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A new Lagrangian L is proposed for the description of a particle with a non-Abelian charge in interaction with
a Yang-Mills field. The canonical quantization of L is discussed. At the quantum level L leads to both irreducible
and reducible multiplets of the particle depending upon which of the parameters in L are regarded as dynamical.
The case which leads to the irreducible multiplet is the minimal non-Abelian generalization of the usual Lagran-

gian for a charged point particle in an electromagnetic field. Some of the Lagrangians proposed before for such
systems are either special cases of ours or can be obtained from ours by simple modifications. Our formulation
bears some resemblance to Dirac's theory of magnetic monopoles in the following respects: (1) Quantization is
possible only if the values of certain parameters in L are restricted to a certain discrete set, this is analogous to
the Dirac quantization condition; (2) in certain cases, L depends on external (nondynamical) directions in the
internal-symmetry space. This is analogous to the dependence of the magnetic-monopole Lagrangian on the
direction of the Dirac string.

I. INTRODUCTION

The classical interactions of a particle carrying
non-Abelian charge with the corresponding Yang-
Mills field are of considerable physical interest.
One need only consider the analogy with the Abel-
ian system (a classical point charge interacting
with the electromagnetic field) to appreciate the
rich range of phenomena which needs to be under-
stood. Some years ago, Wong' proposed a system
of equations to describe the classical dynamics of
such a system, equations which are the non-Abel-
ian generalizations of the Lorentz force and Max-
well equations of electrodynamics. The non-Abel-
ian particle is characterized by an "isovector"
l (7) which transforms under the adjoint represen-
tation of the internal-symmetry group g and for
which there is one more equation of motion with
no Abelian counterpart. Wong also gave a Hamil-
tonian formulation of the system.

For many purposes, it is useful to define an ac-
tion whose extrema give the classical equations of
motion. The invariances of the associated Lagran-
gian lead straightforwa. rdly to the symmetries and
conservation laws of the theory. The classical ac-
tion can also be employed, for example, in quan-
tization and semiclassical calculations by path-in-

tegrall

techniques.
Lagrangians which lead to Wong's equations have

been discussed in the recent literature. ' These ap-
proaches in general introduce extra observable de-
grees of freedom and equations of. motion not orig-
inally present in the Wong equations. Hence they
do not represent a minimal non-Abelian extension
of the Lorentz force and Maxwell equations. More-
over, when quantized they describe particles which
in general belong to reducible representations of 9.

In this paper we propose a classical Lagrangian
whose observable degrees of freedom (that is,
those with well-defined time evolution) are just
those described by the Wong equations. Thus it
gives a truly minimal non-Abelian generalization
of the standard Lagrangian for a charged particle
in an electromagnetic field. When quantized, this-
minimal Lagrangian describes a particle which be-
longs to an irreducible representation of g. Ac-
tually however, we will show that our Lagrangian
can describe both irreducible and reducible multi-
plets depending on which of the parameters in the
Lagrangian are varied. Further, some of the pre-
vious Lagrangians are either special cases of ours
or can be obtained from ours by simple modifi-
cations.

There are two interesting facts we find which are
analogous to the situation in magnetic -monopole
theory: (1) Quantization is possible only if the val-
ues of certain parameters in the Lagrangian
[namely, K, of (2.10)] are restricted to a certain
discrete set; (2) in certain cases, the Lagrangian
depends on external (nondynamical) directions in
internal-symmetry space. The first resembles
the Dirac quantization condition. It arises from
the fact that the spectrum of the Casimir invari-
ants of g is discrete. , The second is similar to the
dependence of the monopole Lagrangian on the di-
rection of the Dirac string.

In Sec. II the Lagrangian is written down. In dis-
cussing the properties of the associated system,
there are several cases to be considered. This
classification is discussed in this section. The
salient features of the corresponding quantum sys-
tems are also summarized. In the next six sec-
tions, each of these cases is treated in some de-
tail. In the final section we indicate how some of
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the previous Lagrangians can be obtained from
ours. The two appendices contain some technical
calculations.

