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Two systems of equations for Green's functions of augmented quantum field theory proposed by Klauder

are rewritten in terms of irreducible many-point functions. Then the equations become nonlinear and some

of them "degenerate" to constraints. The problem of finding lower many-point functions for given higher

many-point functions and renormalization of the first system are discussed.

I. INTRODUCTION

Recently, Klauder"' proposed augmented quan-
tum field theory as an alternative to the canonical
quantum field theory. He formulated the theory in
an operator formalism a,s well as in a Green's
function formalism. In this paper we restrict our-
selves to the Green's function formalism and con-
sider the structure of the systems of equations
without referring to perturbation theory. (As will
be seen later on, expansions of Green's functions in
powers of the coupling constant with known func-
tions are impossible anyway. )

Though the equations proposed by Klauder are
apparently linear, they become nonlinear if re-
written in terms of irreducible Green's functions.
Nevertheless, the first system of equa. tions has
some nice features, as we will see in Sec. IV.
Here we do not repeat the derivation of the equa-
tions.

II. TWO SYSTEMS OF EQUATIONS

The first system of relevant equations reads

~ x-x„G.x„.. . ,x.

+limIC„G „(x,x', x„.. . , x )

+4&G „(x,x,x,x,x„.. . , x ) =0, (2.1)

where G is the connected m-point function. K„ is
the Klein-Gordon operator at x. Important feat-
ures of this system are apparent linearity and
homogeneity as well as "degeneracy. "

It can be easily seen, however, that the linear-
ity is superficial if one looks at the reducibility
(pole structures in the momentum representation)
of G (m~ 6).

Let us put m =2 in Eq. (2.1). Then, assuming
the pole structure of G„one finds

i

X] X) XI

ef" +"~ '~I=O (. )
Xz Xg

X~

while in the ordinary (canonical) theory the Schwinger-Dyson equation for G, does not involve the six-point
function and is linear in the (unamputated) four-point function G, . Similarly one finds for m =4 the follow-
ing equation:
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Owing to the "degeneracy, "we have only two equations involving four uriknown functions G„G„G,and G, .
Here, any circle with six or more legs stands for the irreducible (in any channel) part. On the other hand,
in the canonical theory, the first two equations involve only up to G, .

In an attempt to get rid of the "degeneracy, "Klauder' proposed his second system of equations, which
reads

i 5(x —x„)G', „(x„.. . , x„, . . . , x„;y„.. . , y„)+fC„G„'„„(x,x„.. . ,x„;y„.. . , y„)
r

m ljtit4( l lr'''l mx t. ]yl&'''&yn) ggn( Ix) l 1)'''l mt yl)'''lyn) '( )

(for m ) 1 odd, n) 0 even) and

n

z ~ p $ J~ g ]%+]) ' ' 'p+ spy' ' ' ')7 s'' 'p$ & G +2 ypp+t+]) '' '7+ 9+pX]p' ' '&ST~
I:1

(2.5)

(for m ~ 0 even, n) 1 odd).
Again, it can be easily seen that the "linearity" and "homogeneity" of this system are superficial. After

the separation of disconnected graphs and the subtraction of tadpoles, one gets

(m=0, m=1), (2.6)

XX (m=0, n=s), (2.7)

0

+ '~ +42 '~ --=0 (m=1, n=o), (2.8)

+g' +%Xi+

+g),f !
i'.

(m=2, n=o), (2.9)

+$3 ))- )=0
(2.10)

(m=2, n=l). (2.11)
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Here combinatorial factors are omitted and dia-
grams with different assignments of external lines
are not shown explicitly.

III. DEGENERACY OF THE SECOND SYSTEM
OF EQUATIONS

In this section we show that the system of Eqs.
(2.4) and (2.5) does not remove the "degeneracy" of
the system (2.1).

First, let us count the number of equations and
unknown functions. With m+n & 3, we have six
equations (2.6)-(2.11) involving eight unknown fun-
ctions G02 & G04) G20& G22 & G24~ G40& G42 and G60
so that the system is indeterminate.

