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In this paper I investigate the static, spherically symmetric, pure electric, source-free solutions to the most

general second-order vector-tensor theory of gravitation and electromagnetism which is such that its field

equations are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of

charge, (iii) in agreement with Einstein's equations in the absence of electromagnetic fields, and (iv)

compatible with Maxwell's equations in a flat space. These solutions (which are given in series form) bear a

strong resemblance to the Reissner-Nordstrom solution (of the Einstein-Maxwell field equations) in the

asymptotic domain; however, they differ quite radically from the Reissner-Nordstrom solution in the vicinity

of the source. In addition it appears as though many of these solutions are only compatible with electric

monopoles of finite extent,

In Einstein's theory of gravitation, the field
equations governing the symmetric Lorentzian
metric tensor g,& and the electromagnetic vector
potential g, are'

G"=Ss(T"+T„")

nected subset of R x R'. Let r, 6}, and Q denote
spherical polar coordinates on R' and let & denote
the standard coordinate on R. We assume that the
line element ds2 and electromagnetic field tensor
I' have the following forms on M:

E' =4'' and

ds2 ~0 (d0 + ~1 I3 ~l + ~2 (d2 + ~3 g) ~3 (6)

where

&.a =- 4o,.—4.,o,
T"= (/I4)v(E*-'E'. ,'g'~E"E.—,)—,

and the tensors 1'j and &' appearing in Eq. (1) re-
present the energy-momentum tensor and charge-
cur rent vector of the sources.

The results of Refs. 2 and 3 suggest that a pos-
sible alternative to (1) is

2b' (e' —1) kf'
, r r2 (8)

F =f(w'3uF —&a'8&v') =E(dtdr —drdt}, ('I)

where

co'=—e'dt, ~'=—e dr m2—= rdg, A)3-=r sino

and a, b, and f are functions only' of r. The lin-
early independent differential equations resulting
from (3), (4), and (5) areb

XG" + pg" = Sw(XT" +kA.")+ SvTy"

~g$ J I kP +g4$0tic 4 Jt

where ~, g, g, and k are constants' and

(3)

e-bb + ( ) f2 f (3e-2b 1)r

e 'b a" —a'b' + (a')b + '&a' —b'
r

A'~ -=—(E„Eb' R * +*E"' E'b , ). .
b

The uniqueness of these generalized Einstein-Max-
well field equations is discussed in Ref. 2.

In order to guarantee that Eq. (3) reduces to
Einstein's field equations in the absence of elec-
tromagnetic fields and that Eq. (4) reduces to Max-
well's equations in a flat space it uill henceforth
be assumed that ~ =1, g =0, and X =1.

%e now seek a static, spherically symmetric,
pure electric, source-free solution to Kqs. (3) and
(4) whose underlying manifold M is an open con-

2'
=f'+ If (b'-a')-2f'1, (10)

and

kf'+—— Lf'(1 e-bb)+2fb'e bb]r r2

where a prime denotes a derivative with respect
to r. This system of differential equations is not
functionally independent since (10) is a consequence
of the other three equations.

We now examine solutions to the above equations:
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Equations (8), (9), and (11) imply that

a =-b-
y (12)

where y is an arbitrary real constant with units of
(length)'. This expression for &, in conjunction
with the boundary conditions presented in Eq. (17),
gives the following for large y:

and

C
r'+k(e z~ —1} ' (13)

2M Cz kCz kMCz
e =1 — +—+ — +Or 8

2r4 2rz (18)

where C is a constant. Thus determining & spe-
cifies f and a (up to a quadrature). Equations (13)
and (8}give

2M (4Mz —C') 4M (2tIP —C')

(C4 —12hPCI + 16M4)

«r tt ( —e ")1=r,~k(e zn -1). (i4)

When k =0, (3) and (4) reduce to the Einstein-Max-
well fieM equations. Indeed, the general solution
to Eq. (14) in this case is

M (12C' —k Cz —64hPCz +64M')
+ 2y5

(19)

epb

B= -kC aznd-7 =-r [r2 +k(e 'z —1)] . (is)
In summary we have demonstrated that the prob-
lem of solving Eqs. (8)-(11)reduces to solving Eq.
(15) for &.

I have been unable to solve Eq. (15}in closed
form and I believe that it is impossible to ex-
press the general solution to Eq. (15) in terms of
elementary functions. Consequently, I shall now
present series solutions for 7, e", e", and f
which are valid in the asymptotic and near-field
regimes.

The asymjztotzc form of the metric and electro-
magnetic field We assume . that as r —~, ez', ez,
and f have the form

(where M is a constant) which leads to the Reiss-
ner-Nordstr6m solution of general relativity. Thus
soe saba/E heneefoyth assume that & 4 0. Then Eq.
(14) can be written as the Abel equation (of the
second kind)

Br
3y2 +

T

where

2P~ 3QC2 4/2~2
-y2 + y3 4y4 + y6 py~

117~2C4 8&'M'' 160~

Thus we see that Eqs. (3) and (4) predict that in
the asymptotic regime the electric field will not
go exactly as C/rz far from the source, but will
have a "correction term" of order y ' involving
the mass of the source. Perhaps this can be used
to set bounds on the magnitude or sign of ~. In
passing one should note the similarity between the
above solution and the Reissner-Nordstrom solu-
tion.

