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Pole terms in the sum rules for single-pion-observed inclusive reactions
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Pole terms in the sum rules for single-pion-observed inclusive reactions induced by electromagnetic currents or
hadronic neutral weak currents are estimated in the deep-inelastic region.

Recently, this author studied the physical ap-
plication of the algebra of bilocal currents" based
on null-plane quantization. ' Among the commuta-
tors

[d."(xly), dgul~)] I.+ =,+=.+=.+=. ,

the parts p = v = +, x=y, and [L[, =+, v =i, z=y and

p =+, v =-, and those where the vector currents
are replaced by the axial-vector currents were
mainly used, since the neutral-vector-gluon model
gave the same results as those of the free-quark

model in the above cases. ' In the previous work, '
we encountered various pole terms due to a pion
bremsstrahlung, and the sum rules in the case of
the nucleon target had been derived only in the
single-m -observed inclusive reaction. The pur-
pose of this paper is to discuss the above pole
terms in other reactions (reactions in Sec. II and
in Sec. GIC in the previous papers').

First we consider the inclusive reactions y~
+N-m ~+X. According to a usual technique' the
hadronic part of the process will be given as

T",~z = ~, d xd'yd'z exp[ iq (-x-z)+ik. y)

x(q.q, &N(p) 1[T*(d."(x),J l(y)), T(d (z), J,"(0))]IN( p) &

—iq, d(»'- y')&N(p)I[[ &."(x), d", ( y)], T(d."(z),d,'(0)) ]IN(P) )
—iq, ~(z')&N( p)l[T*(J."(x),d", ( y)), [z,"(z),d,'(0)]] IN( p))
-&(»'- y')d(z')&N(p) I [[d,"(x),d", ( y)], [J,"(z), d,"(0)]]IN(P)& },

where a* =a'= c =1 —i2, b =d specifies electromagnetic currents, the partially conserved axial-vector cur-
rent (PCAC) relation is used, and a spectral condition is used to obtain the commutator. Since T,";„sat-
isfies gauge invariance, and the average over spin is taken, it will be given as

(p k)'
& t, d=G"'VI, + & P "P'+ G"" V +(P "K"+P'K")V +K "K V

where

p QG"' =k "k" —k'g"' P" =P" —", k" and K" =q kk" —k'

and V, (i= 1, . . . , 4) is a function of p q, q', q k, k', and p k. Now we take q' =0, q =0, and after that
q =0 at the right-hand side of Eq. (1). At this limit there appear many pole terms as shown in Figs. 1-5.
Then Eq. (1) will be written as

3

T 0 v = ~ QP v +gP U) + Cll v +DP v
abed ~ i 1 4j=l

where

(4)

1
I s 2( +)2 d'y exp(i k y)[&N(P) Id."(0)IN'( P)&&N'(P) I Cf l ( y)&,"(0) IN'( P)&(N'(P) Id!' (0) IN( p)&

—&N(P) ld,"{0)IN'(P)&(N'(P) ld,'(0)d&(y) IN'(P)&&N'(P) ld."(0)IN(P)&], (5&
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FIG. 1. Representation of pole term A~&v, the dashed
line denotes the bremsstrahlung pion.

FIG. 2. Representation of pole term A~& + A"&", the
dashed line denotes the bremsstrahlung pion.

A""+A""=-
2

1 d'xd'yexp(ik'y)@z' —y'&{&N(p}I[dl'(x) ~l(y}ldu(o) IN'(p}&&N'(p) Id!'(0}IN(p&&

+(N(p) Id."(0)IN'(p))&N'(p) ld."(0)[d b), d", (y}] IN(p)&}

1
d yd'z exp(ik y)5(z+){(N(p)l J,"(0}IN'(p))(N'(p) IJ ~(y)[8,"(z),J~(0)] IN(p))

+&N( p) I [J". (z), z,"(0)]d ~&(y) IN'( p)&&N'(p) ld."(0)IN( p}&}, (6)

2f ' ""~""~ (2~}'2X+ (2z)'(2n )3

x [&N(p} l&l( y}IN'(n}& I X&&N'(n} I &."(»IN" (n)&&N "(n}I&!'(0)IN'(n}&&N'(n} I &x I J,"(o}IN( p}&

- &N(p) I J,"«) IN'(n)&l x&&N (n) I&5+(0) IN"(n)&(N"(n) I&!'(»IN'(n)&&N'(n) I&xl&",(y) IN(p» l, (»

g]iV+gP V
2

4, , ~ d'X d nd yd z exp(ik y)6(z+)Z
(2 )32 (2 )3(2 p

x{(N(p) lz&(y) IN (n)& Ix)&N (n) ld."(0)IN-(n)&(N-(n) l(xl [d". (z), d,'(0)] IN(p)&

