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Instantaneous apprmimation for a gauge theory with dressed vertices
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%e consider a Bethe-Salpeter kernel consisting of one gluon propagating between two dressed quark-gluon
vertices. In order to derive the corresponding nonrelativistic potential to O((v/c)') we find that it is
necessary to choose a special gauge in which the time-time component of the propagator is instantaneous (to
that order). The resulting Fermi-Breit potential including an anomalous magnetic moment is presented and
compared with previous results.
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where

D„.(V') =P,.(e') l(e') f, (lb)

In recent years, models of quark binding have
led to a revival of interest in the problem of de-
riving a nonrelativistic potential from field theory.
The technique is well known in QED where posi-
tronium and muonium' potentials to order (y/c)'
are derived, yielding the familiar Fermi-Breit
potential. It has not yet been possible to carry out
a similar program for quantum chromodynamics
(QCD), although work in this direction has been
started by a number of groups. ' Nevertheless,
much success in calculating the meson spectrum
has been achieved by simply assuming that quarks
are bound by a nonrelativistic potential whose form
is "suggested" by QCD. '

In order to do still better phenomenology, it be-
comes important to postulate the form of fine-
structure (n/c) corrections to this potential (we
need this to compute, for instance, the mass dif-
ferences of the x states of charmonium). In this
paper, we will focus our attention on one model
for relativistic corrections4' which is presented
as follows: assume that the quarks a,re bound in
mesons by a, "dressed gluon. " That is, in the
Bethe-Salpeter kernel we replace the ladder prop-
agator, P„„(k')/k', by P„„(k')g(k'). Then the full
kernel is given by

assume it and discuss the derivation of the corre-
sponding nonrelativistic potential to O((v/c)').

We first note that such derivatioris do exist in
the literature but do not all lead to the same re-
sult. For example (for v=0), Schnitzer' finds
that spin-independent terms in the potential are
of a. slightly different form from those derived by
Pumplin, Repko, and Sato.' We trace this dispar-
ity to the fact that those two calculations start
from two separate assumptions. In Ref. 4 our Eq.
(1) is not the starting point —but rather, our
D&, (q') is replaced by P „„(q')[g(q )q'/q ], where
P &, is then chosen to be the Coulomb gauge pro-
jection. With this assumption, the calculation of
order (v/c)' corrections is unambiguous and is
given in Ref. 4. On the other hand, in the work by
Pumplin et af. ,

' our Eq. (1) is used and P&, ——g„,.
This choice seems to us to lead to an ambiguity in
computing O((v/c)') corrections. This is due to the
energy dependence in the time-time component of
the propaga, tor, and in what follows we will resolve
that ambiguity by introducing a, new "instantane-
ous gauge. " We should point out here that we will
assume throughout this work that [in line with the
nature of our ansatz of Eq. (1)j the dressed gluon
couples to a, conserved current. This, of course,
would ultimately have to be derived from the un-
derlying field theory. Before carrying out the
derivation O((n/c)') corrections we must first re-
view the basic technique for finding a nonrela-
tivistic potential for the Bethe-Salpeter kernel
(a, slightly different method is to be found in Ak-
hiezer and Berestetskii').

The Bethe-Salpeter equa, tion' is used to find the
bound state

P„„is dimensionless, and we have included an an-
omalous gluon-quark magnetic moment (which
might be a function of q'). D„, will be referred to
as the propagator, although it is correct to think
of it as the product of vertices and propagator.
The motivation for this ansatz has been given by
Schnitzer" and by Pumplin et a/. ' We will simply

(p, -~)(P, -~)x„(p)= 2, , d'w(u')x. ,(p+u),
(2)

where k= (2m —E, F)(in the center-of-mass frame).
We perform an expansion of (2) to O((v/c)2). If it
becomes a Schrodinger equation, then the poten-
tial V can be read from that equation. As we can
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see, the problem is to derive such a Schrodinger
equation. It will soon be seen that this can be done
only in a speci:al instantaneous gauge.

As discussed below, the recipe for determining
whether Eq. (2) allows a Schrddinger equation
through 0 (v'/c2) is the following: (1)The energy tran-
sfer k,/ ~k

~

is O(v/c) because it vanishes in the
nonrelativistic limit. (2) Note that because "low-
er components" of the Dirac spinors are O(v'/c'),
terms of "~ which mix upper and lower components
[e.g. , D,, of Eq. (8) ] need only be written to zer-
oth order in (v/c)', whereas "upper-upper" terms
must be written to order (v/c)'. If to this order
k, does not appear, the instantaneous approxima-
tion 'U(q') = &(q ) is justified. (3) Perform a sim-
ilarity transformation of Eq. (2) to separate par-
ticle and antiparticle. (4) From this, check to see
that the transformed kernel has a separated form
[Eq. (6) below ]. If so, then V is determined and
a Schrodinger equation can be written.

