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Hypermomentnm in hadron dynamics and in gravitation
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The infinite unitary irreducible spinor representations of the SL(3,R) algebra of hadron excitations are
embedded in a global GA(4, R) with intrinsic dilation, shear, and spin pieces in its hypermomentum current

(i.e., the affine generalization of angular momentum). Vixen gauged over a space with a local Minkowski

metric, GA(4, R) reproduces the metric-a8ine theory of gravity, in which the intrinsic hypermomentum is

coupled to the connection, and the energy-momentum to the tetrad.

the components of N as ladder operators') were
interpreted as bands of L excitationg superimposed
on the total quark spin, thus somewhat resembling
the observed structure of the Regge trajectories.

Some further physical understanding of the orbi-
tal N operators is provided by their nuclear ap-
plications. ' These involve a computational ap-
proximation in which one assumes that the spatial
charge distribution is the same as that of mass.
The band structure appears to fit observations
roughly, but the commutator is far from saturated
by the l.ower states, a fact which is possibly due
to the approximations. ' For hadrons' the algebra
reproduces the Chew-Frautschi plot' I.= z+P E'
asymptotically (i.e. , for large 1.), and using the
same approximations as in the nuclear case,
yields plausible values for the electric radii.

The above scheme involves an "orbital" inter-
pretation of the generators of SL(3,R). The N
generate (volume-preserving) shear strains. The
operators L and N correspond to orbital hyPer-
momentum charges [see Eq. (3.10) below]. Some
of the experimental evidence seems, however, to
call for direct J excitations. If one plots the
most recent mass-squared values of hadrons'
against their spins, then in the corresponding
Regge trajectories of given parity there seems
indeed to be a 6J=2 rule at work. " The reason
for the orbital interpretation of the SL(3,R) gen-
erators in DGN was chiefly that no half-integer
representations of SL(3,R) were known at that
time It is ea.sy to see that SL(3,R) has no finite-
dimensional half- integer representations, since
the fundamental triplet representation has I = 1.

The unitary infinite-dimensional irreducible
representations of the principal series for
SL(n, R) were described by Gelfand and Graev"
in a functional form that is inappropriate in the
present context. One of the authors enlisted the
help of Joseph who proved~ that there exists a

I. THE SL(3+) ALGEBRA OF HADRON EXCITATIONS

It was suggested by Dothan et al. ' (whom we re-
fer to as DGN) that if" long sequences of
fairly mell-defined levels should emerge from an

experimental study of baryons and mesons, one
might very well wish to describe them by means
of a noncompact algebra, *' and that the excitations
involved might be related to stresses causing de-
formations in an extended structure. The rota-
tional bands in deformed nuclei with 6J=2 were
cited as analogous: The appropriate algebra here
is the Lie algebra of SL(3,R), generated by the
three orbital angular momentum operators and by
the five time derivatives of the energy quadrupole
operators, which generate shearlike deformations.
It was suggested that a b J=2 relation for th~
Regge trajectories' could arise from a similar
mechanism. In the study of extended structures
the notion of infinite trajectories generated by
noncompact spectrum-generating algebras (SGA)
has since been further exploited in other direc-
tions, for example in dual models and strings. '

The model presented in DON will be briefly
summarized: The generators of SL(3,R) consist
of three angular momentum operators f gen-
erating the compact SO(3) subgroup, and five non-
compact generators N, which transform under
SO(3) as ant=2 representation. Thus, the N
connect different SO(3) representations at hJ = 2
intervals. In DGN, f was taken to be L, the
"intrinsic" quark field orbital angular momentum,
defined Sy L =2 —5 where j is the total rest frame-
angular momentum of a hadron and S the total
quark spin fd xq oq (the operators q o q
=qy y~q are in principle observable, since their
matrix elements occur in Gamow- Teller weak
transitions). The infinite-dimensional unitary
representations u„(L =0, 2, 4, . . . ) and a,(I,
=1,3, 5, . . . ) of SL(3,R) (obtained by the action of
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II-. THE GENERAL AFFINE GROUP GA(4+)

This group is the semidirect product of the
general linear group GL(4, R) and the transla-
tions V'. Its Lie algebra is defined by the commut-
ation relations

[f f el =o

[f ' f,'1=5 'f„' —5,'f '

[f f)']=5 'f) ~

(2.1)

half-integer representation S,p, (f= —,', —',, . . . ) but

that there is no multiplicity-free I),/, representa-
tion. The theory was further developed by Bie-
denharn etal. ' andbyogievetskii and Sokachev", who

supplied a refined construction of X)y/2 Re-
cently, one of us~ gave a detailed discussion pf
the bivalued representations of the group of gen-
eral coordinate transformations also from a
topological point of view.