Eq. (2.6), with m =0, n =1, is not an equation
for G» at all, but a constraint on G~:

G»(x, x;x,y) =-~(x-y).
Therefore we have no clue as to how to determine
Go, .

on the other band, in Eq. (2.8) for G» (two-point
function in the ordinary sense), we have inhomo-
geneous terms

G2(ylty2) + dy3G2(yl ty3)G22(y3ty3ty3ty2)

instead of the G,' in the canonical theory. The lack
of an appropriate. equation for G» is irrelevant so

far. But the situation is not so simple in Eq. (2.9)
for the four-point function G«, because (G») ' ap-
pears in the second term on the left-hand side.
Moreover, the first term in the curly bracket has
an undesirable asymptotic behavior in the momen-
tum representation. Equation (2.10) for G», in-
volves GQ4 but we do not have an equation of the
form G«( ~ ~ )+ ~ ~ =0, because the equation with
m = 0, n = 3 degenerates [see (2.'t) ].

As has been seen above, the system (2.4), (2.5)
is no better than the system (2.1) at all, because
the former not only does not remove the degener-
acy of the latter, but also involves auxiliary many-
point functions G „(n 40) which are subject to
strange constraints. So, let us return to the sys-
tem (2.1).

IV. FURTHER DISCUSSION OF THE FIRST SYSTEM
OF EQUATIONS

In this section we consider the system of Eq.
(2.1) more closely in the context of "descending"
and "ascending" problems' as well as of renormal-
ization. By "descending" problem we mean a
problem of finding lower many-point functions cor-
responding to given higher many-point functions,
and by "ascending" problem we mean the reverse.

For this purpose, we take Fourier transforms of
the first two equations of the system (2.1):

G, (k, ) +G, (k, ) + i d'p( P2 —m')G, (p, —p —k, + k„k„-k,)

+4~ d'P, d'P, d'P, G, P„P„A,-P,-P, -k G, P, +p, +u 'G, p„-p, -p, -p, -u, +u„p, +p, +y„

+G,(p„p„p,-p, —p, +k, —k„—p, —k, +k, ) [G,(p, +k, —k, ) ] 'G, (p„k„—k„-p, —k, +k, )

+ G,"(P„P„P„—P, —P, —P, —k, + k„k„-k2)]= 0, (4.1)

G (p4@1P2 P3 -P1-P2 P3+O)+G.(P1,-P2-e P3 -P.-P. -P, +q)

+G.(P1 P2 P3 Pf -P1-P2 —P-. +Pf)+«(P1 P2, P„-P,-P. -P, )

'Jl &'P(P*-~')IGl'(P, P —P, P„P., P., -P;-P. P.-P)-
t'gG, (P„P -t, P, —P. +P)(.G,.(P, +P —P)l-'G. (P, +P. —.)t P P —P P. +P P.,—P)I. -—

yerm

+ )'+ + (4.2)

Now, we find that there appear linear combinations of G, 's and G, 's with different arguments in (4.1) and

(4.2), respectively. Putting k, =k, =k into Eq. (4.1), one gets a "nonlinear integral equation" for G, :
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C, (1)+-', f d'((O* m')-.C,((,-r, a, -)t)

+ ~ d Pyd P2 P3 G4 Py~P2~ ~~ Py P2 ~ G2 Pj. +P2+~ G4 P3~ Py P2' P3~PI, +P2+~~

G4(Pl) Pl t kt k) [G2(P1) ] G4(P2)P3t Pl P2 P3tpl) 6 (Pl P2lP3l Pl P2 P3& & )]

=—A [G2; G4, G6"; k ] = 0. (4.3)

Or, in terms of amputated many-point functions, one gets

C(1)+ ,,f4'( '-(C, (() )'((' —m' )r,((, (,1, 1) (-C, (1) )-'