The near fzeld form -of the metric and electro
magnetic field If we se. ek a solution to Eq. (15)
which is of the form

oo

r =pa„r" +gt „r
ff= 0 I-$

where P is a positive integer, then all of the &„'s
must vanish. Consequently, we will look for a
solution of the form g „"~a„r". There exist two
cases to consider.

Case (&): ao is an arbitrary nonzero constant
and a, =0. This solution to Eq. (15) takes the form

ez =1 —2M/r+O(r 2),

e"=1+0(r ')

f=C/r'+O(r '),

(17)

gPy 4 ggy5 g~y6 Q+2y7
0 3 2 5a 8a ' u 2 16a ' 35+0

8 5B' 16''y

where M and C represent the repass and charge of
the source, respectively. In this case for large y,

8 pe ~2 ~y2 9gPy
4y' 5y ' Vy' 32y'

For small y the metric and electromagnetic field
are expressible as in Eqs. (6) and (7) with

uA 3Cy C & 3Cy'
2kA2 kA~ 8k&A4

2B~ By3
15r9 10r'o

e2~+, , +O(r'} (22)
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and

gb =—1-—+ 1+—
A A, 2k A~

QR y'3
1+——+0 ~

k

Cy' r~ 3C~& r~' kA-lokA kA +O("}

(23)

1 +~ +—y'&

~
r' +O(r)75 15

32k'a, Sa,~

k - r~e"=
k+a, 4(k+a, )

(3k +a, )r ~)
32a, (k +a, )'

(27)

where A =-a,k ' and 0. is a positive unitless real
constant that arises in the computation of e".

Thus we see that Eqs. (3) and (4) predict that in
the vicinity of a point source the electric field E
need not go as C/&' (as it does in the Reissner-
Nordstrom solution), but rather E can have the
form E =(constant) &+O(r').

It is not clear to me whether any of the above
near-field solutions can be joined to the asympto-
tically flat solutions (18)-(20) with or without in-
tervening "solution patches. " In addition I have no
idea whether the above expressions for e" and e"
are different from zero throughout their domain of
definition —although they are nonzero on a deleted
neighborhood of & =0.

Let us now consider the nature of the singularity
at & =0: Equations (6) and (7) yield &,&

*F' =0 and
F,+' =-2f . Using Eqs. (22}-(24)we.find that

o.~'Cx 3& 27& 105~1- +
a, 2a, 16a,' 64a,'

2961&8
O (,0)2"a,

where n is a positive real constant with units of
(length) '. Thus, as in the previous case, for
small & the electric field E goes as E = (constant}r
+ O (r').

At present I doubt whether any of the above solu-
tions can be joined to the asymptotically flat solu-
tions presented in Eqs. (18)-(20), however, I have
no proof of this claim.

As in the previous case as &-0 the scalar field
E,~E" is well behaved, while, unless 2k+3', =0,
the scalar curvature R blows up since

F,P '= —k, , 1+k, —
k +O(r'}, (25)

FQ' =k 1 — + ~+0(~)2 3+ 3+
k 2a, 2a,'

and hence F,P ' is well behaved as &-0. However,
the scalar curvature R is given by

3a, 1 41 15

6C' 1 1 C'r
kA w A 2kA~ (26)

3+~ 3+ — ~7 117~ 0

For small & the metric and electromagnetic field
are given by Eqs. (6) and (7) with

which blows up as &-0. Thus the geometry of
our spacetime experiences a "genuine singularity
at &=0.

Case (ll): a, =0 and a, '=B in Eq. (21). Since
B=-kC', k must be negative.

This case represents a "singular solution" to
Eq. (15}, vis. , ~'=Jr, r), where 4(r, 7)=-3r +Bra '
is analytic on a neighborhood of (r, 7') = (0, 7,) only
so long as 70+ 0. However, case (ii) demands that
7 =0 at &=0.

The series expansion for 7 is

These expressions for F,+"and & show that none
of the above solutions can be isometric to any of
the solutions presented in case (i).

The two sets of solutions presented in cases (i}
and (ii) above represent the only static, spherical-
ly symmetric, pure electric, source-free solu-
tions to Eqs. (3) and (4) which arise from a solu-
tion v to Eq. (15}of the form (21) and which are
valid in a deleted neighborhood of & =0. Each of
these two classes of solutions predicts behavior
extremely different from that of the Reissner-
Nordstr5m solution.

In Ref. 3 it is argued that a possible alternative
to the usual energy-momentum tensor T, & fcf., Eq.
(2)] of the electromagnetic field used in general
relativity is provided by &,&=-1'&&+kA.&, , where A, &

is defined by Eq. (5). We shall now consider the
behavior of T&, and C&z in the vicinity of &=0. To
that end suppose that the constants A and a, ap-
pearing in Eqs. (22) and (27) have been chosen so
that A & 0 and 1 + a, /k & 0, so that the Killing vec-
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tor field 6/st is timelike in a deleted neighborhood
V of &=0.

