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Maximal extension of a nonsingular solution in a generalized theory of gravitations
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A transformation of coordinates is presented that removes the event-horizon singularities in an exact

spherically symmetric solution of a generalized theory of gravitation. The resulting maximally extended

solution corresponds to a gravitational and electromagnetic field that is nonsingular everywhere in physical

space-time.

I. INTRODUCTION

An exact solution of a generalized theory of grav-
itation' which includes the electromagnetic field
within the framework of a non-Riemannian geom-
etry, with nonsymmetric fundamental tensor g„„,
has been shown to be a regular solution with the
exception of event horizons. ' The metric for the
static spherically symmetric solution takes the
form

2m 4m'Q x Qds = 1— + 2 1- 4

2m 4wQ2
dr 2 r 2dQ2r r2

where

dQ2 =de +sjn2gdg2 (1.2)

2 +
tzj5dS dS dS

(1.3)

where F z is a Hermitian nonsymmetric connection,
related to g„„by"

and 0 =i x is a purely imaginary constant. We shall
choose the universal constant x = 8/e (a=ffG/c'e 'in
the units of Ref. 2). Thus the metric (1.1) is well
approximated by the Reissner-Nordstrom metric
down to distances ra ~a' =a.

The signature of the metric in the generalized
theory changes from -2 to -4 for r & a. Thus we
have a local Minkowski metric M' for r&a and a
four-dimensional Euclidean metric E' for r & a.
We define physicaE2 space-time as the region r» a,
since no timelike or null world lines can penetrate
a sphere S of radius r =a.

The paths in such a non-Riemannian geometry
are described by the equation

then be seen that the generalized theory is time-
like and null world line complete.

II. THE EVENT HORIZONS

As in the Reissner-Nordstrom solution coordin-
ate singularities occur at

r, = m + (m' —4vg')'~' (2.1)

v=t+r,
m=t-r,

where

(r.+r )r r.r d-r

(r r)(r —r) (1—- x'q'/r')' ~' '

(2.2)

(2.3)

The function r(r) can be integrated explicitly ev-
erywhere in the region r~ a (see Appendix A).
The line element in terms of (v, r) is

2m 4gQ2 g'

— 1+——,dr' - r 2d02 .2m 4~Q'
r

In terms of (ur, r) coordinates we get

(2.4)

when m'& 4rQ', while for m' = 4n'Q' only one co-
ordinate singularity occurs at r = m.

I et us first consider the case 4''& m' and ex-
tend the (r, t) manifold across the coordinate singu-
larities at r, and r . We define the advanced and
retarded time coordinates v and I), respectively,
by

@gP g~ p gp av (1.4)

To examine the global properties of the manifold,
it is necessary to find the maximal coordinates for
the solution. The new coordinates will provide an
analytic extension such that the metric is non-sin-
gular everywhere in physical space-time. It will

] + — dr2 r2dQ2
2m 4~Q'
r r2 (2.5)

We observe that the line elements (2.4) and (2.5)
are regular everywhere for r& a, although we have
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sacrificed time-reversal invariance by including
drdv (or drdud) terms. Equation (2.5) is just the
time-reversed solution of (2.4}.

From (2.3) we see that Br/Br has a branch point
at r =a. The (ur, r) manifold is just the extension
of the (v, r) manifold onto the second Riemann
sheet of Sr/Sr, where dr in (2.3) goes into -dr.
We shall choose (v, r) as the coordinates corres-
ponding to the "physical" sheet. Radial null world
lines in this manifold are given by the equation

where

—(1+6)dr'=0, (2.6)

2m 4m@2

r r' (2.I}

The solutions to Eq. (2.6) are given by

4 g4 1/2
(1 —d) (1-.—dv' —dd 1 — dvdv

dv A+1 a

1+2m/r-4vq'/r'
1 —2m/r+4vQ'/r' (1 —t2'/r')' '

(2.8)

The light cones determined by (2.8) are shown in
Fig. 1(a}, while those in the (w, r) manifold are
described in Fig. 1(b). Provided that r,& r» a
(which is certainly reasonable for v-g/e), light
rays near the event horizon behave qualitatively

the same as in the Eddington-Finkelstein coordin-
ate transformation of the Reissner-Nordstrom
solution. ' Ingoing null world lines can cross both
r, and r in the (v, r) manifold, while outgoing null
lines approach r asymptotically from r = a.