II. THE LAGRANGIAN

Before discussing the Lagrangian, we shall first
write down Wong's equations. , They are

(2.1)

[D ]„,F;"(x)= e d7. 6'(x z(~-))z "(~)i.(~) . (2.2)

Herez'(r) denotes the particle coordinate, F"'(x)
is the usual Yang-Mills field tensor, and D de-
notes the covariant derivative. The range of the
index o. is equal to the dimension n of the internal-
symmetry group Q. The vector I (v') transforms
under the adjoint representation of g. From (2.2)
and the identity [D„,D„] z Fg"= 0, one finds the fol-
lowing consistency condition on I (v):

(2 3)

Here c, z are the structure constants.
We shall now take up the Lagrangian. Let g be

a compact connected Lie group with a simple Lie
algebra Z. Let I'=Lg]- be a faithful unitary repre-
sentation of g. The associated Lie algebra y has
a basis T(p) (p=1, 2, . . . , n) with T(p)t= T(p). (More
precisely, this is a basis for iy. ) We normalize
T(p)'s according to

TrT(p)T(g) =R5„, (2.4)

where R is a constant. Further, they fulfill the
commutation relations

[T(p), T(o)]=ic„,T(x).

The Lagrangian is given by

(2 6)

D, = —-ieA" d „, A.-" =A'„(&(7'))T(o.'), (2.7)

where A" are the Yang-Mills potentials. The quan-
tities K, are real valued. The Yang-Mills Lagran-
gian

d xF „F~" (2.8)

can be added to (2.1). However, we will omit it,
since the treatment of the Yang-Mills field is

L = -m[-i(r)']' 2 —(i/B) TrK T(p)g '(7)D, g(7 ).

(2.6)

Here g(r) c: I" is an additional degree of freedom
associated with the particle. The covariant deriv-
ative D, is defined by

standard. Note also the following. In case 1 be-
low, the K, 's are treated as constants. For this
case, if the gauge group is U(1) (g= e'~, where g
is a real-valued function), the Lagrangian (2.6)
differs from the usual Lagrangian for a charged
particle in an electromagnetic field by a term pro-
portional to dg/dv'. Since this term is a total time
derivative, in this case, for the Abelian gauge
group, (2.6) is equivalent to the usual Lagrangian.

There are four cases to be considered. In all
the cases the z"'s and g's are to be varied to ob-
tain the Euler -Lagrangian equations. These al-
ready lead to (2.1) and (2.3) if we identify I, by the
equations

I=gKg ',
I=I, T(p),— K=K, T(p) (2.9)

K= MCh ', K-=K, H(a) (2.10)

for a suitable h (= y. In this case we vary h while
the E, 's are held fixed. The values of K, determine
the particular IRR of g which occurs in quantum
mechanics. This IRR occurs with a multiplicity
equal to its own dimension.

Case 4. In this case, h is held fixed while the
E, 's are varied. Here, we have not succeeded in
fully investigating the quantum system except in
some special cases. Some of the Lagrangians
written down by previous authors' can be obtained
from case 4.

and use the fact that the E, 's are either numerical
constants or constants of motion in all the cases.
The treatment of E, is not the same in all the
cases.

Case 2. Here the E, 's are treated as constants
and are not varied in obtaining the Euler-Lagrange
equations. We will show that the corresponding
quantum system describes a particle which belongs

' to an irreducible representation (IRR) of 8. The
specific IRR is determined by the values of E,.
The IRR occurs only once.

It is curious that the Lagrangian has an explicit
dependence on a direction in the internal-symmetry
space given by K. The choice of this direction,
however, is arbitrary. ' The replacement of E by
SES ', where S is a v-independent group element,
does not change the system. A somewhat similar
situation occurs in ca,se 4 also.

Case 2. Here the E, 's are treated as dynamical
variables. The quantum -mechanical Hilbert space
carries the left regular representation of g. The
multiplicity of an IRR in this representation is eq-
ual to its dimension.

Case 3. Let H(a) (a= I, . . ., k) be a, basis for the
Cartan subalgebra 6 of y. It is well known' that
we can write
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III. CASE 1

We assume that the group elements are para-
metrized by an independent set of variables $
= (g„g». . ., g„). Thus, in the Lagrangian, $ = $(r)
Before discussing the variational problem and the
Hamiltonian formulation, we note some simple re-
sults.

Since exp[iT(g)e, ]r I' we can write

s'""''g(5) =g[5(&)], &(0) -=5 (3 1) We find,

Variation of z

But the definition of I gives

I =[gg ', I].
Thus

i -ie[A, I]=0

which is identical to (2.3).

(3 9)

(3.10)

Differentiating on &, and setting & =0 we find = m —[z ~/(-z')'~ J ———Tr(IA~),
d7' R d&

& h, (~)

6=a
(3 2)

BL e= ——T r(Is~A")z, .
Bz R

Thus, using (3.10) we get

(3.11)

Here

detN 40, (3.3)

for j.f not, there exist x„not all zero, such that
N„x,=0. By (3.2), x, T(v)g($) =0, and hence
x, T(o) = 0. But this contradicts the linear indepen-
dence of the T(p)'s.

nz [z ~/(-z 2)'I']= ——Tr(IE~v)z
dT R

E""=F~ "T(n—)
(3.12)

which is the same as (2.1).
The variation of the vector fields A' gives (2.2)

in an obvious way.

