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Inelastic eikonal phenomenology in a stationary-phase approximation. II
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The interplay of unitarity with solutions of certain nonlinear Euler equations, obtained in a semiclassical

approximation of all the eikonal pionization graphs (tower and nonplanar), is shown to generate reasonable

features of hadron collisions at ultrahigh energies: total and inclusive cross sections rising as (rapidity), flat

inclusive rapidity plateaus, and an absence of correlations between emitted particles.

I. INTRODUCTION

We would like to describe a calculation in which
a "semiclassical", or "averaged" estimate of the
relevant elastic and inelastic eikonal functions is
used to provide a realistic model of hadron re-
actions at ultrahigh energies. The model is am-
bitious in the sense that an estimate is attempted
for all the connected, nonplanar (checkerboard)
eikonal graphs which contribute to pionization ef-
fects; the model is realistic in the sense that a
detailed formulation of s-channel unitarity is sat-
isfied by certain solutions of the nonlinear, semi-
classical "Euler" equations. Even though inter-
acting Pomerons (and fragmentation effects in gen-
eral) are not included, the results obtained re-
semble those recently found' in supercritical
triple- Pomeron theories —total cross sections
rising as (lns), descriptions of inclusive reac-
tions, and essentially no correlations between emitted
particles. The latter feature is to be expected in
any model wherein quantum fluctuations are av-
eraged over by a semiclassical approximation;
but what is most agreeable here is the role played
by unitarity in selecting between possible solutions
of the Euler equations. One finds a legitimate
dynamical procedure for treating high-density,
large-rapidity collisions in terms of effectively
"free" modes, coIIstructed out of the strongly in-
teracting quanta of a typical Lagrangian field theo-
ry.

The present calculation proceeds as follows:
Corresponding to a fundamental Lagrangian inter-
action

2' =igg y„A „g- 2
vA „',

one first considers the eikonal approximation to the
scattering of a pair of nucleons P by the exchange
of all possible neutral vector mesons (NVM) A

s~ ) —exp DiX( 5

2 %r %r

xexp ig' F,&, w 5,'I, o'

or

iy= exp
2

where

@exp ig' 5, 4, w 5,
s 0
conn

(3)

(u)-pu d$&(u —z, +@, )

denote the classical currents of the interacting nu-
cleons, with momenta p, , and spatial coordinates
z, ,; the impact paramter is b = (z, —z2),; D, and

&„„6,denote pion and NVM propagators of masses
p and m, re spectively; and a, (v) = s, (1 + Xv n., )

'
represents the NVM propagator in the presence of
a ficticious, external, c-number field v(x). A
special choice of this propagator,

and between different NVM's, one exchanges pions
m in all possible ways. From this array of possi-
ble terms, one then extracts only those pioniza-
tion contributions corresponding to the leading
rapidity dependence of all ladder graphs contain-
ing pions with ordered rapidities. This "hybrid"
model has strong resemblences to Q' theory and
to QED, and it has proved extremely convenient
in reproducing phenomenological versions of many
cumbersome calculations, including a represen-
tation of effective triple-Pomeron physics. '

As previously discussed in several other con-
texts, ' this set of interactions and extractions may
be givn an eikonal representation in a functional
way by the expressions
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together with the subsequent replacement

r d
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with the normalization chosen such that (da„ /dt)
=

I
T I'/ws'. Unitarity requires that a„~=a, +a,

with

a„, = ImT(S, O} =—2 d'b Re(1 —e'")4
(7a)

d2)) II-e'& I' (7b)
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Expansion of the g'-dependent exponential of (2}
provides a representation of the conventional ei-
konal approximations. Omitting all self-linkages
(all pion radiative corrections to the same NVM
line) to order g', one obtains just the old Ldvy-
Sucher result' i X,(s, 5) = —(ig'/2w)y(s)KO(mb),
where y(s)-1 as s/m'- ~, in this NVM theory
(were the NVM replaced by scalar mesons A, then
y(s)--m'/s as s/m'- ~). The g' term of this ex-
pansion contains all the ladder and crossed pion
linkages between a pair of NVM lines. Upon ex-
tracting the leading rapidity dependence from the
set of ladder graphs [the simplest way is via (4)
and (5) ], one reproduces an absorptive eikonal
i X, —a,s'2/lns exp [-a,b'/Ins] equivalent in physi-
cal content to the original Cheng-%u, Chang- Yan
calculations', here, the a, are constants and
a, - X'/m'. (In a scalar-A-meson theory,
a, + 2- Xw/m' and the phenomenological choice a, =0
produces an effective, unitarized Pomeron, com-
plete with the correct cuts. ) Estimates of the re-
maining ip„,n ~ 3 are exceedingly difficult to ob-
tain, and when obtained are difficult to believe. '