We observe that in our Eddington-Finkelstein-
type coordinates, described above, the outgoing
[ingoing] null paths in the (v, r) [(ud, r)] manifold
below r turn over as they move away from r =a.
This would result in a causality violation if v [ce]
was a pure timelike coordinate. In these coor-
dinates this behavior only occurs if e is less than
the turning point of these light rays. For astro-
nomical bodies this will in general be the case,
as can be shown for typical astronomical values
of m and Q.

W

(0)

III ~ WORLD LINES

I et us now investigate the behavior of timelike
world lines in the physical (v, r) manifold. In what
follows we restrict ourselves to the radial case,
although the conclusions can easily be shown to
apply to nonradial world lines as well. We have

c&c dx1=f
ds ds

which in the (v, r) coordinate system yields

(3.1)

0
r

1-'= ". 1-'—.

Pm 4n, q2 ~~ i (2 d

1+ 2 d d
=1. 3 2

FIG. l. (a), (b) Diagrams for the Eddington-type
coordinates g, r) and (se, w) respectively, showing null
paths and light cones. All paths reach the boundary
a=a with zero velocity and positive acceleration.

From (1.3}we obtain a constant of the motion

2m 4g@2 Qg1-—+ —= constant =- Ur r' ds 0 7 (3.3)
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2m 4mg' a4

F- U0 1- —
4 -g~,

(3.5)

2m 4n'Q2 a4
Z= —1-—+ U 1-—

y y o y

Equation (3.4) implies that

QIoi &

or

g(r)=, , & U,'.1 —2m/r+4wQ'/r'

(3.6)

(3.7}

In Fig. 2 we show g(r) as a function of r. We see
that for U,'& I, Eq. (3.7) implies that the particle
oscillates between it minimum and maximum radii
r«„)a and r~„,respectively, while for U0'&1,
there is just the minimum radius R„»&a.Ob-
viously as U,'- ~ (null path}, the minimum radius
tends to a. The world lines in the (tv, r) manifold
exhibit the same qualitative behavior, for in this

where U, is related to the energy of the particle.
For a massless particle we have ds =0, whereby
U =co,

After some algebraic manipulations of Eqs. (3.2)
and (3.3), with the use of (2.2), we get4

+trio» (8'&0» } 8'nol'2

where

2m 4m@' a'
+(01) r 2 1 4

IV. THE MAXIMAL EXTENSION

The behavior of both timelike and null world
lines is more clearly described in the maximal
analytic extension of our original metric (1.1), in
which we can simultaneously embed both the (v, r)
and (Iv, r) planes.

Following the methods of Kruskal' and of Graves
and Brill, ' we seek a coordinate system in which
light rays everywhere have the slope dr'/dt'=+ I, ,

and the line element has the form

ds' =f '(r', t')(dr" —dt") —r '(r', t')dQ'.

By using the transformation law

Bxe Bx~
tv

=
B~t B~v gee

We find that

(4.1)

(4.2)

coordinate system we simply replace g&01) by

-g«», so that Eq. (3.7) still holds.
As in the Reissner-Nordstr5m solution, time-

like world lines are prevented from reaching r = 0.
However, in the generalized theory, null (radial
and nonradial) world lines are also prevented from
hitting r=0. In the limit a=~x-0, the radial
null world lines do reach r =0 in finiteproper time
and the intrinsic singularity at r =0 reappears in
the physical manifold. For nonzero a the radial
light rays reach a in finite proper time with drldv
= 0 and with positive acceleration d'r/dv') 0. In

fact, the ingoing solution in the (v, r) plane can be
smoothly matched (C") to the outgoing solution in
the (Iv, r) plane. This suggests that a radial world
line that reaches the branch point at r = a passes
smoothly onto the second Riemann sheet of SF/Sr,
represented by the (Iv, r) coordinate system.

ji
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Btl BIt'I ByI ByI————f'(r', t') = 0 i (4.5)

(4.6)

If we combine (4.3), (4.4}, and (4.5), we get

1- —+ 2 1- —4, 4.3
- Sg» Bri ' 2m 4m2 -'

(4 4)

FIG. 2. Qraph of g(y') = (1 —2m/r+ 47'(q2/y2)/
(1 —a /y4) vs y. For Uo &1, Eq. (3.7) requires rm

For UD —1, Eq. (3.7) requires y&R as
U2 ~ R

min&

m1n a.