A. The Eul'er-Lagrange equations

Recall that the K, 's are not dynamical variables
for case 1.

Variation of $P

The Lagrangian (2.6) gives

9L 2 -1 ~ -1
d& sg J A 9)~

= ——Tr -Kg 'gg '

+Kg ' g)(, , (3.4)
8 q9 p

B. The Hamiltonian formalism

As mentioned previously, the canonical formal. -
ism for the vector field A" is standard and will not
be treated here. Thus we deal with the Lagrangian
(2.6) which omits the term (2.8). Further, for no-
tational simplicity we replace the first term in
(2.6) by its nonrelativistic form

(3.13)

The canonical momenta which are conjugate to
z,. and $, will be denoted by P ' and v, respectively.
The latter are given by

BI i , ag= ——Tr -Kg ' g 'D, g' g'= ——Tr Kg ' (3.14)

+&g

where

Bg-ieEg 'A
s(p

A -=z, A:(z(~))r(o.), g =

(3.5)

(3.6)

Since N„[defined in (3.2)] is nonsingular, we can
replace m, by the equivalent set of variables 8,
where

8,=p N, . (3.15)

By (3.14), (3.2), and (2.9), we thus find the prim-
ary constraints'.

(3.16)
Equating (3.4) and (3.5), multiplying by N„, and
using (3.2) we find

TrT(o)[gg ' -ieA, IJ =0, I=gKg '. —(3.7)

This manipulation is legitimate due to (3.3). Since
the commutator is in y, and [T(n)] is a basis for
y, it follows that

[gg ' —zeA, I]=0. (3.8)

which vanish weakly.
The Hamiltonian is

II= [p' —eA'(z)8 ]'+eA'(z)8 +v y
1

(3.17)

where we have used the constraints in rearranging
terms. The v, 's are Lagrange multipliers. We
prove the following Poisson bracket (PB) identities
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in Appendix A: C. Quantum mechanics

(3.18)

(3.19)

(a„e.}=-e...a„

4 „g}=(&„g}=-t&(p)g.

(3.20)

(3.21) .

Thus Q&„H}=0gives

[v,. ad&(p)]„tI, = 0,

where JadT(p)} spans the adjoint representation of
y:

(3.22)

[adr(p) J„= ie,.-,
[Owing to (2.4) c„~ is totally antisymmetric (and,
of course, it is real). ] It follows that there are no
secondary constraints and v, is restricted by
(3.22). The latter admits any v, such that v, adT(p)
is in the little group of g. Note also that v, Q, are
the only first-class constraints due to (3.19) and

(3.22).
It is evident from (3.17) that only those variables

which have (weakly) zero PB's with v, P, will have
a well-defined time evolution. Only such variables
are of physical interest. From (3.18), we see that
~p are one such set of va. riab le s. Further, from
(3.21),

(v, Q„g}= iv, T(p)g- (3.24)

There is one more important fact to be noticed.
From (2.9), (2.10), and the constraints (3.16), we
find

8=ghK(gh) ', 8 = H,T(o). — (3.26)
A

Since E is a fixed matrix in case 1, the allowed
values of 8, are restricted by the requirement that
it lies on the orbit of K under the adjoint action.
The orbits of E are completely labeled by E. Any
function of 8,'s which is constant on the orbits cari
therefore be written as a function of the orbit la, —

bels E,. In particular, the Casimir invariants can
be expressed in terms of E,. These Casimir in-

,variants are thus fixed in case 1.

Thus only those functions of g which are invariant
under the action of the little group of 8 are of in-
terest. But on the constrained surface where 8= I ',

these are exactly functions of 8. Thus the indepen-
dent variables of interest are exhausted by 8, and,
of course, z, and P'.

It remains to compute Dirac brackets (DB's) of
ti„. Since they are first-class variables by (3.18),
their DB's are equal to their PB's:

fa„a.}+= e...a,. (3.25)

IV. CASE 2

A. The Euler-Lagrange equations

Here the K, 's are treated as dynamical variables.
Variation K,. We find from (2.6) that

TrT(p)g 'D, g=0.

Since g 'D,gcy,
g 'D, g = 0 or D,g = 0.