+(N( p) I [J,+ (z), J~ (0)] IN'(n) & I X)(¹(n)I J,+ (0) I N "(n))(N (n) I(XIj~ ( y) IN( p) & }
4 . + +~ dX d3n

2f a d xd yexp(ik y)5(x —.y )~ (2mp2X' (2 )'(2 ')2

x {(N(p) I [J, '(z) gl(y)] IN'(n)& lx&&N'(n) ld', +(o) IN"(n))&N"(n) l&xld,"(o)IN(p))

+&N(p& I~~ «}IN'(n}) Ix&&N'(n) Iz", (o) IN" (n))(N "(n) I(x I [J,"(x), J",(y)] IN( p)& }.,

1 d3X d3n
(27f)32X+ (2p)~(2n+) 2 +

x [{&N(p) Id & ( y) IN'(n)& I x&&N'(n) I
J", (0) IN"(n)&(N" (n) I & XIz,"(0)IN'"( p)&(N ( p) I

z", (0}IN(p)&

—&N(p}ld,"(o)IN'(n)) Ix&(N'(n) lz,"(0)IN"(n)&(N"(n) l&xlz", (y) IN"'(p)&&N"'(p&lz,"(0)IN(p»}

+{&N(p}I&."(0}IN'(p)&«'(p) I&", (y}IN"(n)& Ix&&N"(n) fd!'(0) IN"'(n)&(N (n&
I Xl&,"(0)IN(p))

- (N(p) Id", (0) IN'(p}&(N'(p) I Z,"(0)IN "(n)) IX&(¹'(n}IZ', + (0) fN '(n))(N"'(n) l(X fd", ( y) I N(p)&}],

(9)



17 POLE TERMS IN THE SUM RULES FOR. . . 363

(p) (p)
)

/N(p )

N(p)
y„(4) hl(p

FIG. 3. Representation of pole term B~&',. the dashed
line denotes the bremsstrahlung pion.

FIG. 4. Representation of pole term B~&"+B'&', the
dashed line denotes the bremsstrahlung pion.

d'xd'yd'zexp(f& )y(()x' y)-((z)'&& )(Vp)l[[&,"(x),Z", (y)], [&", (&), &,"(0)]]l&(p)&, (10)

where N' or N" or N"' is a suitable nucleon and is
determined in each term according to the internal-
symmetry index, gr denotes the summation over
the intermediate states X, and d'p denotes dp ++.
Now we apply the method of Dicus, Jackiw, and
Teplitz' by using the fact that expressions (5)-(10)
are odd under exchange of a c, 5 d, p. —&,

k --k: We integrate over k, change the variable
from k to v =p k, and assume the interchange of
v integration and set k'=0. In the previous
papers, ' the contributions from expressions (5),
(5), and (10) were estimated. Therefore we con-
centrate on the pole terms (7)-(9). First we take
p, = v =+, and the target as the proton. After the v

integration, the pole term B", will be considered
as the difference between the multiplicity in the
reaction ye +proton- proton+X and that in the
reaction ye +proton -neutron+X. At high energy
the multiplicity of the proton or the neutron mill be
expected to be the same since mainly pions are
produced. Thus B", will contribute only in the
low-energy region. But in this region, we always
get the factor [G(-k ')]', the form factor for the
reaction nucleon+currents -nucleon+ (a suitable
low-energy state or the vacuum). Then, if we
take a large )t' =-k ' (for example, above 5 GeV'),

these contributions will be strongly suppressed,
and will be neglected. Therefore B", will be ne-
glected in the above kinematical region. Next we
consider B,"+B.".Since we consider the order
of this term we set the second and fourth terms
equal to zero, because they are zero in the rest
system df the nucleon. The first and third terms
are Hermitian-conjugate to each other, therefore
they will be given as

where

R EF(2.) 2X (2 ) 2

x&N(p& l~ & (0& I&'(s)& I»&ff'(s& I~!'( ) I&"«»
(12)

F = ~"' &&"(s&I&xi&". (0) l&(p)&,

and Re(EE) denotes the real part of EI'. We apply
the Schwarz inequality of the following form:

oo d'X ddk p ( ). . . , (2v)'5'(p+0-X-n)Re(EF)

dk 3 + 3 + 2m) 6 p+k —X-n) E

x dk
2 '2X' 2 )'2, (2m)'O' P+k-X-n) + '