I et 6 be a Killing observer whose world line lies
in V and has unit tangent vector s =e '6/Bt. Equa-
tions (2), (6), (7), (8), and (13) give7

f2 C
T(u, u) = a,nd f'g, u) =

For case (i),
Q2r2 ~ C2r2 2r3T("") 8sIA I+~A -lA "("' ~

C2r~ r& 1"" =8vfAr '2&A IA'

and for case (ii),
C2 ' 3& 3r'

T(u, u)=, 1- +,+0(r')
8ma,' a, 2a,

3r2 j 5+f'P, u)=, 1 — +,+0(r')
8galr2

I 4al 32a12

In either case T( us) is extremely well behaved
as 6 approaches the singularity while T (u, u) can
go to either positive or negative infinity as &-0
depending upon our choice of & in case (i) and s,
in case (ii).

Owing to the above work we see that if we were
to regard g&z as the energy-momentum tensor of
the electromagnetic field in the theory of gravita-
tion and electromagnetism based upon Eqs. (3) and

(4), then it would predict regions of unbounded en-
ergy density for some solutions. Moreover, when
k & 0, V']~ admits regions of unbounded negative en-
ergy density for certain solutions to Eqs. (3) and
(4).

Finally, note that the results presented here do
not imply that for every choice of k+0 there exists
static, spherically symmetric, asymptotically
flat, pure electric, source-free solutions to Eqs.
(3) and (4) which are valid for a/I &&0. In fact it
may be that for certain k's no asymptotically flat
far-field solutions can be joined to solutions valid
near & =0. My motivation for making this state-
ment is based upon the following observations.

Suppose that we seek a source-free solution to
Eq. (4) under the assumption that our metric is

the Schwarzschild metric and that our electric
field has the form presented in Eq. (V). In this
case Eq. (4) reduces to Eq. (11)with e "=1
—2M& '. As a result Eq. (13) gives

F=, „(dt@dr —d~S dt),r' —2kM

where 2M«&~ for Schwarzschild coordinates.
Transforming I' to Eddington-Finkelstein coordi-
nates (u, r, 8, Q) (for which 0 «&~) involves only
replacing dt by . Consequently, under our pres-
ent assumptions F is well behaved in the vicinity
of r =0, as was the case for the near-field solu-
tions discussed above. If »0, then I" is singular
at & =(2&M)~' and the scalar invariant E,~'
as &- (20M)' ', implying that the electric field ex-
periences a singularity before we reach & =0. This
leads us to susPect that a similar phenomenon may
occur in some of the static spherically symmetric
solutions to Eqs. (3) and (4) presented here. Our
suspicions are heightened by the fact that when the
function e —= C&(&' —2&M) ' is expanded in powers
of & ' we find that

2kM 4k~~ 8k'M'-r2 "rs+ ~
2"k"M+''' + rgw

Upon comparing this series with the expression
for E presented in Eq. (20) we are naturally led to
conjecture that E must contain & in it and hence is
probably singular when» 0.

Now if for a certain range of k the asymptotically
flat far-field solutions presented in Eqs. (18)-(20)
could not be joined to near-field solutions then we
would conclude that the field Eqs. (3) and (4) do not
admit asymptotically flat source-free solutions
corresponding to an electric monopole point source.
Thus for this range of k every electric monopole
with an asymptotically flat external field would
have to have a nonzero radius.
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here. I also wish to thank the National Research
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~My notational conventions are the same as those em-
ployed in C. W. Misner, K. S. Thorne, and J.A. Wheel-
er, Gravitation (Freeman, San Francisco, 1973),
with the exception that I denote tensor indices by
lower-case Latin letters when the tensors components
are deterInined with respect to a chart.

2G. W. Horndeski, J. Math. Phys. 17, 1980 (1976).
3G. W. Horndeski and J. Wain~right, Phys. Bev. 0 16,

1691 (1977).
The constants X and X are unitless while p and A have
units of (length) 2 and (length)2, respectively.

If we were to allowa, b, andf to depend upon both r
and t, then there would exist a time coordinate T on
g such that in terms of the chart (T,r, g, feei),

ds 2 e2AgT2+ 82Bgr2+r2(gg 2+ sin2g gy2)



17 STATIC SPHERICALLY SYMMETRIC SOLUTIONS TO A. . .

and

E=g (dT ck-drdT),
where A, B, and g are functions only of r. conse-
quently, the staticness of the spacetime is a conse-
quency of the source-free version of Eqs. (3) and (4)
and the assumption of spherical symmetry. For the

proof of this fact see G. W. Horndeski, J. Math. Phys.
(to be published).

6The details omitted from this paper can be found in
Q. W. Horndeski, UUniversity of Waterloo report (un-
published) .

VEach side of Eq. (8) is equal to Sx 7'(N, u).