(4.1)

(4.2)

Variation of $,. Since K, is dynamical, (3.8) is
replaced by

gK, T(p)g '+ [gg ' ieA, IJ =0—. (4.3)

Owing to (4.2), the second term is zero and thus

E, =O. (4 4)

Equation (4.3) reduces to (3.10).
Variation of z . In the passage from (3.11) to

(3.12), we used (3.10). Since (3.10) is still valid,
(3.12) continues to be true.

B. The Hamiltonian formalism

Let Xp be the canonical momenta conjugate to Kp.
In addition to the constraints P, [Eq. (3.16)], we
find the additional primary constraints X„which
also vanish weakly. The Hamiltonian is

1
H = [p' —eA' (z)@ ]'+ eA' (z)8, + v, P, + w, y, ,

(4.5)

where the zv, are additional Lagrange multipliers.
Besides (3.18)-(3.21) we have also the PB's

(4.6)

4., X,}=-( dg).„
Q., y,}=0.

Here (adg} is the adjoint representation of g. It is

(4.7)

(4 8)

The commutation relations (CR's) of 8, 's can be
obtained from (3.25) in the usual fashion. Thus the
8, 's form a basis for a representation of the Lie
algebra of g. Since the Casimir invariants are
uniquely given in terms of E„ there occurs only
one IRR of 8 in quantum mechanics. Note also
that in general the spectrum of the Casimir invari-
ants is not arbitrary, but consists of a, certain set
of discrete values. Thus, quantization is possible
only if the K, 's are restricted to a, certain discrete .

set. This is similar to the Dirac quantization con-
r

dition in the magnetic-monopole theory which oc-
curs when we insist that the rotation group be im-
plementable in quantum mechanics.
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defined by

gT(p)g-' = (adg).,T(a).
I

Owing to (2.4}, adg is orthogonal (and, of course,
it is real).

Let us next discuss secondary const;raints. The
requirement (P„Hj= 0 gives

i[v, adT(p)]„8, + (adg)„zo, = 0,

while (X„Hj=0 gives

(4.9)

(4.10)

v, (adg)„= 0. (4.11)

By (4.11), v, = O.and hence by (4.10) m, = 0. Thus
there are no secondary constraints.

We have incidentally shown that all constraints
are second class.

It remains to compute the DB's of the indepen-
dent variables. We can choose the latter to be 8,
and g. The variables E, are given in terms of

'

these via the constraint 8, = I, and (2.9}. Since the
p 's are first -class variables, any D8 which in
volves them is the same as the corresponding PB.
Thus from (3.20) and (3.21),

(8„8.j*= c...8„
(4.12)

(8„gj = -iT(p)g.

It remains to find (g„~,g„j . If c denotes any
constraint, let us define &, , =(c,c„j. Thus & is
a matrix whose elements are labeled by the con-
straints. Since (g„z,y,j=0, we have

(g.&,g,.j*= -(g.8, 0&jn '...„(0,g,.j (4»)
To find & '~ ~ we examine the Q, y. matrix ele-
ments of & '&=1:

The left regular representation j.s highly reducible.
Every IRR occurs with a multiplicity equal to its
own dimension.

I.= —rn, i z(r)'P -~' —(i/R) TrEG 'D, G

+ (i/R) TrEh'h . '

(5 2)

We parametrize the group elements G and h by g

and g, respectively.
Variation of g, and g, . As in Sec. III, we find

that the g variation gives equation (3.10):
I -ie[A, I]=0, I=GKG '. (5.3)

Similiarly the q variation gives

J =0 J=AEh '

Variation of z, . As before, (3.12) follows.

(5 4)

B. The Hamiltonian formalism

BL q BL

s(, srj,
Then the primary constraints which vanish weakly
are the analogs of (3.16):

(5.5)

V. CASE 3

A. The Euler-Lagrange equations

Here, in the decomposition (2.10), we regard h
as a dynamical variable, while E, is held fixed. It
is convenient to take the variables in the Lagran-
gian (2.6) to be k and

(5.1)

Then (2.6) becomes

From (4.7) and (4.8), it follows that 4 '~ o
= 0 and

that Pp
—= 8p -Ip, (5.6)

(g.„g,.j*= 0.

C. Quantum mechanics

(4.15) (5.7)

Here, 8, and 8, are defined in analogy to (3.15).
The Hamiltonian is

(g', g) = dp. (g)d'zg' (z,g)g(z, g), (4.17)

Since all the components g z of g can be simul-
taneously diagonalized, the wave functions g can
be taken to be functions of z and g, g=g(z, g). The.
8, 's are simply the differential operators which
represent the elements T(p) in the left regular re-
presentation of the group. In particular,

(e*"' Cj(z,g) = C(z, e "'"g) (4 16)

The scalar product with respect to which the p s
are Hermitian is given by

H= [p' —eA'(z)8 ]'+eA'(z)8
2m

+ v, y,'+ u, y,~.