The transformation of Eq. (2) to a Schr5dinger-
type equation is done for QED by Schwinger on

pages 330-343 of Particles, Sources and Fields,
Vol. II,' and for ease of presentation we simply
follow this derivation, reviewing only the salient
details. " We begin by making the instantaneous
approximation to be justified in detail later. We
rewrite Eq. (2) as

The SchrOdinger potential turns out to be V» = V„.
We see that in order to find V» to order (v/c)2,

we must establish (6) to that order. It is straightfor-
ward to show that for '0[given as in Eq. (1)], in the in-
stantaneous approximation (IA), (6) is indeed satis-
fied [to O((v/c)'). ] So the only step left to complete is
to establish the validity of '0(q ) = 'U(q }(IA). After
that, the calculation of V» is straightforward.

Thus, we turn now to the question of the instan-
taneous approximation. We will show the existence
of a gauge which justifies IA. When the interaction
is Coulomb, the gauge will Qe the Coulomb gauge.
For a more general interaction, a more general
gauge will be found. To begin with, we look at the
special case of (1), where v=0 and D „(k') is the
photon propagator in the Coulomb gauge,

k„k„+(n k)(k„n, +n„k„) 1
k +(n.k)

where n is the unit vector in the time direction
(1, 0, 0, 0):

Do, =-1/k',
(6)

fj 2 2'lkl i u

[(y.p+ m), (y.p+ m), —I„JG„=1,

where

(3a)
We see that the only contribution to the noninstan-
taneous part comes from D,, . Taking k,/ ~k

~

=O(v/c), we make the expansion
I

1/k'= I/k'+ (k /k')(I/k')+O((v/c) ),
I„(x„x,) =i &(x', —x,')y', y, V(x, —x,), (3b)

with V=-V ." From this equationj Schwlnger de-
rives a condition for establishing a SchrOdinger
equation. He first defines, for a bimatrix A
=A"'A"', the submatrix A, &

=A', &'A"' where i
and j can take the values+and-. A representation
is chosen in which y&, &

are diagonal. Then A',.;.' is the
submatrix whose rom and column indices have y&»
eigenvalues i and j, respectively. Having defined

A, , , he introduces

l.e. ,

k,k, /k') [(I/k')+O((v/c)')]. (9)

Now notice that (y""Doy'20)„=0. Hence, this
term contributes to V„only when multiplied by the

y matrices in the expressions for U, U, and U, 'U, ',
1' p p2 1 y'p y'p

where

(4a) (10)
. Py p 1 y'p y'p

sing= ~p ~/(p~+ )m'~', scoP= /m(p~ +m)'~',

(4b)

V= U, U2VU, 'U2 '. (5)

V„=V„, V, =V, . (6)

He then shows that the condition for establishing a
SchrOdinger equation is

We see those y matrices multiply factors of v/c
[e.g. (y p/m) = O(v/c) ]. Thus, only the 0th order
(in v/c) term of D,.~ [in (9) ] contributes to V„.
This establishes the validity [to order (v/c)'] of
the IA in the case of QED in the Coulomb gauge.

For a general propagator [in (1) ], the situation
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is different. It is still the ca,se that D,, can be
taken to be instantaneous. However, if on the
right-hand side of Eq. (7) we replace 1/k' by g(k'),
we find that

We thus find that in the instantaneous gauge

g'(k') g'(k')
(13)

D„=-—g(k') .
k

This time, in order (v/c)' there is a noninstantan-
eous (and therefore time-dependent) piece, and it
is not immediately obvious that a SchrOdinger
equation can be written. We resolve the problem
by introducing a gauge in which to O((vlc)') D» is
instantaneous. The assumption we make is, of
course, that the Bethe-Salpeter equation derived
from (1) is gauge invariant so that induced ghosts
and gauge transformations in higher orders of
QCD conspire to change P,„[in Eq. (1) ] only sub-
ject to the following condition.

If u J~=O, t en

D;; =g~;,. +g'k, .u, (14)

So in calculating V„, we need to know the Fourier
transform of g'k,.k, To find this, use

kkg'= kkk 2k'

and

(In the Appendix it is shown that this instantaneous
gauge propagator can also be derived from a, Fad-
deev- Popov" gauge condition. ) Notice that for the
special case g(lP) =1/k', Eq. (13) is equivalent to
Eq. (7), i.e. , the (1/k') instantaneous gauge is the
Coulomb gauge.

