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Yang's R gauge for self-dual SU(3) gauge fields
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Yang's R-gauge formulation of self-dual SU{2) gauge fields is extended to the SU(X) gauge group, A
simple and computationally useful expression for the Chem density is.exhibited. For N = 3 the self-duality

equations are given explicitly along with a Backlund-type transformation for generating "new" self-dual

gauge fields from old ones. No attempt is made to resolve the severe singularity structure of these "new"

gauge fields which preclude any physical interpretation.

Yang' has shown how, with a suitable choice of
gauge (the R gauge), the self-dua, l SU(2) gauge
field equations reduce to Laplace-type equations
for one real variable (Q) and one complex
variable (p). lt has been realized' recently that
the R gauge is especially suited for the con-
struction of Backlund-type transformations (8)
that generate "new" self-.dual gauge fields from
old ones. It can be further shown' that the
Pontryagin density (*S) for these "new" self-dual
gauge fields exhibits a striking "superposition"
principle. Unfortunately, if one requires the
gauge potentials to be real, *S for these "new"
gauge fields is infested with severe singularities
(not gauge artifacts) which preclude any physical
interpretation. The purpose of this paper is to
formally extend these observations to the SU(3)
gauge group, which is generally believed to be
the relevant gauge group for the description of
strong interactions. As in Ref. l, all con-
siderations are local in character and do not
refer to global properties. Arguments that hold
generally for the SU(N) gauge group are notably
emphasized. Explicit equations for the particular
case of N=3, whenever cumbersome, are relegated
to the appendixes.

Yang's formulation of self-dual SU(2) gauge
fields is trivially generalized to the SU(N) gauge
group by replacing the relevant 2&&2 matrices
with ¹&Nmatrices. The essential feature of
the R gauge is that Yang's generating matrix D
takes on a triangular form. It is a basic result
of linear algebra' (Schmidt's orthogonalization
process) that any nonsingular ÃxN matrix D can
be factored in the form D = TU, where U is
unitary and T is a nonsingular triangular matrix.
Since U is unitary, one can alway, ys choose a
gauge so that D is T, which we define to be the
R gauge.

For N&2 we refer to the action density, of self-
dual SU(N) fields as the Chem density, and in the

notation of Refs. 1 and 3 it is

S = *S= -2Tr(F„F„+F—,,F-„). —-
We now simplify (1) by using the self-duality
equation of Ref. l (i.e., F„=F,, =F,,—+—F„=0—).—

A slightly tedious amount of algebra gives one

S = *S= -2 Tr [a „a ~ (AQ-, ) +a,a,—(A p-)

—a,a,—(A —,A.,) -a,a —, (A,—A, )

+ (ap-, )(a+;)+ (B-,A, )(a —,A, )

—(a p;) (a +-, ) —(a;A, ) (a -,A, )], (2)

where A„=D 'D„, A —„=D 'D „(p,=y, z)—are the
gauge potentials, and for real gauge fields D
=' (D') '.' Equation (2) simplifies considerably
in the R gauge since then A

&
becomes triangular,

giving (in the R gauge only)

S = *S= -2 Tr[a,a —, (AQ,—+d,d,—)+a,a-, (AQ-, +d, d-, )

-a,a —, (A-,A, + d-, d, ) —a,a —,(A;A, + d—,d, )],

where

d&
=—diagonal part of A„,

d—„=-diagonal part of A-„,

and d—„=-(d„)*for real gauge fields. For the
case of X= 2, Eq. (3) becomes that given in Ref.
3. So far our considerations have been com-
pletely general and we now focus attention on the
N=3 case.

