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Syinor fields in an Einstein Universe. The vacuum-averaged stress-energy tensor
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The spin-1/2 Green's function in an Einstein universe is computed explicitly and used to evaluate the

vacuum-averaged stress-energy tensor. In the massless limit we find Ford's value (T00) = 17{192(br'a ) '.

I. INTRODUCTION

'Ihe importance of the vacuum average of the
stress-energy tensor (T„„)and the difficulty of
its renormalization in a curved space-time are
evidenced by numerous papers on the subject. '

In earlier work (Dowker and Critchley") an
expression was derived for (T„,& in the case of
a scalar field in an Einstein universe. It is our
intention now to extend this calculation to spin--,'
fields (both massive and massless). Perhaps a
few general comments are, in order at this point.

Ideally one would like to have a renormalization
procedure that is valid in an arbitrary Riemannian
space-time. However, there seems to be no gen-
eral agreement on what this should be, and so it
seems reasonable to look at those spaces that are
sufficiently simple (this usually means those that
have plenty of symmetry) such that a renormali-
sation scheme presents itself naturally and»t'or so
that the various standard renormalization methods
can easily be implemented and compared. Such a
space-time is the Einstein universe.

In our previous work the renormalization con-
sisted of dropping the "direct' term in the scalar
Feynman Green's function that occurs in the limit-
ing expressions for the averaged energy-momen-
tum tensor, etc. Such a procedure extends to the
spinor case and will be detailed here.

II. SPINORS IN THE EINSTEIN UNlYERSE

Spinors can be introduced in the general and
well-known fashion given first by Pock and Ivan-
enko and developed by Schrodinger, Bargmann,
Infeld and Van der Waerden, and many others.
This ayyroach has been used by Schrodinger4 and
by Taub' in early work on wave equations in cos-
mological syaces.

For the Einstein universe there is another,
equivalent, method that makes use of the sym-
metry group G = SU(2)(g) SU(2) of S', the three-
dimensional spherical syatial section, in the same
way that the Euclidean group is used in flat space.
The Killing vectors of the left and right groups

are taken as the local dreibein fields and this leads
naturally onto the Cartan calculus. Since this ap-
proach has been described elsewhere very little
of the basic theory will be given.

If the Killing vectors of the left SU(2) group are
chosen as the dreibein fields the corresponding spin-
ors are called "left" spinors. Together with the
"right" fields, they have the advantage that they
transform linearly under the action of the sym-
metry group G. (They do, however, have the dis-
advantage that the discrete parity transformation
p is effected nonlinearly. This can be seen easily
from the facts that p takes the left Killing fields
into the right ones and that the relation between
these two fields is a position-dependent rotation. )

The intrinsic covariant derivative af g, V„g, is
derived to be'

Vo) =80/ and V»1»=(X+I")g,

where the X are the left infinitesimal operators of
SU(2) and I' is the spin affine connection given by

I'= yxy (a =radius of S )4a

in terms of the standard, constant Dirac matrices
y = (y'). We should emphasise that we are now us-
ing the Cartan frame representation.

It is assumed that g satisfies the minimal Dirac
equation,

fy' —+iy (X+I ) —m y=0.
Bt

The energy-momentum tensor is

f'v ="f~((' y(vV)&~-~V( lyly) 41)»

where the square brackets and comma indicate
antisymmetrization when lt} is interpreted as a
second-quantized operator.

Our aim in this paper is to evaluate the vacuum
average of T„„, and we shall employ the Green's
function method. Thus following Schwinger' and
others, (T„„&defined by

(T„.& = (o...I T„.I o;.&i«...l 0;.&

17
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is written in terms of the Feynman Green's func-
tion

S,(x,x) =-t(O.„,I T{y( )y(» )}I0,„&/(O.„,l O,„}

If S12 and S21 are eliminated we find that both
-S»/m and -S»/m satisfy the same second-order
equation,

2-X2+ —g ~ X+ 2+m G(x, x')=15(x,x')
eE' a 4a

(1"'„,}=-,' lim tr y&„(V&- V'&} S~(x, x'}. (4) (7)

For a static universe we can set l Q;„}=
l 0,„,) =

l Q).
In the present payer we do not wish to set uy the

full apparatus of Fock space. There is no particu-
lar problem, but we wish to move rapidly to the
calculation of (T"„,}.