The following PB's are zero:

(5.8)

«„&.j=(8„e.'j=(&„e.'j =(e,', e.'j = 0. (5.9)

The remaining PB's of interest can be obtained
from (3.18)-(3.21) by either of the following re-
placements: (a)8, -8„P,—&f&~„g-G; (b)8, -8„

The requirement (Q~„Hj=(Q~, Hj=0 leads as iri
(3.22) to

where dp, (g) is the invariant measure on the group. [v, adT(p)],~8„= [n), adT(p)], ~8~ = 0 . (5.10)
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There are no secondary constraints.
The analysis of Sec. III can now be repeated. The

independent variables on the constrained surface
are now z, , P', a„and g, . Further, we have the
DB's

{8„8,j*= c...8„,

(4„g,j*= -c„,8„
(8„8.j*= 0.

(5.11)

(5.12)

(5.13)

On the constrained surface, from (5.3), (5.4),
and the constraints, we have

8= GKG ', 8—= 8,T(a),

8= MCk ', 4=4,T(o).

(5.14)

(5.15)

Thus both 8 and 4 lie on the same orbit character-
ized by E. It follows that the Casimir invariants
constructed out of 8's and 4's are identical.

VI. LAGRANGIAN FORMALISM FOR CASE 4

The Euler-Lagrange equations

Here, in the decomposition (2.10), we regard the
' E, as dynamical variables while h is held fixed.

In the notation (5.1), the Lagrangian becomes

I.= -m[ —e (r)']'t'- (i/A) TrKG 'D,G. (6.1)

Variation of $,. In a,nalogy to (4.3), we obtain

GKG '+ [GG —ieA, I)=0, I= GKG '. —(6.2)

Taking the trace of (6.2) with GH(a)G ' and using
the identities

C. Quantum mechanics

We have now two sets of commuting generators
(8,j and ]J,j for the group g. The quantum-mech-
anical Hilbert space BC thus carries a represen-
tation of g@g. Since the Casimir invariants for
the two sets are fixed and equal, K carries the
shme IBR's of either g. It follows that the multi-
plicity of either IRR is equal to its own dimension.

The 4 spin is absolutely conserved [cf. (5.4)].
The Yang-Mills field carries no 4 spin. Thus, ex-
ternal Yang-Mills fields can produce these par-
ticles only in 8 singlet states.

TrH(a)G 'D, G = 0. (6.6)

Variation of e . As usual, (3.12) is valid.
Imjlications of (t&.5) and (G. t&). Equation (6.5)

says that

x=—G 'D,Gc y~, (6.7)

where y~ is the Lie algebra of the little group of
K. Equation (6.6) says that x has no nonzero com-
ponent in the Cartan subalgebra t'. .

There are two cases to be considered:

x=O and D,G=O. (6.8)

Thus there is no arbitrariness in the time evolution
of G.

4b. Nongeneric case

Here yg is larger than 8. When 9=SU(3), one
example of such a E is Y. The littl'e group of Y is
U(2). The genera, tors of this U(2) are I and K

In the nongeneric case, we can choose x to be
any arbitrary time-dependent function subject to
the preceding restrictions. Thus the time evolu-
tion of G is not completely determined:

D,G= Gx. (6.9)

Let 0 be the group generated by all the allowed
x's. Then only those functions f(g) which fulfill

f(G) =f(G~) (6.10)

for any co(= 0 have a unique time evolution. Only
such functions are of physical interest. In the ex-
ample above, A=SU(2).

VII. THE HAMILTONIAN FORMALISM
AND QUANTUM MECHANICS FOR CASE 4a

Let X, denote the momenta conjugate to E,. The
primary constraints are It&, and y, . They vanish
weakly. The Hamiltonian is

4a. Generic case

Here y~ is 6 itself. This is the usual case. For
example, when g = SU(3) and 8 is spanned by I, and
Y, most elements of t' have their little groups gen-
erated by I, and Y.