+ 2k
J

d4p, d4p, d4p, G, (p, )G, (p, )G, (p, )G,(p, +p, +p, )

~ (P P k -P -P -k)G (P +P +k)r (P -P -P -P P "P +k -k)

+r4(pl Pl k --k)G2(pl)r4(P2 P3 Pl P2 -P3-,pl)-+r6(pl P2 P3 Pl P2 -P3-, k, --k)] [G2(k) ]'

-=fl [G„.I"„I',"](k) = 0. (4.4)

In these equations, the first terms contain one G, while other terms apparently have a double pole at k'
=m'. This implies that the integrals in those terms ought to be renormalized so that the integrals behave
as (k' —m2) ' in (4.3) and (k2 —m') in (4.4), respectively. The following formulas give the recipe of renor-
malization:

- ren
d'p(p' —m')G, (p, -p, k, -k)

-=(k' —nl2) ' d(P') 2 d'P(P. '-l)2')G4(p, -p, p', -P')(P" —m')' (k' —m' —ie) '

etc. ,
2

d'p p' m' G p 'I' p -p y -y =, d P" d'p P'-m' G P 1 P, -P,P', -P', 4.6
I ts2

etc.
It should be noticed, however, that this is not a

full renormalization scheme. In other words, the
residue of the pole of G, (k) at k' =m2 is not yet
normalized, though the position of the pole is fixed.
This implies that the system of equations under
consideration does not give a possibility of evalu-
ating dynamically generated mass.

Now, let us consider the question whether one
can pose the problem of finding G, as a fixed-point
problem in a Banach space if G4 and G, are given.
This is a descending problem. ' One can easily see
that the map A is not bounded near the origin of
any Banach space of candidates for G, . So we have
to look for a more suitable unknown function. Let
us postpone this problem for the time being, and
consider the descending problem from amputated
four-point and six-point functions. Then the equa-
tion to be considered is (4.4). It is now obvious
that this equation has a trivial solution, G, =0. If
the integrals are interpreted as renormalized, the'

map 0 is Frechet differentiable with respect to G, .
Therefore, if a nontrivial solution exists at all, it
must have a norm (in a suitable Branch space)
large enough to violate the necessary conditions
for local uniqueness. But such a domain of candi-
dates for G, in any Banach space is not convex, so
that we cannot apply any known method to search
for such a solution.

If F4 only is given, one can choose G, arbitrari-
ly (as long as causality, etc. , are satisfied) and

Eq. (4.4) becomes a linear constraint on I'6. If I',
only is given, Eq. (4.4) becomes a nonlinear con-
straint on F4 after an arbitrary choice of G, .

Curtailing further discussion of these contraints,
let us return to the problem with given G, and G, .
Assuming that G, (k) is of the form

G, (k) = [l+q(k) ] '(k' —m' —i&) '

(4.7)

with sup~ q(k) ~&
~
( ~, one can rewrite Eq. (4.3) in the
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following form:

[g+ 2)(k) ] '+ (—,
'

(G,'2O)I+ 2X (((G,) **'*(Il,2 G', (f+ q) *N, ))I

+ 2k. (((G2O)**22 84) G', ((+2))2 G'2284)I

I

+ 2~ i((G,') *"'*@,)I j [&+n(k) ]'(k' —~') '

-=e [2);g„g,](k) =0, (4.8)

. is satisfied, there exists a unique solution g*
e S(0, 2flj'). However, this does not mean that the so-
lution of Eq. (4.3) is unique, because we have two
choices of g in general. Of course, q*(k) I22 ~
need not be equal to 0, so that the residue of G, is
affected,

G,*(k)= [f+q(k) I„&] '(k' —m' —2e) -'+ c(k)

where (4 ) is a short-hand for renormalized. convo-
lution, and

$4= KKKKG4, QO=KKKKKKGO, K= (G2) '.
Let us take f as a root of the quadratic equation

+ v(k).0'- m' —i~

So we renormalize G, as follows:

G2s(k) =G, (k)+z '(r(k)

(4.16)

+ 1+ i;(—'((Go2@,3+ 2& I((G,') **'2'@,jl]G,'I,
+ g2 (2) ~(Go) gg52, @g42) Go

I
0

= z ' G,*(k) .