will again be used' to generate the leading-rapidity
dependence of the pion ladder graphs exchanged be-
tween any pair of NVM's. The subscript "conn"
specifies the retention of conriected graphs only,
with at least one pion linkage between any NVM
and the rest of that graph. The elastic-scattering
amplitude of a pair of nucleons is then given in the
familiar way:

In a recent paper, ' an attempt was made to in-
corporate the effects of all the g, in an approxi-
mate way, by performing a semiclassical calcula-
tion for an averaged, "self-consistent" pion field,
whose properties would reflect the probable im-
portance of the higher eikonal terms in the limit
of ultra-high energies and in the region of small
impact parameters. One intuitively expects this
to be an important limit and region because there
exists the possibility of rapidly rising, and oscill-
ating s dependence coming from all the remaining
g„, which can tend to overpower the dampening
effects of the impact-parameter dependence of such
higher t-channel thresholds; what is at issue here
is the interplay of s and b dependence, as both
variables increase. In Ref. 7, a formalism was
set up to perform such an "averaged" estimate by
first converting the functional differential opera-
tions of (2) and (3) to an equivalent functional in-
tegral —along with the corresponding functional
representations of all the pion inelastic cross sec-
tions —and then approximating these functional in-
tegrals by a stationary phase method, with the
condition for stationary phase providing the "semi-
classical" Euler equation for the "averaged" field.
At very high energies, one may expect that every
pion exchanged between a pair of NVM's will, in
a leading- rapidity, ladder- graph approximation,
generate a factor of P essentially corresponding
to the available phase space for the inelastic pro-
duction of a pion with limited transverse momen-
tum, and hence one is faced with an effective
strong-coupling problem, in which it is not accept-
a,ble to neglect any pa, rticular sets of eikonal
graphs. Mathematically, one evaluates an integral
in such a strong-coupling limit by a method such
as stationary phase; physically, one is shifting the
description from one of overly many quanta to one
of a single, averaged field.

This type of calculation has one distinct advantage
over other more properly classical computations,
wherein one merely hopes that quantum fluctuations
are small, and will not disturb the classical ef-
fects obtained. Because one is here dealing with
an eikonal representation of quantum effects (which
are then to be approximated by a semiclassical
technique), one has the added feature of s-channel
unitarity, relating inelastic pion emission at every
impact parameter to the imaginary part of the el-
astic eikonal. After the transition to an averaged
field has been made, this requirement of unitarity
translates into a restriction on the possible solu-
tions of the Euler equations. Hence an averaged
field that satisfies this unitarity condition provides
an approximate representation of all the compli-
cated, nonlinear, internal dynamics specified by
the original Lagrangian interaction, and one which
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is also consistent with the quantum-mechanical re-
strictions of probability for scattering and all pro-
duction processes. Such a solution has every right
to be considered as providing an "average" des-
cription of the physics in the regions in which it
happens to be valid. Because such averaged solu-
tions are intrinsically noninteracting, one has a
framework in which the dynamics may be thought
of as essentially that of uncoupled degrees of free-
dom, with the averaged solutions providing an ef-
fective representation of noninteracting "parton"
modes.

One may add that it is precisely because the
Euler equations are nonlinear that the method
works at all. That is, solutions to a particular
nonlinear Euler equation have no reason to satisfy
another nonlinear relation, that of unitarity, one
cannot expect miracles. But because the semi-
classical equations are nonlinear, they involve the
magnitude, phase and branch of their solutions—
three parameters, or functions, rather than just
two. In essence, unitarity determines the third
quantity, for example, the branch; and in this
sense, the nonlinearity of the problem is essential.

II. CALCULATIONS

In this section, solutions to the Euler equations
are studied, approximated, and subjected to the
restrictions of unitarity.