(14)
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Since

2m 6 p+k-X-x E dk D4+,
(15)

J
Io 4'X d3

dk
(~ ),~, (2 ),2, (2v)'6'(p+k-X-n)lkl'

is proporbenal te f dk 3", , the right-hand side
of E(1. (14) wiD hs estimated to be zero, if we take
a Iufficiengy la~ k' =-k '. Therefore we con-
clude that ,"+", will be neglected also in this
kinematical regis. Finally we consider C", , and
find it to be ~to by the same kind of discussion as
above. Now ere get'

dvk '[V~+(v, -k ') —V, (v, -k ')]

2(0
, [1-g„'(0)]l,+, (10I, —1) P —A(n, 0)

dQ

+ ",P —[A'(a, 0) + aA'(a, 0}],E„(0) dn
Sf,'

where

(16)

(p l(1/2 )[q(x)y"q(0) —q(0)y"q(x)]lp&

=P"A(P x, x')+x"A(P x, x'),

(p I (1/2&) [q(x)y" y'q(0) —q(o)y" y'q(x)] I p&

=S"A'(P x, x')+P" (s x)A'(P x, x')

+x"(x s)A'(P x, x ), (1f)

and g~(6} is the nucleon axial-vector coupling con-
stant. The same kind of discussion cannot be ap-

plie(II to the g =+ v =i case, since the contribution
from the high-energy region way sot be neglected.
But in the case of p =+ v =-, it will be applied and
we get

dv [V~(v, -k' }—V~(v, -E' )]=0, (18)

where

C„=diag(~ ——, sin 8v, ——,+ 3 sin 8v, -2 + g sin 8v,

—,
' —+sin 8 )

and C„=diag(--,', —,', —,', --,'). By setting l(, =+ v=+,
we get

(10Io —1) daA(n, 0)+, g~'(0)I,6,'

—,", o —[w ~ (,o(- Z(, o(]I ((o(g„(0) da

~~2is neglected, since k~ is large.
It is straightforward to discuss the reaction in

the case of neutral currents. We take the currents
as'

V„",
& (x) =q{x)y"Cvq(x)+q(x)y"y'C&q(x}, (20)

where

f dv [W,o (v, -R~ )- W,'(v, -k' )]= [1+(1—2 sin'8v}2] [1-g~'(0)],I,
0 'lf

+, [sja'8v(1 —2 sin'8v)+ (20 sin'8v - 16 sin'8v + Q)I,] P —A(a, 0)

sin'8v(1 - 2 sin'8v) P —[A'(a, 0}+ aA. '(a, 0}], (21)

and bf( sedating g =+ v —,we get

dv g, v, -k —5,' v, -k =0, (23)

T""~-gv'W, +p"p"I', —fed" p ksW, + ~ ~ ~,

rorr~ lo KO. (O).
Fieally ~ notice %at there is another possibil-

c4y. M we aegu~ the dominance of the Born term
(~~ lX) is the vacuum) in W ' and C", ", sum
mise slightly different from those listed above
vill b obtained. These sum rifles will be useful
i +w k' =-k~'. If the above ~roximation is not

~g, we can take into account the contributions
f"~ Re low-energy region. These contributions
will he measured through the exclusive processes.
If Sech an analysis is done, there arises an inter-
eheg application: First, as noted in the previous
yeyers2 we can apply the results to the reaction
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y+N m'+X, and second, to the reaction m'+N

—n'+X.
Note added. After this paper was submitted,

the target spin was taken into account, and, in the
course of the work, some errors in the previous
paper (Ref. 2) have been found. First, the calcu-
lation of A,""or A,""+A,"" is misleading due to in-
adequate treatment of internal symmetry, and
second, the sum rule in the case of p, =+, v=-
is wrong due to inadequate treatment of symmetry-
breaking terms (see Ref. 7). These two points
are corrected in this paper. Further, the proof
of cancellation of C at high energy due to intern-
al symmetry may fail, but there is another can-
cellation mechanism at high energy: a positive
or negative helicity state of the final nucleon gives
a contribution opposite in sign in the case of B2""
+ B,""or C,"", which has been already pointed out
in Ref. 6 in the case of n production. This fact
makes the sum rules meaningful even in the case
of p, =+, &=i, and makes the calculation of the
form factor possible in the deep-inelastic region
if we use the light-cone current algebra. These

(p)

FIG. 5. Representation of pole term C~&", the dashed
line denotes the bremsstrahlung pion.

points, together with the correction of other trivi-
al errors in the previous paper, will be made
clear in the near future.
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