ByI 2m 4/q1-—+ 2 1-—4r r' By '

Bt' 2m 4mq' a' '~' BrI1-—r r

(4.7)

(4.8)
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The solutions for r' and t' are given by

r'(r, t) =y'(y~, t) =h(r*+ t}+g(r ~ —t),
t'(r, t) = t'(r*, t) =h(r'+t) g(—y* t)-,

vrhere

2m 4r2 a'

r4

(r —rg(r- r )(r' —a')'/'

(4.9)

(4.10)

(4.11)

The double valuedness of Sr*/Sr is due to the
branch point at r =a. We shall choose the positive
sign in Eq. (4.11) to correspond to the physical
space-time manifold. The other Riemann sheet,
corresponding to a minus sign in (4.7) and (4.8),
can then be interpreted as being associated with a
second space-time manifold isometric with our
own.

Because the physical space-time manifold con-
sists only of the region r» a we obtain (see Appen-
dix A)

g ( }
ydr

, (r —rg(r- r )(r' —a')'/'

(y4 a4)1/2 y +y y 2 + (r4 a4)1 /2
+ ln'r 2 " a2

1 r (r'- r ')a'' (r,—r }(1—. a4/y ')'/ r.'r ' a'+ [(-y,4- a')(y' a')]'/'-

r[(r.'+ a')(r' —a')]'/' —r[ (r.' —a')(r '+ a')]'/'
r[(r,' +a')(r' —a')]' /' +r[ (r,' —a')(r' +a')]'/'

1' (r,- r )(1-a'/r ')'/' r 'r' —a'+ [(r '- a')(r' a')]'-'

r[(r '+ a')(r' —a')]'/' —rg(r '- a')(r'+a'}]' '
r[(r '+ a'}(r' —a')]'/'+r [(r '- a')(r'+ a')]'/'

+aK(y, r„r) . (4.12)

Here K(r,y„r) consists of terms proportional to elliptic integrals of the first, second, and third kinds,
which vanish nt r=a and are finite as a-0. The constant of integration r*(a) has been set equal to zero.

For r&r, and r&r me define

(4.13)

where we have chosen the plus sign in Eq. (4.11) and b is a constant. Equations (4.3)-(4.5) and (4.9) (4.10)
then give

(r rg(y- r-) a'
~222

(y-rj(y —r ) a~ r2+(ye a4)&/2- -«,+r»
4A2r 2b2 r - a2

&& exp (r~ a&)&/2+2baK(r) [cP br+~/«~-r-&«+ --a
&

/ 5 or /«+-r )(& -a &

2b 4 41 2 4 41 2 4 41/2
r (4.14)

where

(r ' —y,' fr[(r,'+ a')(r' —a')]'/' r~[(r,' —a'—)(r '+ a'}]'/']a'
/)y r —a +[(r 4 —a )(r —a )]' 2)(r [(r a')(r +a )]'/ +r[(r '+a )(r —a')]' (4.15)
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For r &r &r, we choose

tt (r e + t ) ge-b&r + + t &

g(r*- t) = g-e""' ')

(4.16) -Bbr+ /(t -r )

(x

so that we retain the positivity condition f ') 0.
We now eliminate the zeros in f'(r, t) at r, and

r by an appropriate choice of b. The zero at r =a
cannot be eliminated because a is not a coordinate
singularity, but rather a boundary at which the
topology changes. As in the Reissner-Nordstr5m
solution, ' each coordinate singularity can only be
eliminated in a neighborhood around it. Thus we
define two coordinate patches for which b takes
the values

(4.17)

where b, and b are the constants of integration
associated with r, and r, respectively. By using
L'Hospital's rule, it can then be shown that f ' is
nonzero at r, and r in their respective coordinate
patches and, therefore, f' is nonvanishing, posi-
tive and analytic everywhere in the complete mani-
fold, except of course at r=a where it vanishes.

When a-0, the terms in (4.12) and (4.14) con-
taining elliptic integrals disappear and we find
that

r ~b' /lr+ r )

(X
(4.19)

(4.20)

These results give the Kruskal-type coordinates
for the Reissner-Nordstr5m solution' as desired.