A. General forms

We first reproduce the basic equations of Ref. 7,
without further discussion of their derivation.
Evaluation of the elastic amplitude and inelastic
cross sections in this eikonal model, by the meth-
od of a stationary-phase approximation to the rel-
evant functional integrals, was there shown to
lead to the nonlinear Euler equation

(8)

with

~ fy j=rg*) ~ q 4 I~. ,

Equation (8) is "self-consistent" in the sense that
each "quasipion" yp emitted by a NVM is defined
by the behavior of many (an infinite number of
such) quasipions along that line. Inelastic emission
then turns out to be described by the simplest of
all unitary mechanisms, as if no more than a sin-
gle particle is emitted by each multiperipheral
chain. The pionization form of (4), along with the
replacement (5), is here adopted for the E, I y j of

(9); physically, this corresponds to the modeling
of leading-rapidity, ladder-graph pions between
every pair of NVM's, with the latter themselves
exchanged in all possible ways between the scat-
tering nucleons.

In terms of possible solutions y, to (8), the
eikonal is given by

x=- w [w. ]- l f v.&v.

QQp
+ —Trln 1+ia,

&2
(10)

and this form will be used in what follows. For
small b this has essentially no effect; but in the
region of larger impact parameters close to
mb -Y, it ensures the Froissart bound in its
usual form, rather than mb - (Yln Y)'~'.

In momentum space, (8) reads as follows:

gyq. (&) =- 12)(2w)' b'+ p' q'+m' (q —b, )'+m' '

We do take seriously the trace-logarithm contri-
bution of (10), which might be thought of as a nor-
malization correction to the eikonal, and physic-
ally corresponds to a sum of quasipion linkages
between the NVM's such that no more than two
virtual particles are emitted or absorbed by any
NVM line. However, due to the nonlinearity im-
posed by unitarity, inelastic emissions still have
the form of just one particle ejected per chain.

One point concerning self-linkages along every
NVM line should be made, for the formalism of
(2)-(5) will automatically include such dependence,
even though the propagator (4) has really been
designed to reproduce those pionization effects
delivered by cross linkages between two different
NVM's. But one may expect that this difficulty is
relatively unimportant. For example, following
the procedure of Ref. 4, the s dependence arising
from cross linkages between n NVM lines produces
a factor s' ' '~""&" '& (a -&'/m~), while the effective
self-linkages along each NVM contribute a factor
(s'~'&", so that the net s dependence still grows a.s
s "~"",and it is the n' dependence of this exponent
which suggests the possibility of strong cancella-
tions generated by the higher p„,n ~ 3. For n =2,
the Cheng-Wu, Chang- Yan formalism is essentially
unchanged; while for n = 1, the Levy-Sucher eikonal
is multiplied by a factor of s' ', generating (by it-
self} a model of "rigid disc" scattering, with

0„,-Y'. In the context of the stationary phase ap-
proximation, such unwanted self-linkages may be
removed by subtracting from g the first-order
expansion of the trace-logarithm of (10),

PpX-X'=X-—» ~D,
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with

R(s/ ) &=-J 1 H'0'). ( *"(e ))-')', , (13)

where we reject, at the outset, any additional
mass-shell contribution to ™cp,. It is immediately
clear that finding solutions to (12) is a difficult
task. To simplify the analysis, we look for solu-
tions under the assumption mb & 1, which suggests
that the only significant values of q, in the inte-
grand of (12), will be limited by q ~ m. Hence the
R(q/m} factor may be approximated as

R(q/m) =Ro+i q R, —q,qP2~~, (14)

retaining only (the integrable) quadratic q depen-
dence. If the ~R,'~~ are of size m ', this manipula-
tion is e(luivalent to a cutoff of fd'q at q -m;
but nonlinear effects can serve to significantly
decrease q . For example, if m'~R,'&~ - Y, or
larger (and here we are assuming ultrahigh ener-
gies, where Y»1), then q '«m'. It is solutions
of this form, corresponding to sizable p„ that we
have in mind.

The substitution of (14) into (13) and (12), to-
gether with the use of (5), and the assumption
q

' «rn', generates

Evaluation of the trace-logarithm terms is per-
formed by an approximate evaluation of its nth
iterate, using the same approximation methods
followed in reaching (19), and then the sum over
all iterates (each is finite ) has been put into
logarithmic form by a simple continuation argu-
ment.

With (20} one can now supply a specific input to
the s-channel unitarity relation of Ref. '7, which
demands, for any such eikonal, that

Imp= —,
'

(Kq),)*D(„(kq),) . (21)

D(, )(1c) =(2w) '8(k, )5(k'+ p').

