into the laboratory frame
gives the Schott term

~, 'u„=O(6/y). (A9)

APPENDIX B

We want to show that if G& are eigenvalues of
&„„ then the solutions of the Lorentz equation are

f„=~„.f" (Bl)

Equation (Bl) can be expressed as
4

f„= Z &'~&,f. (0),
f=x

where
4 „„-G,I

lAg Gf Gl

(B2)

(BS)

are the projection operators. This follows di-
rectly from a proof first given by posen'for finite
transformation in SU(3) space. Let

f= (f„f„,f.) (B4)

be an n-dimensional vector and &„„bean n && n
matrix with eigenvalues G„G„.. . , G„, where

tl

g(~„„—Gi I)=0. (B5)

Therefore, the Lorentz-Dirac equation can be
written as

u„=~„„u"—Ku„+ O(6)+ O(6/y) .

The ratio of the damping force to the Lorentz
force is given by y5= y'&u„„/&u, except for cases
where p x (E+ p x H) vanishes [i.e. , (E, —pH, )
= (E, + PH, ) = 0 in (A7), e.g. , accelerated by a pure
electric field along the field line); then the damp-
ing force is proportional to &u /&o~.

In the rest frame the four-accelerations are

u'„=(ar' u'"+O(6),

where

(A6)

When G& are all distinct we can define a projection
operator

4 „„—G, I
G& —G

hence

=(0, 0, 0, 1);

~ ~ ~ 0

u u" =u'u'"

e [y'(E, —PH, )'+ y'(E, + PH, )'

It follows from Eq. (B5) that

Pz&„„=(d„„P&=G~P~, no sum over j
hence

P)P, —P,P) —6), P) .

(B'7)

(B8)

+ Es') + 0 (6}

= ~„„u"&u" u q+ O(5) . (A7)

Also, by using the partial-fraction decomposi-
tion of the inverse of g~, (&u„„—G,) as a formal
identity, one can prove that

T'he time derivative of the four-accelerations is
also a four-vector P~=I . (B9)

u' =M' (d 'u'j (Aa) Thus P& form a complete set of projection oper-
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ators, and it follows immediately from Eqs. (B7}
and (B9) that

can be written as

(B11)

e"»'f „=g eo& p, f . (B10) f„=e"» 'f„(0). ( B12)

Since in operator form the I orentz equation
Equation (B2) is the general formal solution of
(B11}.
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