The explicit transformations determined by
(4.9}, (4.10), and (4.13) are for r ~ r, and r ~r:

r,'(r, t) = 2Ae~~" coshb, t, (4.21}

t; (r, t) = 2Ae'+" sinhb, t . (4.22)

In the region r ~r„b,is positive and, since t is
the time of an observer at infinity, a physical par-
ticle moves towards increasing t'as t ~. Note
that f' is everywhere positive, so that t' is time-
like everywhere, as opposed to the coordinates
used by Graves and Brill, ' in which r' is the time-
like variable in the second patch. The conditions
of analyticity of the metric and the coordinates, in
the appropriate patches, are retained.

In the region r &r&r„the explicit transforma-
tions are

r+ r- r+ r+ r- r-

r,'(r, t) = /Ac'+' sinhb, t,
t, (r, t) =2Ae'~" coshb, t.

(4.23)

(4.24)

Moreover, as a 0 we get
The Kruskal-type diagrams for these extended

coordinates are given in Figs. 3(a) and 3(b). Ra-

1r 'a 2'b

(b)
ppG. 3. (a), (b) Kruskal-type diagrams for extended coordinates (r', t'), corresponding to physical niemann sheet

of dr*. Null paths have slopes +1.
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dial null paths can cross the radius x=~, in both
directions. Ingoing ones (dashed line) can come
in from infinity in region IIa, cross r, and, at
some r, in region Ia, then pass into a second co-
ordinate patch and cross ~, reaching region Gh
Outgoing null world lines (dotted line) can start in
region II'b, cross into the first patch at r= r, and
subsequently cross x, and go to infinity in region
II'a. The half plane, defined by regions I and II
in both patches, is isometric to the (v, r) mani-
fold, while the section defined by regions I and
II' is isometric to the (av, r) manifold. As shown
previously, ' ingoing timelike world lines "bounce"
at some minimum radius and then pass through
~ again into a region isometric with the coordin-
ate patch of Fig. 2(a}; the particle escapes to in-
finity in some other asymptotically Qat space-
time. The particle cannot re-emerge from the
event horizon in our own space-time, for then
causality violations would occur. This situation is
the same as in the maximally extended Reissner-
Nordstr5m solution, ' although now it is true of
both timelike and null radial world lines.

Null world lines that hit r = a do not have well-
defined velocities, for dr/dt is not properly de-
termined at r = a in view of the fact that f2=0 at
this point. However, we are free to extend the
world line to r = a by the requirement of contin-
uity. ' Indeed, the world line can be extended by
allowing it to pass onto the second Riemann sheet
of sr~/Sr as defined by (4.11). Then r*-—r* and,

r, =2Ae~+' cosh(-b, t)

=2Ae~" cosh(b, t),

t, =2Ae'+" sinh(-b, t}

=-2Ae'~" sinh(b, t).

(4.25}

(4.26}

Thus the second sheet describes, in effect, the time-
revexsed manifold. As t increases in region IIa, t,'
will now decrease; (-t,') is now timelike and a null
world line in region II1moves away from r =a in the
(r, , t, ) coordinate system as shown in Figs. 4(a)
and 4(b). The extension of this world line is again
made unique by continuity requirements. Thus,
the original (r', t') manifold and its time-reversed
image, taken together and joined at the branch
point r = a, constitute the complete analytic ex-
tension of the exact solution to the unified theory.
As k -0, f', b„r',and t' all reduce to the cor-
responding quantities in the Kruskal coordinates
of the Reissner-Nordstr5m solution. %hen Q-o,
the analytic extension reduces to that of the
Schwarzschild solution.

If 4m@ &m', as in the case of elementary par-
ticles, no event horizons occur and the original
(r, t) coordinates cover the complete manifold.

to eliminate the zeros of f' at r, and r, we choose
b, -—b, . The line element remains unchanged,
but the coordinates (r', t') for r&x„r&r,on the
new sheet are

X'a E'b

FIG. 4. {a), {b) Kruskal-type diagrams for extended coordinates {r',t'), corresponding to second niemann sheet{dr*--dr*). Now {-t') is timelike and regions Ia and Ib contain only outgoing solutions. A nuQ path reaching r =a
in Fig. 3{b) can emerge in region Ilb of Fig. 4{b) {dashed line). The unprimed regions in the second Riemann sheet are
equivalent to the primed regions on the physical sheet, as expected by the observation that the transformation t —-t
takes us froxn one sheet to the other, as well as from one side of the Kruskal-type diagram to the other.
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Timelike and nuQ world lines still cannot pene-
trate the sphere described by the radius r = a, so
that light rays bounce away to infinity in the same
space-time region and the world lines are com-
plete. ' The solution is everywhere nonsingular in

physical space-time.