In terms of the explicit solution (19), this becomes

Im X= —,
' (22}

where the left-hand side of (22) is given by the

imaginary part of (20). We shall insist that any
solution for R, to (17) and (18}must also satisfy
(22).

where D&,) represents the (positive-definite) pion's
phase- space function,

and

0, =0 (by symmetry),

R2o =R25o, R2 =Ro/6m',

Ro' = —i ( exp [Ro —q/Ro ],

(15)

(16)

(17)

B. Approximate solutions

To solve (17), set R, = pexp[f(8+2vn)], where

p, 8, and n denote magnitude, phase (-v- 8- v),
and branch, respectively. Equating magnitude and
phase on both sides of (17) leads to the pair of non-
linear equations

with

g =3(gz)'v Y/2m', )) = —.'(mf))'.

By the use of these approximations, which follow
naturally for large R„or R„all the nonlinear
complexity of the original E(I. (12) has been trans-
formed into a single relation for a complex R„
(17}. If solutions to (17) can be found which have
the property

(p —)7/p) cos8 = ln(p'/$),

(p+ ))/p} sine= 4vn+ 28 —v/2.

Unitarity, as in (22), then becomes

2p'= -p cos8+ 2p' cos(2e)

+ aY[ln(1+ p —2p cose) + 2p cose],

(23)

(24}

Re(R, ) &0, (18) p'= p' cos'~ —p cos~

which is necessary for the convergence of the or-
iginal q integral of (12), then q), may be written
in the form

+ aY[ln(l+ p' —2p cos8) + 2p cose],
with a = (vX/2m)'. It will also be convenient to
write the ratio of (24) and (23),

(25)

)
. m'Ro

&v'Y (k'+ p')(k, '+m')' (19)

m R 2 R 2

It is then straightforward to substitute (19) into
(11), and obtain

tane=a(8+2v& -v/4),

2 I )7/p'

In(p'/$) 1+q/p' (26)

Since cos8& 0, we further restrict 8 to lie in the
range -(v/2) ~ 8 ~ v/2. The value of 8 specified by
(26) then depends on the values of n and A. For
most cases of interest here, n wi11 be large and
A will be small, such that the product An is either
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large and growing or large and finite as Y in-
creases. Thus the inverse of (26) is approximately
given by

~- tan '(2m&n)--- 1
2 2mnA

(27)

so that we have 8-v/2 in the first case and 8-8„
&a/2 in the second.

We begin with small b and work our way outward.
For g& p' we suppose that p'& $, and that A is
small although nA can be la,rge. Thus 8 = v/2 and
(24) indicates that p-47t'n, with the detailed form of
the Y dependence of p determined by the appro-
priate approximation to unitarity. From (25) one
finds

p'- a Ylnp', (28)

or p'-a YLn Y+. . . , for large Y. (For sufficiently
large Y there are always two solutions to (28), one
with O(p')- 1, and the other with large p', as used
here. ) Thus unitarity determines that p-n
-(YlnY)' ', which is consistent with p'& $ Y,
large A ' ln(lnY) and the growth of nA-(YlnY)'~'/
In(lnY). In this region, the eikonal of (20) is given
by

. a a/2
iX- —8 ln Y-i —Yln Y

4 (29)

properly absorptive, and independent of b at these
relatively small impact parameters, p = 2(mb)'
&p'- YlnY.

As g increases towards p', p' must decrease
towards $ in order to satisfy (18); p'~ g when
p'~ $, and $ & p' when g& p'. It is clear, however,
that since $- Y, no such solutions p'- Y lnY of uni-
tarity can co-exist for $ & p', and it becomes nec-
essary to examine closely the forms of possible
solutions as p' approaches g and ( from above.

We observe that, for somewhat larger impact
parameters, it is possible to construct a solution
with 8- 80~ m/2, that is, with the product nA
finite. Thus cos8, x0, and (25) suggests that the
leading dependence of p is given by

2a cos00p-u Y+PlnY, ~= . '
P '=2cos8 .sin'8 0

0'

If this is appropriate as q& p', we find from (24)
that

For the largest rl in this region, q =—(u Y)'& p',
y/Y and nA-constant, so that 8-8,&w/2, as

originally assumed. This maximum p corresponds
to mb - Y, that impact parameter at which one
expects the Froissart bound to become operative.
Here, Re(iX)- —Y.