S~ (x,x') satisfies

(iy" V„-m) S~(x,x') =15(x,x') .
Strictly speaking, since S~(x,x') diverges as x'
tends to x, parallel propagators, spinor and tensor,
should be incorporated into expression (4) in order
to maintain covariance throughout the limit (cf.
Deser and Boulware') How.ever, since the space-
time is static no propagators will be needed if x
and x' are separated only in the time direction.
Further, our renormalization process is to sub-
tract a term from S~, giving an S,„~ which is finite
at x =x', and then to use S,„, in place of S~ in (4).
The limit is then unambiguous. The only question
is whether there is any residual finite contribution
from the term that has been dropped. %e return to
this question later.

HI. SPINOR GREEN'S FUNCTIONS, m 4 Q

It is convenient to write ~. (5) in terms of the
two bvo-component parts of P. Thus we choose
the Acyl forms

f'0 Il, (0

where the g' are the usual Pauli matrices. Cor-
respondingly S~ is split,

t s„s„i
S» S

and then (5) reads

(cf. Dowker') and S~ is related to the 2x2 G by

S~ = (iy-" Vq+ I)GSG.

The 4X4 Green's function GSG corresponds to the
8 of DeWitt. '

The solution of (7) can be effected by the general
method outlined by Dowker, e where we gave the
corresponding Pauli- Jordan commutator function.
A few details of the calculation will be given since
they may be of interest.

The 5 function on the Einstein universe is

5(x,x') =5(t -t') 5{q,q'),
where 5(q, q'} is the 5 function on S', (q, q'z S'),

5{q,q)=-
l l

. g 5(e+2vn).
1 g

l Ml =2»'a' is the volume of S' and ae is the geo-
desic distance bebveen the points q and q'.

By symmetry the general form of G(q, q', t, t') is

G(A q', t, t') = 1GO(8, t —t')

+g ~ XGi(8, t —t'),

where the G, (8, t) are scalar functions, periodic
in 8 according to the form (9) of the 5 function.

In order to avoid carrying through summation
signs we shall replace (9) simply by the n =0 term,
and the solution of the corresponding Eg. (7) will
be denoted by

G =1GO(8, t) +g ~ XG~(8, t) (10)

(we have set t' =0). The full solution is then re-
gained by a "periodic" sum

G, (e, t) = g Go(e+2vn, t)

i —+g ~ (X+I"} S2~ —ms» = 15(x,x'),
1

at —+g ~ (X+I') S -mS =O,

9
t —-g" (X+r) S„-mS„=15(x,x ),

i —-g ~ (X +r) S -ms =0
BE ll 21 y

where now r =-(i/2a) g.

The following steps are now to be performed.
Firstly the G,. are Fourier-transformed with re-
spect to E,

G, (8, t) =
2 G((8, E) e' 'dE,

and then the form (10) is substituted into (7) which
separates after use is made of the identity

(g ~ X) =X ~ X+ig ~ (XXX) =X +—g X
a
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to give the two coupled equations

E —m-+XG- —XG4g2 0 g 1

= (22a2 sine) ' 6(8)
9

~

~
2 0 0Z'-m'- 2+X' O', = —G', .

If G', is eliminated there results, after some re-
arrangement,

2

E -~ ——.(p- .) E--~ ——.(p+-, ) D,(p, z) =-,p z -m ——,+2 2 & i2 0 ~ . , P

where we have replaced X' by its radial part
2

( 'sine) ', s() sine,

since it now acts only on functions of the "radial distance" g8, and we have also Fourier-transformed
Do(8, E)=sineG(o(8—, E) with respect to 8,

oo

D,'(e, z) =
2 D,'(p, z) e '"dp.

Similarly D', (p, z) is determined by

E'-m'- —2(P-2)' E' m' ,-(P+--,')' D'(P E)=,P.

Then, performing the back Fourier transform, we find after a little algebra

i (ka —2) exp(-i 28) + (ka + 2}exp(i 28)
0

2cos—', 8 +sm-, 8 I H, t
16m 3g2 ae

(12)

D,(e, t) =
S 2 I(e, t) sin —,'8,

where I (8, t) is the standard two-dimensional integral,

&2/0t -lac)
l (e, i) = f ds, de

0

For the Feynman Green's function we set m2-m2-ig and perform the integration to give the standard
expression

I = -)('H,"(m()(, ie)' ') =--22 8()))lf"'(I()()"2) +—8(-)))Ic (m(-)))' ')2'

with X =t2-g'8
If all the pieces are collected we find for the exact Feynman Green's function, G~, satisfying E(I. (7),

oo (2) Z/2
+e ((1/2)(e (e()n ee H1 (~( ir } ) 1 (2) ~ ) 1/2"s«e e. (s ) ~ e. *«"(-e)(" ( (' »)I (15)

where )).„=(t—t'}'—a28„2-ie, 8„=8+22n.
The exponential factor in (15) is the spinor parallel propagator between q and q', q being the unit tangent

vector at q to the geodesic connecting q and q, and the quantities in square brackets are the ordinary flat-
space scalar Green functions in four and in two dimensions, respectively.