Having thus reviewed the fundamental importance
of the SL(S,R) transformations for hadronic mat-
ter, we combine it with scale and Poincare trans-
formations, thereby arriving at the general affine
group GA(4, R).

with a completely symmetric set of s ——,
' tensor

indices and a single Dirac index, satisfying cer-
tain identities coming from the subsidiary condi-
tions of the field equations. In momentum space,
g is obtained from the 5), /, representation of the
subgroup GL(S, R) of GA(4, R)." The compact
generators ft„„i (p, , v= 1, 2, 3) will be direct sums
of spin matrices. The dilation operator f~ will
also not connect. different spins, while the non-

compact generators f&„„& —,'5„,f~—~ will connect
spin s with spin s+2. That is, we extend the
little group 80(3) of g, generated by f&&„&, by

introducing six extra generators. When dealing
with lightlike momentum, GL(3, R) would arise
from a similar extension of the null-plane little
group E, of t.

Equation (2.2} is interpreted as follows: While
remaining within the context of special relativity,
we have introduced an algebraic structure super-
imposed on Poincare invariance, as in the cases
of dilation invariance and spin independence. In
all these cases, the algebraic structure has a
dynamical origin (e.g. , asymptotic freedom in

quantum chromodynamics) and effectively en-
larges the material (Hilbert space} Poincard
group without affecting the geometry.

The affine group GA(n, R) can be derived by con-
traction from the semisimple group GL(s+ 1,R}.
The contracted group has (n+ 1)' generators,
n'+n of them generating GA(n, R) The .re-
maining n+1 (which we denote by e and e),
together with the translation generators f, gen-
erate an n-dimensional Heisenberg algebra
[f~, e ]=5„e, with e commuting with the entire8 8

contracted group. " %his derivation of the affine
group indicates that some of the Casimir opera-
tors and labeling characteristics of GL(5, R)
would be expected to be preserved in GA(4, R).

We now consider the infinitesimal action

III. THE CANONICAL HYPERMOMENTUM

CURRENT-INTRINSIC AND ORBITAL

Z,. ' =- Z5,. ' v'5, y-(»' = a. Z/5, y-). (3.1)

and that associated with GL(4, R) is the hyper-
momentum current"'"

We now consider a simple special-relativistic
Lagrangian model involving fields (or polyfields)
P, with Lagrangian density 2($, 8,$) and study
the Noether currents associated with the trans-
formations (2.1). The Noether current associated
with the translation subgroup is the canonical
energy- momentum

5/=X 8 @+X s(x 8„+f )P (2 2) jk A'jk+g jk
i i (3.2)

of the group GA(4, R) on fields p in a space-time
with a local Minkowski metric. The existence of
the metric singles out the Poincarb subgroup 5',
generated by f & si and f . For a tensor field P,
the f are simply finite-dimensional matrices.
To deal with spinor fields, we introduce the con-
cept of a polyfield. This is an infinite-dimen-
sional unitary representation of GL(4, R) con-
sisting of an infinite set of excited fermion fields

4 = 4i /2+' 4'5/a ' ' '

which consists of an orbital piece

and an intrinsic piece

The currents satisfy the conservation law

ajZ j=0j

and the quasiconservation law" "

(3.3)

(3 4)

(3 6)

where g, is a unitary spin-s representation of the
Poincard subgroup. The components of g, can be
characterized, for instance, as quantities g 8. . .

&,T, "= o, ' (i.e., Z, ' —o, ' -= s,a,. '"), (3.6}

where a, j is a symmetric tensor defined by the
response of the Lagrangian density to strain:
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x',.o, ' = 6Z —x'q(x'8(+ 6(') Z. (3.7)

The charges associated with the currents are
the momentum

I';=- d'x Z, ' (3.8)

and the total hypermomentum

(3.9)

consisting of orbital hypermomentum

A, ' =- d'x A;" = — d'x x'Z, '
and intrinsic hypermomentum

(3.10)

d x&; = — dxm (3.11)

[For an ordinary Dirac field, the quantities A'""'
are time derivatives of the energy quadrupoles.
Such an interpretation is no longer possible for
polyf ields. ]

Under the assumption of canonical equal-time
commutation relations for P, the intrinsic hyper-
momentum generates the intrinsic GL(4, R)~, and
the three-space components of total hypermomen-
tum and linear momentum generate the sub-
group GL(3, R) consisting of dilations, shears, and
rotations of the matter fields. In the spirit of
current algebra, a reasonable hypothesis is that
the hypermomentum and momentum of hadronic
matter obey these same commutator algebras,
and that the hadronic currents satisfy (3.5) and
(3.6). GL(3, R) commutes with P„ancdan there-
fore be considered as an approximate rest sym-
metry —we have no trouble with "no go" theo-
rems. ' Note that it is the existence of the in-
finite-dimensional spinor representations of
GL(3, R) that enable us to extend the concept of
intrinsic spin to intrinsic hypermomentum, for
fermionic matter.

