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Dynamics of Einstein's equation modified by a higher-order derivative term
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The search for a renormalized stress-energy operator of a quantum field in curved spacetime has raised the

question of whether one can add terms to Einstein's equation containing fourth-order derivatives of the

metric, and still maintain a reasonable theory. We investigate this question by considering the simple case of
a conformally invariant field in a conformally flat spacetime, where one has a well-defined prediction for the

vacuum stress energy of the field. We find that if a certain fourth-order term (associated with the R trace

anomaly) enters with one sign, flat spacetime is unstable to conformally flat perturbations that grow

exponentially on the Planck time scale. If this term enters with the other sign, conformally flat

perturbations could cause spacetime to oscillate at the Planck frequency, resulting in high-energy radiation

by charged test particles.

I~ =2V „V„R—2(VsR)g~ —2RR~+ aR g (3)

and K„K,are constants (which depend on the par-
ticular conformally invariant fieM being consid-
ered). There is also complete agreement on the
numerical values of K,. For example, in the case
of a scalar field, K, = (2880trs) ' (in units II=G =c
=1). However, there is some disagreement over
the numerical values of K,. Although most re-
normalization methods yield nonzero values for
K„ it has been argued' that the presence of a
term such as I„„—which contains fourth-order
erivatives of the metric —mould drastically alter

There has been a lot of interest recently in find-
ing a we11-defined, renormalized, stress-energy
operator T~ for quantum fields in curved space-
time. This operator is of considerable importa, nce
for the theory of back reaction in the semiclassical
version of general relativity, where one treats the
gravitational field classically and the matter fields
quantum mechanically. In analogy with the semi-
classical theory of electromagnetic radiation, it
is expected that (in certain regimes) this theory
will be a valid approximation to A full quantum
theory of gravity coupled to other fields.

Some progress has been made recently toward
finding a renormalized T . In particular, the
stress-energy operator for a conformally invariant
quantum field in a conformally flat spacetime has
been derived via point separation, ' dimensional
regularization, ' and axiomatic' approaches. There
is full agreement that the form of T~ in this case
is (using Misner-Thorne-Wheeler' sign conven-
tions)

T =:T~:+(K/I~+Kg~)I,
where: T~: denotes the normal-ordered operator,
I denotes the identity operator,

H = R R „pssRR~~sR~R ag~ —sRsg~, (2}

the dynamics of Einstein's equation. Some dif-
ficulties which occur when terms such as I~ are
added to Einstein's equation have been discussed
recently by Stelle. '

The purpose of this paper is to investigate fur-
ther the question of whether a nonzero value of
K, will result in a physically unacceptable semi-
classical theory of back reaction. We show that
if I~ is present, then depending on the sign of K„
small initially well-behaved perturbations of flat
spacetime will either grow exponentially or os-
cillate on the Planck time scale (-10 4' sec). In
the former case, flat spacetime is violently un-
stable. In the latter case, a freely falling charged
test particle would radiate very energetic photons
(Itv-10m eV).

We begin with the semiclassical Einstein eq-
uation

G~=8tr(T~) (4)

for the case of a conformally invariant quantum
field. Using our expression for T~ [Eq. (1)] we
see that conformally flat spacetimes which satisfy

G~ = 8tr(K,H~+K, I~}
will be solutions to the semiclassical Einstein eq-
uation with the quantum field in the vacuum state.
We will assume that the numerical values of K,
and K, are roughly of order unity in Planck units
(A=G =c =1). Our aim is to analyze the effect of
a nonzero value of Ã, on the dynamics given by
Eq. (5).

Equation (5) has an obvious solution: Minkowski
spacetime, G~=H~=I~=0. We now investigate
whether this solution is stable, that is, do initially
small per turbations remain small? In classi cal, gen-
eral re1ativity, Minkowski spacetime is, of course,
stable and its stability is certainly a necessary re-
quirement for a physically reasonable theory. We
restrict ourselves to conformally flat perturbations
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(8„8„—&i Cl)f = 0, (g)

where f= (y —48wK, L'y). The most general solution
to Eq. (9) is

(10)

where k is a constant vector field in Minkowski
space, x is the position vector field in Minkowski
space (with respect to a certain choice of origin),
and k is a constant.