Writing (15) in this form enables us to see immediately what the spinor quantum-mechanical propagator
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K(x,x', r) is. K is defined by

G g, *')='I dv e ' 'Kkx ,),',
Q

and, since we know what the ordinary scalar propagators are, (15) yields
OO

z(x*' v)= ' ~ 8"'""" "
e '"" &

" tan-'e)
(4wi~)' „s sin8

(18)

The coincidence limit of this exyression is

g
K(x, xr) =, ,2 1- 2A

j4wz7 j'
+terms exyonentiany small,

which agrees with the general results given by
DeWitt (Ref. 9, problem 85) so far as these go.
It can be seen that all the coefficients a„, and
therefore their coincidence limits, are zero for
n&1. The corresponding result in the scalar case
is that all the a„are zero except the first, aQ. In
this case we have said that the WEB approximation
is exact. One would like to have a similar state-
ment for spinors. Of course the "naive" WKB ap-
proximation, the first term in parentheses in (18},
cannot be exact because classical spinning parti-
cles do not travel along geodesics, but perhaps
the definition of the spinor WKB approximation can
be refined to make the statement true. Further
discussion of this topic would take us beyond the
scope of this paper and so we return to the main
line.

The final step in the evaluation of S„ is to sub-
stitute (15) into (8), but for calculational purposes
it is often best to leave (8) and (15) separated

IV. THE VACUUM ENERGY

The object of interest to us is(T„„)given by
(4). Because of symmetry, it is sufficient to con-

centrate on the vacuum energy &T~& and the aver-
aged trace &T"„&. These are given by

&T~& =lim tryosoS„(x, x')

=lim trso(S~2+S2, )

&1'„"& =-mi lim trSr(x, x'),r'~x

where we have used the equation of motion (5) and
the fact that s)OSr(x, x') =-s0S„(x,x'). It is better
to rewrite the averages in terms of Gr using (8).
Thus

&i~& =-2i lim trs, s,Gr(x, x'} (17)

&T"„& =2im'lim trGr, (18}

where tr now stands for a 2x2 trace.
The well-known difficulty now is how to allow for

the divergences that arise in the coincidence limit.
We shall adopt, for the time being, a straight
ansatz of dropping certain divergent terms, as in
our previous work." Thus we shall simply omit
the n = 0 term in the sum (15) for Gr, which is the
only term that diverges as t'-t and 8-0.

The evaluation of (17) and (18) is then straight-
forward and we find for the subtracted ("renormal-
ized ") quantities

K,(2wnma)

2rnma (19)

(T"„& = 2» g (-1)"(2a m [K2(2wnma) +Ko(2wnma)j+Ko(2wnma)).2m'a' (20)

17
&~='= 98Ow'a' (21)

Symmetry allows the remaining averages to be
deduced from those already found. Thus we must
have

&T;,&=l g„(&T„"&-&T" &).

The massless limit of (19) is given by

while &T"„& is zero since the m eliminates the ln
divergence of the H,' or KQ terms.

'Ihe presence of this ln term prevents the cal-
culation of S~ by the method of deriving G first
when m is strictly sero from the beginning. There
is no divergence in the Sr given by (8) as m tends
to zero, but if m is identically zero this construc-
tion of S~ is not possible and one must start afresh
from the massless syinor equations. Also, it must
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be remembered that the two-component neutrino is
not identical to the general massless Dirac particle
without extra conditions being imposed.

For these reasons we now wish to consider the
two-component neutrino from the beginning. It
will turn out that the Feynman propagator is not
the massless limit of (8}, which is to us a some-
what unexpected result.

V. TWO-COMPONENT NEUTRINO THEORY

and satisfies the equation

I —,-& ~ (X+1.) S„(x,x ) =16(x,x ).
'I%en (T~} will be given by

(i~) =lim trs, S„(x,x'}.