We now have an alternative interpretation of the
Regge trajectories, in which the quark X)y/2 is
interpreted as the sequence (J= —,', —,', . . . ) of ex-
citations of the total angular momentum and the
meson and baryon trajectories are qq and qqq
recombinations (including the trajectories —„
—2, . . .). At the present state of our knowledge, the
polyfield should be regarded as an intermediate
description, presumably including the original
quark field and some of the color-gluon effects
(the excited leveis may correspond to the action
of a gluon pair with 4=2 and no color). The vol-
ume-preserving stresses may actually correspond
to the effects of confinement.

Note that the skewsymmetric part of (3.6) is
simply the conservation of total angular momen-

turn. The trace of the same equation shows that
the dilation current (T, —= T~"') is not, in general,
conserved. In the domain of asymptotic freedom,
we would have an approximate scale invariance
(o~'=0) which then leads to a conserved dilation
current. The divergence of the intrinsic dilation
current would then be the trace of the energy-mo-
mentum tensor a,h =Z„". Intrinsic GL(4, R) in-
variance, associated with the conservation of the
intrinsic hypermomentum currents, may well be
an approximate symmetry of the asymptotic free-
dom regime in quantum chromodynamics. We
know that scaling arises as a logarithmic approxi-
mation, and a similar situation may describe
spin independence [observed approximate SU(6)]
and the a J= +2 excitation bands. We then have a
unified description of these three phenomena"'";
they are manifestations of a single current, the
hypermomentum current. This suggests a link
with gravitation, since the intrinsic hypermomen-
tum current is coupled to the linear connection
of space-time in a very natural generalization of
Einstein's theory. In the spirit of current algebra,
this determines its matrix elements, just as the
coupling to the metric field determines the matrix
elements of the energy-momentum tensor. This
generalization is the metric-affine theory of
gravitation. " ' In the following section we show
how the metric-affine theory arises as a gauge
theory of GA(4, R).

IU. THE AFFINE GAUGE THEORY WITH LOCAL
MINKOWSKIAN STRUCTURE

The metric-affine gravitational theory is based
on a space (L„g) in which the components of the
metric g&~ and the connection F,.z (not necessarily
symmetric) are regarded as 74 independent fields
in a variational principle. The gravitational
Lagrangian density is a scalar density '0 con-
structed from these components and their deriva-
tives. The derivatives of "matter fields" occur-
ring in the rest of the Lagrangian density are
covariant derivatives constructed from the con-
nection I „.». 'Ihus we have a minimal coupling
hypothesis that universally couples the connection
to matter. Only gauge fields (electromagnetism,
gluons, etc.) are not coupled to the connection.

Alternatively, the metric-affine theory can be
arrived at by generalizing a global affine group
GA(4, R) to a gauge group, over a metric space-
time with a local Minkowskian structure. To
establish the notation, consider first the usual
Yang-Mills theory of an unspecified Lie group 6,
with generators f„satisfying [f„,fs]= c„sfc. Con-
sider the action of an infinitesimal element p.
= p."f„ofthe gauge group 6 combined with an
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inf initesimal coordinate transformation x' - x"
=x' —$'. For 8, SH of poly6elds or fields p which

transform among themselves linearly under the
action of 6, we have

(4.1)

Introduce the connection one-form for G (I',dx'
= I',"f„dx'), the corresponding covariant deriva-
tive operator

(4.2)

and the gauge fields

the same way, the affine gauge theory derived
here is the metric-affine theory. Rewriting (4.7)
in terms of the parameters p, , we find just the
behavior of the anholonomic components of a field

p, of a tetrad, and of a connection, under coordinate
transformations and space-time-dependent linear
tetrad deformations. As shown by one of us,"
the metric-affine gravitational theory can be for-
mulated as a theory invariant under such tetrad
deformations.