In the instantaneous gauge, Eq. (13) implies

J P""J =J g""J (12)

To find the instantaneous gauge (instantaneous with
respect tog) we take

1
92f(~) =--

These lea, d to

r &s)d~'r" — r'dr'f(~')
y'

D~"= [g~" +A(k')k~k" +B(k')(k~n'+ k"n") ]g(k') 1 p rr
(kkg') = ——g — g '

2i~l (15)

and determine A and B by demanding

0

D„———g(k ') +0 ((v/c)').

Finally, from Eqs. (1), (5), (10), (13), (14), and
(15), it is perfectly straightforward to derive
VNa(= V„) to O((v/c)') (now only spatial quantities
a,ppear in the calculation):

V„(~)=g(y)+, (3+4m) ——(s, + s, ) I +,(1+~)'s, s,V'g-;(I z)'T»
2m2 y dr ' ' 3m'

2
+ 2p, —yg' p,.+ —7 3g+yg' + —I +4K% g

where T»=3(s, y)(s, r) —(s, ~ s,). We can compare
this expression to those derived by Pumplin et al. '
and Schnitzer. " Schnitzer uses the IA in the Coul-
omb gauge and disagrees with us for the spin-in-
dependent part. On the other hand, Pumplin et al.
do the ca,lculation in the covariant gauge I',„=g„„,
but they express 0, in terms of k,. by using the
equations of motion on the mass shell. It turns
out that their answer for VNn(Ic = 0) agrees with
ours. A little further thought shows that this cur-
ious "gauge invariance" should indeed be the case.

The differencebetween J,"I'„„J2in two different
gauges must vanish if the currents are conserved.
Thus each term must have a factor J~k, i = 1 or
2. We consider such factors in this difference be-
tween the instantaneous gauge and an arbitrary
gauge. The expression in the arbitrary gauge re-

duces to that in the instantaneous gauge if k, is re-
placed by anything which makes J'.4 automatically
vanish. In the pure Dirac case, J"k =ey, (k, —Z' k),
so the replacement k, - n .k reduces the expression
to the instantaneous gauge form. One can be more
sloppy and still obtain the correct answer. As-
suming that the convective part of the current is
the only important part, J',./J, =v,. =P,/I The. .
symmetric part P = —,'(P,„,+P,„) should be used f. or
the current, for example, coming from(ate cp

—8„+tp)/2i in the scalar theory. Therefore, the
replacement

out in ~ nu t in — %out Jt'i n

2m 2m 2m

can be used. Explicit use of this replacement in
the Coulomb or Lorentz gauge gives the same an-



INSTANTANEOUS APPROXIMATION FOR A GAUGE THEORY. . . 3271

swer as in the instantaneous gauge.
Finally, we point out that the II.

' dependence we
derive is at variance with Schnitzer's, ' although it
is in agreement with that of Chan' and others. "
This may be relevant in Schnitzer's pheno-
menological comparison of hyperfine and spin-or-
bit splitting in the charmonium system. It is
worthwhile notirig that the difference in answers is
not due to the fact that we work in the instantaneous
gauge. We can easily show" that the answer should
be the same in the Coulomb gauge (IA).

Note added. After writing this paper it was
brought to our attention that Gromes" has done
a study of the O((v /c)') corrections for theories
with dressed vertices. In that work he discusses
many of the questions raised in this paper, but
from a different viewpoint. In particular, he does
not introduce a new gauge.

We are grateful to W. Hepko and H. Schnitzer for
interesting discussions and for clarifying their
work to us. The work of W. C. was supported in
part by the U.S. Department of Energy. The work
of F. S. H. was supported by the National Science
Foundation.

APPENDIX: THE INSTANTANEOUS GAUGE AS DERIVED

FROM A FADDEEV-POPOV GAUGE CONDITION.

I et the action be

1
S (J') = —— d'x [(E'„)(E,"")+ terms involving

e'"'~'-=('0 ~0 )~

(dA) exp(zS„,) &(k"A + &f&(k)n"A ),

(A 1)
where N is an overall normalization factor, func-
tions of k are implicitly Fourier transforms [so
g(x) = J d'xe'~g(k) J, &f& is an arbitrary function,
and S,ff S+ghost terms.

The ~ function can be written" as

5(k&A +Q(k) n'A„)

=N'exp -i n 0 k A" + 0 e A" 'dk

. where N' is a constant.
So we finally get

/

'"'~' —N dA exp zS'

where S',«contains the quadratic form

—,
' A" (P„„/k') -'A"

where

0 P ', = k'g „—k k„

+ a(k) [k k, + (k„n„+k„n, ) Q(k) + n„n„Q'(k) J.

We find that if

other fields and ZJ,

where J is an external field. Then the generating
functional" e'"' ' is taken to be

then P„„g(k') is the instantaneous gauge propaga-
tor.
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