Equation (22} is solved directly by setting

SE(x,x') =1SO(8, t —t') +O' XS4(8, t —t')

(22)

(23)

The physical neutrino is left-handed and, in two-
component theory, is governed by Acyl's equation,

i —-(r ~ (X+r ) y =0,
et

and separating out two equations, as before. We

simply give the resulting Fourier integrals

Sm'a sin8

J
oo (E + I(a}ei[&4eEe -e)l-

x pdpdE
(E 1j2a) pE

i.e., by a four-component function, p = ( 0) satisfy-
ing (2) for m =0 and with the Weyl form of the y".

In terms of the 4x4 Green's function S~ the re-
striction to the two-component theory is made by
fixing S», S», and S» to be zero. The remaining
2x2 block S»--S„describes the propagation of y

1S&&x' =
8E'a sin8

oo 8 [a 8-E(~-e)]
x PdjdZ

In contrast to the m g0 case we have to translate
the energy variable and we finally find

(24}
oo

S (x x') =- —+g ~ X —— . e '"' "[(t—t')'-
a( 8+2v)n' t]4'-.

4K et 2Q „ sine

In terms of the massless scalar Green's function, DE(x, x'), used in our earlier work' S„can be written

S (xx')= i —+-o X ——e '"' 'D (xx').
N & gt F

This differs from the massless limit of (8), the relevant 2x2 block of which can be written

S (m =0)= — e'' "' ~' —+ — ' +q o
1 " . - - ~ e 0- q g tan-,'8 g g.

4E'„jSt a 88 2a a8„sin8 X„
(26)

1
&T~& =

6(h, E,4, (26)

which differs from (21). [Actually we should com-
pare twice (26) with (21) to allow for the two lower
components of g.]

Two possible reasons for this difference are as
follows: (a) The renormaiization method of drop-

after some, not necessarily final, manipulation. In
the flat-space limit (a-~) the difference disap-
pears, to give the standard neutrino Green's func-
tion.

The calculation of the averaged vacuum energy
from (23) and (24) is now indicated. One would be
inclined to make the same "renormalization"
ansatz as before, that is, to drop the g = 0 term in
(24). If this is done, ad hoc, then we find

ping the n =0 term is not correct if m =0. (b) It is
due to the difference between (25) and (24) and is a
genuine difference. In the next section we present
some comments on this situation and discuss al-
ternative approaches.

VI. DISCUSSION AND CONCLUSION

The traditional method of deriving the vacuum
energy is the one employed by Casimir in his
classic evaluation of the electromagnetic energy
density between conducting plates. A mode expan-
sion of the quantum field is substituted into (T„}
and yields the vacuum energy as a sum of vacuum
mode energies.

In the present context this method has been used
by Ford, ' "Streeruwitz, "Mamaev et al. ,"and
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others. Ford in Ref. 11 considers the massless
spin--,' case and derives half the value (21) from the
neutrino mode energies and degeneracies. This
suggests that the value (26) derived by dropping the
n =0 term in the sum over geodesics for the mass-
less case is, in fact, incorrect.

To investigate this further consider the n =0 term
in (24) and imagine taking the coincidence limit
(23) in a timelike direction (i.e., 8 =0). Then it is
easy to see that the time exponential in (24), when
expanded in powers of t —t', will give among other
things a finite contribution proportional to I/a .
It turns out that when this is added to (26) we simp-
ly regain the correct value, i.e. , half of (21).

If it were desired to let x' tend to x from a space-
like direction, a parallel propagator would have to
be inserted into the definition of (T~) in order to

take care of the syinor transformation yroperties.
This time an expansion of powers of 8 will produce
the extra term -1/a'.

Apparently all these problems can be avoided if
one takes the massless limit of the massive theory,
at least for spin —,', despite the much simpler form
of the massless Green's function (24).

Ford" alSo discusses the photon vacuum energy.
If we were to extend the present approach to that
case we would expect that the massless limit would
be more complicated owing to gauge invariance,
although it is possible to obtain Ford's results
simply by adding in a mass to the massless mode
energies in an ad hoc manner and then letting this
mass tend to zero. ' This method avoids introduc-
ing all but the ~1 helicity states even for nonzero
mass.

See P. C. W. Davies, Eighth Texas Symposium on Rel-
ativistic Astrophysics, Boston, 1976 (unpublished).
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