We are now left with simply the following eq-
uation:

(-48@K,) y+y =k~x +k.
The most general solution is

y=(k~x +k)+y,
where p satisfies the homogeneous equation

I
48gK2

(12)

(13)

which is, in fact, just the Klein-Gordon equation.
The inhomogeneous solution y =k xo+k is easily
seen to be pure gauge. Let y be the correspond-

because our expression for T~, Eq. (1), app»es
only to that case. In classical general relativity,
there are no nontrivial, conformally flat, vacuum
perturbations of Minkowski spacetime. However,
as we shall now show, if E,+0 there do exist non-
trivial perturbations of this kind in the semiclas-
sical theory.

We write the conformally flat metric g~ as

(6)

where q~ is a flat metric. In terms of 0 and the
flat derivative operator e„associated with q~, the
Hicci tensor, R~, of g~ is

R„„=40 '(8„0)(8„0)—20 '8„8„0

0-&&I„„(8 8.0) 0-
&i (8 08.0), (V)

where here and throughout indices are raised with
&)" (so, e.g. , 8~8 0=-&)'~8 8,0). Using this ex-
pression for R, we may write Eq. (5}as an eq-
uation for 0 in the flat metric g~. One solution
is obviously 0 =1, corresponding to Minkowski
spacetime. Writing 0 = 1+@and keeping only terms
first order in y, we obtain the linearization of Eq.
(5) describing small conformally flat perturbations
of flat spacetime:

-8„8,y+ (Cly)&i —48vK, [-8„8„(Cly)+Cl(Cly)&i ] = 0,
(8}

where 0-=8 8 . Note that the term K,H~ does not
enter the linearized equation since H~ is quadratic
in the curvature.

Our perturbation equation can be rewritten as

ing perturbation of the metric: y~=2y&}~=2(k~x
+k)&i~. Then one can verify that y~=8&~$„&, where

(„is the conformal KiOing field,

$„=-k„(x x )+2(x k )x„+2kx„. (14}

y = C,sin(ut+C, cos(ut, (16)

where &u =(48xK,) '~'. While the consequences of
perturbations of this kind are not as drastic as
those of the case K, &0, we wish to argue that they
could still lead to unacceptable observable con-
sequences: Charged test particles in a universe
oscillating via the above perturbation, Eq. (16),
will emit photons at the Planck energy. "

To see this in more detail, we consider a freely
falling (i.e., geodesic) charged test particle in the
perturbed spacetime described by Eq. (16}. If
we write Maxwell's equations in the form

~r J" &=0 (1Va)

(17b)

then the left-hand side, when expressed in terms
of the flat metric q and the conformal factor, is

Hence, we will now concentrate on just the homo-
geneous solutions to Eq. (11). It is easy to check
that these perturbations are not pure gauge.

Consider first the case K, &0. (This is the sign
of K, obtained for the scalar and neutrino fields
using point separation, dimensional regulariza-
tion, ' and f-function regularization, ' and also for
the electromagnetic field using dimensional re-
gularization. ") Then Eq. (13) describing the non'-

trivial perturbation is just the Klein-Gordon eq-
uation with a negative value of (mass)'. This eq-
uation admits solutions which are initially well
behaved but rapidly blow up in time. As a specific
example, consider the spatially homogeneous solu-
tion

y C~i/v (15)

where C is a constant and v =(-48wK, )&~'. Itecall-
ing that K, is roughly of order unity in Planck
units, we see that the exponential growth time
scale of this solution is the Planck time (-10 "
sec). Hence, if at f =0 one were to perturb Min-
kowski spacetime slightly in the direction of this
solution, the effects would grow a.t a catastrophic
rate; if K, &0, Minkowski spacetime is violently
unstable.

On the other hand, if K, &0 (the sign obtained
for the electromagnetic field by point separation'
and f-function regularization'} then the nontrivial
perturbations are described by the ordinary Klein-
Gordon equation [with positive (mass)']. The so-
lutions now do not grow exponentially in time but
rather oscillate at the Planck frequency. The
spatially homogeneous solutions are
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in fact independent of the conformal factor. (This
is an expression of the fact that the source-free
Maxwell equations are conformally invariant. }
Thus, the curved-space Maxwell equations are
simply the flat-space equations with source given
by the right-hand side of Eq. (17b). But this source
corresponds to a particle following a geodesic in
the curved metr'ic g~ rather than the flat metric

It is easy to check that timelike geodesics in
the curved metric oscillate about the geodesics
of q~ at the frequency of the perturbation. (There
is one exception: Geodesics of g moving in the
preferred time direction defined by the perturba-
tion coincide with the geodesics of q .) Thus the
electromagnetic radiation produced by a geodesic
particle in the curved spacetime is identical to that
of a particle in flat spacetime which is accelerated
back and forth at the perturbation frequency. Such
a particle, of course, emits radiation at that fre-
quency. This means that if a perturbation of the

type Eq. (16) were applied, all charged particles
(except those moving exactly in the preferred time
direction) would emit some radiation at the Planck
frequency. This corresponds to a photon energy
of hv-10~ ev'. By comparison, the most energetic
cosmic-ray event ever observed had an energy