If the tetrad is chosen orthonormal, we find that

(4;3)

In terms of the parameters X=- p, —$'I', , we have
the transformation laws

Z~ = ~ 5Z/5e;",

5g/51'; ~

(4.6)

5@= (X+ $'d,.)y,
5I'i = -diX+ ('I' ij ~

(4.4)

Let Z be a Lagrangian density, dependent on P,
I"„and a metric g, ~ (and derivatives of these
quantities). Invariance of g under coordinate
transformations and space-time dependent G

transformations leads to the identities

where

8 ~f ~i ~AFij

&i&A ca a

(4.5)

2 6R
A gp A' (4.6)

We now simply take G to be the 20-parameter
group GA(4, R) whose Lie algebra is defined by
(2.1), and identify the translational part of the
group with the operation of parallel transport in
space-time. This means that the connection of
GA(4, R) becomes a Cartan connection. " We ob-
tain a tetrad ei =- I', and an anholonomic linear
connection I, . Algebraically, the identification
of the translations with parallel transport is ex-
pressed by t'™= -X (i.e., p =0). Since linear
momentum, unlike angular momentum, has no
intrinsic part, we a1.so set f~ =0 for the field P.
Then the equations (4.4) become

5$=(x8f +$ v )Q,

5e;"=e; (Vt8$ A.
"++)8~Fs~'), (4.7)

5I'(~ = e, ~(-VyA ~t+' F~q~ },
where V is the covariant derivative operator as-
sociated with the homogeneous part of the group
GL(4, R). We have precisely an affine generaliza-
tion of the Poincard gauge theory. '~ The Poincard
gauge theory, with a particular choice of the Lagran-
gian for the gauge fields, is identical with the U4
gravitational theory of Sciama and Kibble." In

are the canonical energy-momentum and the canoni-
cal intrinsic hypermomentum current of the f ield 415,

which are now defined dynamically as the currents
that couple to the gauge potentials of GA(4, R). In
a Minkowski-space approximation with e, " = 5, ,
I'« ——0, the transformation law of P in (4.7) be-
comes identical with (2.2) and the identities (4.5)
reduce to the conservation law (3.5) and the quasi-
conservation law (3.6).

'The metric-affine theory is complete when the
Lagrangian density 'V/2k for the gravitational
field variables g„., e, , and I",~ is specified.
Choosing orthonormal tetrads, the field equations
are

(4.9)

The holonomic description is obtained by choosing
e,. = 5,. and taking gij and I',.j as the independent
variables. Defining torsion and nonmetricity to
be S,j =-I't, j~ and Qij~=--7';gj„respectively, the
connection can be written

(4.10)

The tensor M,» = -M&~j is the contortion. The
spin current and the intrinsic dilation+ shear
current are coupled to contortion and nonmetri-
city, respectively, in this formulation:,

R)/5 M I„( ——-2 k v -g 6 ".
5'V/5Q~); = km

-ghee'~N.

(4.11)

(See Ref. 17 for details; compare also Ref. 24.}
With the gravitational Lagrangian'V = I-g (R
+PQ, Q') (Q,. = —,Q,~ ), nonmetricity does not propa-
gate outside matter, so that the comments of
Hayash i'~ (reproduc ing the E instein-Weyl dialogue)
will not apply.

It is interesting to note that an affine-metric
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theory of f-gravity is possible, in which the
spinor fields are nonlinear realizations of global
GA(4, 8) rather than infinite-dimensional linear
representations. The Goldstone bosons associated
with the spontaneous breakdown of GA(4, R) sym-
metry to Poincard symmetry would have spin two
and spin zero, and give rise to a metric. How-
ever, such a scheme is not consistent with the
present approach: It is an alternative possibility
for linking the metric-affine theory with particle
physics in which Eq. (3.6) is interpreted as a
"partial conservation of shear and dilation cur-
rents. " 'Ihere would be a formal resemblance to
the work of Cgievetskii and Borisov, "except that
the affine group has a different interpretation.
Since their affine group is generated by the linear
part of the infinite gauge algebra of the coordinate
transforrnations, it could not have the dynamical
role that they assign to it; there are no conserved
Noether currents for such transformations. (Note
that a symmetry with Goldstone-type spontaneous
breakdown corresponds to a limit in which cur-
rents are conserved though the vacuum is not in-
variant. )

In the Sciama-Kibble theory, the Riemannian

space-time of Einstein's theory is generalized to

a U4, so as to incorporate the spin-current dy-
namically as a source of torsion. 'Ihere now ap-
pear to exist similar phenomenological arguments
for a corresponding treatment of the intrinsic
dilation and shear currents that give rise to non-

metricity. We hope that this note has clarified
the theoretical and phenomenological consequences
of this possibility, and shown how the metric-
affine theory of gravitation with its (L„g) space-
time would then provide an appropriate minimal
coupling.
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