In the generic case,

TrA[B, C]= TrBIC,A],

[I, GH(a) G '] = 0,

we find

E,=O,

(6.3)

(6.4)

H= (p' —eA'8, )'+ eA'8, + v,y, +a&,y, . (7.1)

In addition to the PB's (3.18)-(3.21), we also
have

(8., q.j=o, ]y., X.j= -( dG), , 4„X,j=o.
The requirements (Q„Hj= ot„Hj= 0 lead to

GWG '= i[V&I]&-

Thus, (6.2) implies

[GG ' —i eA, I]= 0

which is the same as (3.10).
Variation of K,. Here we find

(6.5)

TrH(a)G 'VG=O,

(7.2)

(7.3)

(7.4)
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where [H(a), T(n)]=za T(-n) (7.15)
V= u, T(p), W= m, H(a). (V. 5)

Here, we have used the constraint 8, =I
We first simplify (7.3). Since

TrGH(a)G '[V, l]=TrV[I, GH(a)G ') =0,
(7.3) gives Tr[H(a)W]=0. Using (7.5), it follows
that

W= 0, [V, f]= 0.

Thus G 'VG(=@~. In the generic case, y~ is
spanned by (H(a)j. Thus from (V.4),

V= 0.

(V.6)

(7.7)

There are no secondary constraints.
The preceding analysis also shows that all con-

straints in the generic case are second class.
The absence of Lagrange-multiplier terms in

the Hamiltonian means that the time evolution of
' all the variables is unambiguous. They are all

thus physically meaningful. A complete set of
variables describiag the constrained phase space
(fulfilling P, =X, =O) can be chosen to be G,„and
E,.

Next we shall compute the DB's of this complete
set of variables. For this purpose, it is conven-
ient to choose the basis (T(p)j in the following way.
Until now we have labeled the basis (T(p)j purely
by integers. However, it will be more convenient
for us here to use a labeling composed partially
of integers and partially of roots. Let H(a) (a
= 1, . . ., k) and E(o.) denote the basis in the Cartan
canonical form. Here n is a root:

[H(~), E(c.)J = o..E(n) (7 8)

We. choose E(o.)'s and H(o. )'s so that they fulfill

E(n)t =E(-n),

»JE(~)E(P)j= 2R5. „
Tr(H(a)H(b) j= R5,~.

Of course,

Tr(H(a)E(o. )j= 0.

(7 9)

(7.10)

(V. ll)

(7.12)

E(o.) + E(-n)
2

(7.13)

E(~) -E(-~) (7.14)
2i

In (7.13) and (V.14), cc is a positive root, that is,
its first nonvanishing component is positive. Note
that Tr[T(p)T(o)]=R5„and that

In terms of H(a) and E(cr), all the T(p)'s are given
by .

T(a) =H(a), a = 1, . . ., k

for any root e.
In the notation of Sec. IV, the following can be

proved:

~-', , = —g (adc),
1

at E e
(adc). .. (7.16)

(7.17)

g-1 „0
XgXy

A ' A

Here, K 'o.'is K,n, and the summation in (7.16) is
over all the nonzero roots o.'. In Appendix B, we
prove (7.16). The proofs of (7.17) and (7.18) pro-
ceed in a similar fashion.

Using (7.16)-(7.18), we find

[GT(-~)],

(7.18)

[GT(n) J,„
af E g

(7.19)

= -i[GT(a)J,„,
(&., &,j = -J&., x,j& ';, ;„f.x„&,j

(7.20)

(7.21)

We shall now briefly examine these, equations
when the group is SU(2) and the representation I'
is the defining one. Then we can write

e, e~, (7.22)

Then K, has only one component; call it E,. We
can choose

e.=(lf ["'e e* (7.23)

as our independent variables. The variables 6,
are unconstrained.

We choose our basis as follows:

T(1)= H(1) = cr„

T(n) = ~ o„ for o. = (+1),

T(o.) = ~ a» for o. = (-I),
(7.24)

2 (~.)gg (o,)„. (7 25)
jr, .j

where cr, are the Pauli matrices and (+1) and (-1)
are the roots.

It can be shown (by examining individual compo-
nents, for instance) that
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From (7.22) and (7.23), it follows that the only non-
vanishing DB's are ]6„6,J = (K,/IK, I) —,'i and
$0„6*,)*= (I~,l IR. I) -'i Since they are both propor-
tional to constants they can be interpreted as co-
ordinates of harmonic oscillators. This system
and its quantization has been discussed elsewhere. '
See also Sec. VIII.

The DB (7.19) is not in a form suitable for quan-
tization. In particular, it suffers from factor or-
dering problems. Also the occurrence of E n in
the denominator may cause problems. Some sim-
plification of (7.19) is possible when I' is the de-
fining representation of SU(N) (for any N). How-
ever, except for the SU(2) example, we have not
succeeded in finding a choice of variables suitable
for quantization.