$021

Thus, the oscillations introduced by the higher-
order derivative term would lead to unacceptable
consequences if they were to occur in the present
universe. However, this does not necessarily
mean that the appearance of I~ in Eq. (5) with
K,&0 must be ruled out. It is possible that any

such oscillations which may have been present in
the early universe would by now have been damped
out by mechanisms such as the interactions with
charged particles described above. Furthermore,
it is possible that no such oscillations could be
excited (with appreciable amplitude) by normal
astrophysical processes in the present universe.
Since we do not have the full theory of how these
oscillations are sourced —Eq. (5) holds only for
conformally flat spacetimes —these issues cannot
be definitively settled at present.

In summary, we have found' that if K, &0—the
sign obtained for most fields by most renormaliza-
tion methods —Eq. (5) leads to completely unphys-
ical behavior: Flat spacetime is unstable with
respect to perturbations which grow on the Planck
time scale. The presence of the term I~ with

K, & 0 may also be unacceptable, but the situation
is not; as clear. Since I is a conserved local
curvature term (the one obtained from the Lag-
rangian R'), an arbitrary multiple of it can be
added to T~ without violating the required proper-
ties of T~ (see axioms 1-4 of Ref. 5). In view of
this fact, we believe that the correct renormalized
value of K, is zero. On the other hand, the value
of K, cannot be arbitrarily changed in this manner
and, as argued elsewhere, "must be nonzero. The
effect of the term K,H~ on dynamics is discussed
in Ref. 3.

This work was supported in part by the National
Science Foundation under Grant No. PHY76-81102
and by the Alfred P. Sloan Foundation.

~P. C. W. navies, S. A. Fulling, S. M. Christensen,
and T. S. Bunch, Ann. phys. (N. Y.) 109, 108 (1977).

~L. S. Brown and J. p. Cassidy, phys. Rev. D 16, 1712
(1977).

~R. M. Wald, Ann. Phys. (¹Y.) (tobepublished).
4C. W. Misner, K. S. Thorne, and J. A. Wheeler,

Gravitation (Freeman, San Francisco, 1973).
~R. M. Wald, Commun. Math. Phys. 54, 1 (1977). The

fact that the addition of small terms containing higher-
order derivatives can drastically alter the character
of solutions is well known in other areas of physics,
e.g. , in Quid flow with small viscosity.

SK. 8. Stelle {unpublished).
VS. M. Christensen, phys. Rev. D 14, 2490 (1976);

ihd. (to be published).
L. S. Brown, Phys. Rev. D 15, 1469 (1977).

~J. S. Dowker and R. Critchley, Phys. Rev. D 13, 3224
(1976);16, 3390 (1977);S. W. Hawking, Commun. Math.
Phys. 55, 133 (1977).' L. S. Brown and J. P. Cassidy, Phys. Rev. D 15, 2810
(1977).

' The idea of examining the behavior of charged test
particles was first suggested to us by R. Geroch
(private communication).

~20ne final point must be addressed before our con--

clusions can be safely drawn. We have studied the be-
havior of perturbations of flat spacetime, but is is not
at all. obvious a priori that these perturbations corres-
pond to exact solutions. Indeed, if one seeks a one-
parameter family of exact solutions which is conformly
Qat to all orders (not merely first order), it turns out
that the higher-order equations put additional restric-
tions on the first-order perturbation, so some of the
solutions of the perturbation equation may be spurious.
However, we have verified that these restrictions are
satisfied by spatially homogeneous perturbations having
the instability behavior considered above. Further-
more, if the exact solutions are not required to be
conformally Qat in higher orders, then presumably no
such restrictions would occur. Exact solutions (with
Robertson-Walker symmetry) of Einstein's equation
modified by the term I» have been studied by T. V.
Ruzmaikina and A. A. Ruzmaikin, Zh. Eksp. Teor.
Fiz. 57, 680 (1969) [Sov. Phys. -JETP 30, 372 (1970)],
M. Giesswein, R. Sexi, and E. Streeruwitz, Phys.
Lett. 52B, 442 (1974) and M. Giesswein and E. Streeru-
witz, Acta Phys. Austriaca 41, 41 (1975).

3B. M. Wald, Phys. Rev. D {to be published) and refer-
ences therein.