Then Eq. (4.3) is rewritten as follows:
1

(4.17)

(4.9) G, (k)+(-,'l[G", *8",j(k)

and the 0th approximation q«&(k) = 0. Now we can
apply Janko's theorem, ' provided 654 and N, satisfy
certain conditions, to be specified below. If

+ 2g ((Go) )k 444 0)R 2(GR )-1(GQ)2~@Rj (k)

+ 2& l[(Go) **4*$sJ(k)}(Go(k))' = 0,

Q &0, P&2 (4.10)

!
Lu 'J~ ~ - ~ g, 'l~"I-"[ik, i+ ~5 + ik, i j"

with

y, =ZZXXG,' =g-'OI„

@6 =KA"AKKAG6 =g xQ

(4.18)

(4.19)

(4.20)

1&0, l5& 2 (4.11)

(4.12)

with sufficiently small c4 and c„ then the Frechet
derivative e'[0;;O„S„kj is invertible, so we
define

4-=e '[0;; e„N, ].
Moreover,

I
fe'[n', ;+.,e.j —e'«";;oI„+.] I I

&&M
I
I~'- ~" II

2), 2)"c S(0, 2)V) (4.13)

where the renormalization of G4 and G, is so chosen
that the second term on the right-hand side of
(4.18) does not acquire an extra factor. An inter-
esting feature of this renormalization is that the
coupling constant X is not affected while G„G4,
and G, all get the same renormalization factor s '.
So far we have dealt with the problem a,s though
there is no condition (4.1). If condition (4.1) is
taken into account, G, with general arguments
must satisfy the following constraint:

I IC(o,e(0;g„g,); g„N,) I f
cN, (4.14)

XBMN &-,' (4.15)

with positive numbers M and N. If the inequality

FIG. 1. Diagrammatic representation of terms with
undesirable asymptotic behavior, which appear in the
Schwinger-Dyson equation for the four-point function in
the canonical quantum field theory. These terms do riot
appear in the augmented theory.
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+4~{(

(4.21)

Therefore, what can be given as input to the descending problem is not G, with general arguments but
G.(p„p.,p., -p, -p. -p. , I, -~).

Now the next question is whether one can determine G, and G4 if G, and G, are specified as input. One
favorable feature of Eq. (4.2) compared to the'Schwinger-Dyson equation for the four-point function in the
canonical theory is the absence of the terms shown in Fig. 1 which have undesirable asymptotj. c behavior.
Putting q = 0 in Eq. (4.2), one gets the following equation for G,:

-G,(p„p,& p„-p, -p, -p, )

d k k —m G6" k, -k, P„P2,P3, -P, -P2-P3

I

g G (k, „&&&, —& —&)(G((t, +& +&)] 'G (&, +&+&&, -&, —. &, -&„-k)I.
pernl

f'i

(4.22)
t'g

-P&-P~-f's

As has been the case in the previous problem, G, with general arguments cannot be given as input. Simi-
larly, one cannot give

d'kd k d k G8 k„k2, k3y k$ k2 k3ppgpp2yp3y pg p2 p3

as input, because Eqs. (4.1) and (4.2) become constraints, but there is no guarantee that these constraints
are satisfied by the solution G,*,G,* of the coupled equations [(4.3) and (4.22)] with input as mentionedabove.

If one begins with G, (P~,P2, PS, -P, -P2-P„k, -k) and the sum of those terms in Eq. (4.21) that involve G,
or G, as input, Eqs. (4.3) and (4.21) can be regarded as coupled nonlinear integral equations for G~ and G,
or abstractly as an operator equation in the direct sum 5,$54 of Banach spaces of two-point functions,
II)„and the Banach space of four-point functions, 8,. Then Eqs. (4.1) and (4.2) can be regarded as linear
constraints involving the solution of Eqs. (4.3) and (4.21) on G, and G, with general arguments, These con-
straints, however, do not determine G, and G, uniquely, as can be easily sepn from the structure of Eqp.
(4.1) and (4.2).