V. PENROSE DIAGRAMS

By means of the usual transformation,

(5.1)

we can construct the Penrose diagrams for the
complete manifold. As seen in Fig. 5, the qualita-
tive features in the neighborhoods of r„r„,and
r= ~ are the same as those in the Penrose dia-
grams for the Reissner-Nordstr5m solution. ' The
region r & a is not included in our diagram, and
therefore an intrinsic geometrical singularity does
not occur in our solution. There is a timelike
boundary at r=a.

A world line which reaches the boundary passes
smoothly onto the second Riemann sheet of sr*/sr,
represented by the coordinates (r', -t'). In the
language of Penrose diagrams, the transition to
the second sheet corresponds to the transformation

We can visualize two separate Penrose
diagrams, related by the above transformation
and connected on both sides (t' = +w/2) at the bound-
aries r= a. The continuation of a null path hitting
the boundary in one patch (path A in Fig. 5) can
also be represented on the same diagram by the
reflection of that path about the /=0 axis. For
convenience this continuation, in Fig. 5 (path &),
has been translated upwards by 2m, which is al-
lowed by the symmetry properties of the diagram.

We observe that timelike world lines never reach
r = a but continue oscillating through "mirror"
universes if Up'&j. , or bounce off to r= in a mir-
or universe if Up &1.

VI. CONCLUSIONS

We have presented the maximal analytic exten-
sion of a nonsingular solution to a generalized the-

/
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'i X ( I r'
%~I//
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FIG. 5. Penrose-type diagram for extended coordin-
ates, showing an infinite chain of asymptotically flat
regions isometric with those in Figs. 3(a) and 3(b).

ory of gravitation and electromagnetism. The be-
havior of timelike world lines is qualitatively the
same as in the Reissner-Nordstr5m solution, in
that a "wormhole" with a pulsating throat occurs
in the solution. The manifold now has a boundary
which hides the singularity at r = 0 in a sphere of
radius r=uegfor all cases 4''&m', 4''&m',
and 4m@'=m'. The physical universe is now free
of infinite curvature and infinite energy densities.
Radial null world lines bounce away from r = a into
a time-reversed manifold, and the solution pos-
sesses both timelike and null world line complete-
ness.

APPENDIX A

We shall now provide explicit details of the integration of r(r) and r (r). The basic integral to be con-
sidered is

r2'
(r - r )(r - r )(1 —a'/r')" '
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%e have immediately that

l y4 g4 1/2

+„,=~F(g, S) —D2 aE(g, S}+ (A2)

where 4 = cos '(r/a), S= 1/)[2, and E(4, S} and E(q, S} are the elliptic integrals of the first and second kinds,
respectively. Moreover,

J (y y )(y4 g4) / (y4 a )
~4 (y4 a4)l/2 4 (y 2 r 2)(r4 a4}1/2 + y4

(y 2 y 2)( 4 4)1/

~ '+( — ')'"
F( S)

1 (r"(r '-—r,'),' 2(,' — ')"' (r,'r' —a')+[(,'+a')(r' —a)]"'I

all(a, -r,'/(r, ' —a'), S) 1
(A3)

where II(g, y,'/(r, ' —a'), S) is the elliptic integral of the third kind.
Since r,'/(r, ' —a'}&1, the elliptic integral of the third kind can be written as'()

&, S ', S +Eq, S

1 y g 1/
( yg(y 2 a2)(y2+ g2)]1/2+ y[(r 2+ g2)(y 2 g)]1/2

F2a 4 y +g [y [(r 2 a2)(r2+ a2)]1/2 y[(y 2+ g2)(r2 g2)]1/2

Combining (A1)-(A4) we finally obtain Eq. (4.12).
From Eq. (2.3) we have

(A4)

[r(r, + r }—r,r )dr
(r - r,}(r r)(1 —g/'-/r4)1/2

df'

(r-r.)(y-r ) (1 —a'/r')"'

A
(y4 g4)1/2 *(r) .

The exPlicit result for r(r) can then be obtained from (A2} and Eq. (4.12

(A5}
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