VIII. HAMILTONIAN FORMALISM AND QUANTUM
MECHANICS FOR CASE 4b

Tr W(s)K = 0, s = 1, 2, . . ., l. (8.2)

These are the new constraints we are imposing on
the phase space in order to have a nongeneric E
with a given little group 1"~.

It is straightforward to verify that the first-class
constraints are

Here, E has a given little group F~. Its Lie al-
gebra yp is larger than C. All the equations from
(7.1) to (7.6) are still valid. Thus G 'VG c y». By
(7.4) the components of G 'VG in 8 are zero.
There are no secondary constraints.

The Lagrange multiplier terms in H are not fully
determined. Certain linear combinations o.„Q, of
the constraints @,appear with arbitrary coeffic-
ients in II. Thus physical variables with well de-
fined time evolution should be invariant under the
group Q generated by n„Q, . [See also the discus-
sion which follows Eq. (6.9).] The first-class con-
straints we find below form a basis for the Lie al-
gebra y(Q) of Q.

We choose a basis W(y) for y(Q) with W(s),
s = l, . . . , l &k being in |'. They are normalized in
the usual way: Tr[W(y) W(y')] =R5„&. For those
W(y) which are not in 6, it is obvious that

Tr[W(y)SCJ = O, W(y) g e. (8.1)

On the other hand, y(Q) is generated by taking a
sufficient number of commutators like
l.w(y), w(y')], l.[w(y), w(y') J, [w(y"), w(y"')]J, etc. ,
of such W(y)'s and then taking their linear combin-
ations. Thus, W(s) (s &k) is a superposition of
terms of the form Q, B]. Here, A and B commute
with K since the W(y)'s not in 8 do so. Therefore,

Tr(L4, JAB) = Tr(IB, if'JA) = 0.

Thus

g„= (1/R) TrW(y)(G 'K G+K),

W(y) c y(Q), 4 = y,-T(p). (8 8)

Here the W'(X)'s span the orthogonal complement
of y(Q) in the full l,ie algebra. They are normal-
ized as usual. Thus, .

Tr W'(A. )W(y) = 0,

TrW'(X)w (X') =R5~~,.
(8.5)

The variables with mell-defined time evolution
must have weakly zero PB's with P, . Using all the
constraints, we see that a complete set of such
variables is given by (a) z,. and P', (b) the nonvan-
ishing components K, of K, and (c) those functions
f(G) which fulfill (6.10). The latter are simply
functions on the left cosets G/Q. Except in some
very degenerate situations to be discussed below,
we have not found a convenient parametrization for
G/Q. Note that I= GAG ' defines a partial para-
metrization of G/Q. However, it is invariant un-
der G -Gk where h is generated by a~y element of
C. Thus it does not fully parametrize G/Q.

The DB's involving G~„and E, are simple mod-
ifications of those found in the generic case. The
derivations are straightforward and we will only
state the results. Let a denote the roots perpen-
dicular to E on the constrained hypersurface:

~,E, =O. (8.6)

Then T(+o.) c y(Q). I,et 6 denote the remaining
roots:

g, E, 40.

The DB's are given by'

(8.7)

JG„,G;„,] = Q [GT(6)]„„ IGT( —P)]„.„., (8 8)
8 E P

JK„G~„]. = -i[GT(a)J~„,

JR., ff,]*= o.

(8 9)

(8.10)

Any other relevant DB on the constrained surface
can be extracted from these equations.

We see that (8.8) is not in a form suitable for
quantization. We shall now briefly examine the

In the Hamiltonian, only those P„'s with W(y) 4 8
appear. Such tIt's are linear combinations of the
Q's alone due to (8.1).

We'can choose the second-class constraints to
be

Z, = (1/R) Tr W(s)K, s = 1, 2, . . . , I,

O, = (1/R) Tr W'(X)G-'C G,

(8.4)
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content of these equations in some degenerate sit-
uations. Let (Gj be the defining representation of
SU(N) and let K be an element with the maximal
little group. Such a K can be chosen to be a dia-
gonal matrix with the first N —1 entries equal.
Since TrE is zero, there is only one independent
component among the E, 's, call it E,. The little
group of K is U(N —1) and the group 0 is SU(N =1)
which acts nontrivially on the first N -1 entries
of vectors. Under the action G- Gh, ,
(G», G,~, . . ., G») has the little group SU(N —1).
Thus the last column of G parametrizes G/Q.
[Note that Z,G*,~ G,„=1. This is similar to (7.22).]
Further, we can now take 8, = K,/R ~'I'G, ~ and its
complex conjugate as a complete set of physical
variables. Their DB's are like those of N indepen-
dent harmonic oscillators as in Sec. VII. This sys-
tem is identical-to one of the cases discussed in
previous work' where quantization has also been
carried out. There is a transparent way to show
the relationship between our Lagrangian and that
of previous work. We shall describe this in the
next section.

this work was in progress. This work was sup-
ported in part by the U.S. Department of Energy.