Let us write the system of Eqs. (4.3) and (4.22) abstractly,

.(G„G;G„G,) = 0. (4.23)

Then the map = is Frechet differentiable provided the input has a nice asymptotic behavior. If the input

and the zeroth approximation G,'O', G,'o' are such that the Frechet derivative .'(G,'O', G,"'; G„G,) has right
(or left) inverse and some other conditions are satisfied, one can prove the exi.stence of a solution. Alter-
native sets of sufficient conditions for the existence of a solution can be found in Altman s work. '
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V. IS PSEUDOPERTURQATION THEORY POSSIBLE?
f

Curtailing further discussion of the descending problem, let us ask the following question: Can one con-
struct a solution of the system (2.1) in terms of pseudofree Green's functions, i.e., a solution. of the sys-
tem of equations with A. =O?

The first two' equations of the pseudofree theory read

G, (k) y —' d P (P —I )G (P, -P, k, -k) = 0, (5.1)

-Gd(k~, k2, k3, -k~ —k, -k,) y —,
'
Q d p(p2 m')
perm

x (G4(p k„k2, -p —k, -k, ) [G,(p+k, +k, )] 'G4(p, -p -k, —ka, -ks, k, +k, +k,)

+ GG(p, —p, ki, k2, k3, -k~ —k2 —kn)) = 0 . (5.2)

In the pseudofree theory we have the following constraint on G4.

—,
'

Jl dP(P —m')G ( ,P,P„k- k) k-fd P'(P' —m')G (P, P, k„-k,)-
dP P -m G P, -P-k +k2 k„-k2 =0, 53

and a similar one for G, .
Suppose that G, and G4 can be expanded in powers of X:

.g ynG (n)

n=0

~ ynG(n)
4 ~ 4

m=O

(5.4)

Then in the first order in ~ one gets the following condition:

G,"'(k) k
-' f d'p (p' —m')G,"'(p, -p, k, -k )

+2 d ld 2d 3 G4
' Pl P2k, -Pl -P2-k G2

' Pl P2 k G4 Pl+P2+k&P3& Pl P2 P3&

+G."'(p„p„p., -p, -p, -p., k, k6=0. (5.5-)

Because of the second term on the left-hand side
of Eq. (5.5) one cannot express G,"' in terms of
G„""s. The situation does not improve even if one
takes the power-series expansion of Eq. (4.22) into
account because it involves G, in integrated form.
Therefore, ope cannot formulate a Feynman rule
in tegms of G„' "s.

VI. CONCLUDING REMARKS

%'e have found that some interesting features can
be derived from the first system of equations (Sec.
IV) while the second system is hopelessly degener-
ate after the separation of disconnected parts. Be-
cause of homogeneity, both the first and the second
systems of equations have a trivial solution, i.e.,
G„=O, Vnc z, and G „=0,»n, n(=z' is a solution.
On the other hand, as has-already been seen, the

' "linearity". is superficial, and the equations be-

come nonlinear after taking into account the reduc-
ibility (pole structure in the momentum represen-
tation) of G„(n~ 6) in the first system and of
G „(m+n ~ 6) in the second system.

Interesting features of the augmented quantum
field theory in the Green's function formalism are
(1) that the coupling constant is not affected by re-
normalizatiorf, (2) the absence of terms with unde-
sirable asymptotic behavior in the equation for G4,
(3) trivial solutions of descending problems with
given amputated many-point functions.

The next task in the augmented quantum field
theory in the Green's function formalism is to de-
velop techniques of successive approximation
(algorithm) to construct functions so as to satisfy
(approximately) linear and nonlinear constraints
arising in the descending and ascending problems
of the first system of equations.
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