What happens as q is increased past q ~ One
sees that A. -0, for any n, and therefore 6)-0.
But thenunitarityrequiresln ~1 —p (= -p(1 —I/2a Y),
to which there is always one solution with p-O(1).
Thus, when q increases past q and approaches
p', p' falls sharply below $- Y; this drop must be
discontinuous, so as to preserve cos6) &0 with &)

For p& $ & p', we expect the physically desirable
solution of very small p, for which (25) requires
that both p and cos8 are small, with p- Y ' cos0.
Hence n-(q/p)sin8, A '-In(l"/cos'8), and nA

7I Ytan8/ln(Y'/cos'8) which we expect to be large.
So again 8-v/2, with cos8 1/nA Bu.t then tan8- (cos8) ' which implies ln( Y'/cos'8) -

q Y, or cos8- Y'~'exp[ —n'q Y] with o'=a/4v. Thus p falls off
very rapidly indeed, as Yb' increases, and is ef-
fectively zero for b&b -(1/m)Y. This behavior
provides the Froissart bound for our inclusive,
and total cross sections.

III. CONCLUSIONS

On the basis of the averaged solutions described
above, we have obtained an absorptive eikonal
which vanishes sharply when b& b, thereby gen-
erating 0„,- Y'. Inclusive cross sections are ob-
tained by calculating the functional derivatives of

0, = d be ~" exp {Ey ~D&,
&

Ky 'j

db K(j(k (31)

with an integrand that cuts off sharply at b & b

Using the larger b forms throughout, this gives
approximately

(30)

with respect to D„&(k), and produce noncorrelated
inclusive distributions. The one-particle inclusive
cross section, for example, is given by

2m
p . -n- Y+ylnY,

sin6)0

do, m'
d3k max (m2 + k 2)2 (32)

with y = (1/4a) tan'8, ; hence we are now on a higher
branch, n- Y. Then,

( Y+ y ln Y) ' —q/u'
2{Y+y ln Y)

The limited k distribution of (32) is not signifi-
cant, since it was effectively assumed at the be-
ginning; but the growth of such an inclusive cross
section with Y', and the flat plateau in the rapidity
version of this result are specific predictions of
the model. The other n-particle inclusive cross
sections show a similar rise with Y', and contain
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no correlations between any such inclusive emis-
sions.

Within the context of this averaged, or semi-
classical calculation, the present computation
thus provides an answer to the long-standing eiko-
nal question: How important are all the ix-„,n ~ 2~
We do not find the almost complete cancellation
suggested in Ref. 4; rather there is an effective
saturation of the Froissart bound, which wouId
have been given by the pionization model of ix„
except for a slight decrease in 0„,and the inclu-
sive cross sections coming from the region of
small b, mb&(YI nY)' '. One difference is that
here the ratio of total one-particle inclusive cross
section to o„t produces a multiplicity (n) Y, in
contrast to the Cheng-Wu, Chang-Yan behavior
(n) - s'~' '. Except for the complete absence of
correlations, these results are not in overt dis-
agreement with existing data, and may be looked
upon as a prediction of future, higher-energy ex-
periments.

It should be emphasized that a calculational pro-
cedure quite different from that of Ref. 4 has been
performed, even though the same pionization in-
put, Z,[v] of (4), has been used. In Ref. 4, one in

principle assumed the existence of an expansion
of the eikonal in powers of g', y=Z„g~„, and
then calculated at fixed n the large- Y limit of each
X„(Y), subsequently summing over all n to obtain
a a„, which vanished asymptotically. No such ex-
pansion in powers of g' is contemplated here, nor
would one be possible based upon the results of

the present semiclassical calculation, in which X

turns out to be a function of g'Y; an expansion in
powers of g' is not sensible if g'Y is large, as
is evidenced by the form of the "g' expansion"
one would build from our asymptotic rapidity
forms, replacing Y there by g'Y. In addition,
there is the very essential and nonlinear com-
plication of impact-parameter dependence,
accounting for at least one discontinuous
change in the eikonal as the Froissart b

is exceeded.
Finally, it should perhaps be remarked that the

calculated behavior of o„, is not really the valu-
able point of the paper. Hadronic physics is far
more complicated than sketched here, as is im-
mediately clear from our neglect of diffractive
disassociation effects (as in Ref. 1). What is im-
portant, and to our knowledge unique, is the use
of unitarity as a restriction on the class of ac-
ceptable semiclassical solutions. It is hoped that
this technique will find other applications in high-
energy problems, and possibly in statistical me-
chanics, where semiclassical approximations are
of high current interest.
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