APPENDIX A.

Here we prove (3.18)-(3.21). Equation (3.21) is
simply a consequence of (3.2) and canonical com-
mutation relations. Equation (3.20) can be obtained
by noting that

&]8„8.],g(~)] = -]f8.,g(~)],8,]

-gg((), 8,],8,] by Jacobi identity

= —ic„„T(X)g($) by (3.21). (Al)

f8„8,)= c„~8~+-E, (A2)

where ]E,g($)] =0. Consequently F is independent
of the v's. However, from the definition (3.15),
both 8„and (8„8,] are seen to be linear and homo-
geneous in the n's. Substituting v's = 0 in (A2), we
find E = 0. This proves (3.20).

To derive (3.18) and (3.19), first note that

f8„TrT(o)gKg g= -c„,TrT(X)gKg '. (A3)
IX. DERIVATION OF PREVIOUS LAGRANGIANS

In this section we consider the Lagrangian (6.1)
when (G]. is the defining representation of SU(N)
and X is most degenerate. Then E can be written

This follows from (3.21) and the trace identity in
(6.3). Then, straightforward algebra gives (3.18)
and (3.19).

APPENDIX B.

K=-'1+(O, O, . . . , K,)~, (9.1)
In the following, we prove (7.16), that is, (7.16)

fulfills

where l is the unit matrix. Now G 'D,G is in the
Lie algebra and so its trice is zero. Further G '
= Gt. Thus (6.1) reduces to

L = -m [-i(v')']'~ ' —(i/R)K, G*,~(D,G),~. (9.2)

Upon introducing 8, = ~K,/R ~'~'G, and discarding
the total time derivative (i/2R)(G, ~G,„)B,K, = (i/
2R)8, K, we find an interaction Lagrangian

i8*,(D,6), of p-revious work' with 8,'s transforming
under the defining representation of SU(N). There,
Lagrangians were also considered with anticom-
muting 8,'s. We can obtain these as well by first
writing (6.1) in terms of G and G* and then treat-
ing the components of G as anticommuting.

In Ref. 2, interactions of the form -i8*, (D,8)„
where 8 transformed under an arbitrary represen-
tation of G, were also considered. It is not always
true that these are also special cases of (6.1).
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Opt' Spiff ApXg Xglg p&

and

c,„,I, = ii,(adT(c)),„=—i(adI), „

= i[a,d(GKG ')],„ (B3)

(3) From [K, T(n)]=iK nT(-n) =(adK), T(p),
we find

(adK), =iK .n6,

Using (3.19), (7.2), and the constraint (3.16),
the left-hand side of (B1) can be written as

(B4)

1
(adG), „c,„,I,-g (adG),

E n

+ Q (adG)„(adG '),. (B5)

CyX ApXb X~X

First we summarize some elementary results:
(1) adG is real and orthogonal in the basis T(p),

while ad% is antisymmetric.
(2)
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Now substitute (2) and use (I) and (3) to find
I

g (adG)„(adG '),.a Q (adG), .(adG ').. (B6)
ai a~&

which is, of course/ Spy.

Similarly the left-hand side of (B2) is

1
(adG), ,(adG) „„—g (adG),

I K o.

where X is summed over a11 values. So,
(adG), (adG)„, = 5

(sv)

(a8)
a t

Thus since a is summed over only the nonzero
roots, (BV) vanishes. This proves (B2).
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Choose W (A, ) such that 8" (p) (p =l+ 1, l+ 2. , . , k)&C
8 is then spanned by W(s), W (P ). The remaining
W $) can be labeled by the roots P relative to this
basis for 8, as in (7.13) and (7.14)[see also (8.7)l.
Further, the components ofE in this basis fulfill
Q = 0, a ~l . C,all the momenta conjugate to K in this
basis X, (a~& ), X~ (P —l+ 1). Then, to compute
(8.8)-(8.10), we need ~ ~x -

~
~ iex~, and Z iexex (for

p, p' ~ l+ 1 and all allowecPX}. It may be shown that
~ x @„=0 & e@~=~pp' + e@&=0 & eze&=0 + egg

-i -1 „: -i

= (1/k P) ~z ~. Here the ~'s are evaluated in the
basis above, P,P' =l + 1, l+2, ... , -k; P,P' are roots
which fulfill (8.7) and A, can be either like aP or aP.