Yang's R gauge for self-dual SU(3) gauge fields
is best parametrized as
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where

Q, = real, $2= real,
(5) i

p p + p p Q P3 =P3+

1

2 2

B Psz P2plz

p =-p p = —p

Pg—, —P2P1„
R2Z

=—

p3, —p2p~ —g pg~ —p2p~

B B B 41 B B B 41
(P3tt P2 Pltt) 2 P2Z t (P3Z P2, plZ) 2 P23 t

2 2

(P32 P2 Ply ) 2 P2Z t (P3Z P2 PlZ ) 2 P29 '
2 2

Equation (6) follows immediately from observing

in order for the gauge field to be real. The en-
suing gauge potentials A„=R 'R„(A& =R 'R—„),
their diagonal parts d„(d—„), and the self-duality
equations I',—, + I';, = 0, which are eight in number,
can be found explicitly in Appendix A.

Equations (A4) to (A12) are covariant under a
number of algebraic transformations, of which
the most important and nonobvious is a discrete
inversion I that is explicitly constructed in
Appendix B. As Appendix 8 suggests, all such
transformations can be shown to be gauge trans-
formations and, therefore, by themselves are of
no use in generating new self-dual gauge fields
from old ones.

A far more important covariance of the self-
duality equations is a Hacklund-type trans-
formation B, which states that if (Q„p„p„
p„.. . , p, ) satisfy Eqs. (A5) to (A12), then so do

3 8 B(y„y„.. . , p, ), where
and

P, =-p—, , P

P; = -$„(B„B
—+ B,B,—)Q = 0,

(7)

which can be thought of as two independent im-
beddings of self-dual SU(2) gauge fields into the
SU(3) gauge group. The analog of the construction
of Ref. 2 would be to operate one, andZ, with
BI an integer n number of times, where for eveg.
n the resulting gauge field manifestly satisfies
the reality conditions (5). Unfortunately, if one
requires the resulting gauge potentials to be real
(for odd or even n), then by using Eq. (3) for *S
one finds severe singularities which are not gauge
artifacts. To calculate *S, one needs the fol-
lowing convenient result:

the nature of Eqs. (A7) and (A8), which can be
viewed as integrability conditions. Note that B,
unlike I, is not an algebraic but an integrable
covariance. It is now crucial to observe that in
general B does not take a real gauge field (Q„
Q„.. . , p, ), as defined by Eq. (5), to a real gauge
field, i.e. (Q„Q, , . . . , p, ) do not in general
satisfy Eq. (5). It is obvious that in general B
cannot be a gauge transformation, a fact which
makes it the key to finding new self-dual gauge
fields from old ones. Furthermore, since op-
erating with B twice on a gauge field gives back
the original field (i.e., B'= 1) one must, to gen-
erate nontrivial solutions, interpose an I (or
any combination of algebraic transformations)
between two B's.

Two simple solutions to Eqs. (A5) to (A12)
representing real gauge fields are

~141 4t Pl Pt 42 t P2 P3 0t

~241 A2 4t P3 Pt Pl P2 0t

litt litt Plttpltt 42 4 2ll 42tt P2tJP2tt 41 412 42tt 0 2tt litt (P3tt P2Pltl)(P3tt P2 ltt )

where p, v=y, z. Since I is a gauge transformation,
it leaves *8 invariant. The transformation pro-
perty of *S under B is very simple, as one can
easily check. For the particular solutions 2,

and 2„ the *S derived from Eqs. (3) and (8)
becomes that of Ref. 3. Until the singularity
structure is resolved, it is not clear whether
any of the "new" solutions-are physically relevant.
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APPENDIX A

Using Eq. (4) we find for the gauge potential
A& (A&) and their diagonal parts d& (d&),

0 0 2ll

242

(AB)

ill

2III,
0 0

A =R ~R=
P

P„„VP,

P30 P2P ill

Pill 4 2ll
O

242

~alp 2ll 4 2ll

2Q2

(Al)

0

O
@Ill 0 2II

0

0 (A4)

0 0
.0 0

0

0 0 2lf

4 ill ~2II 0
242

(A2)
where IU

= y, z. From (Al) to (A4) one can cal-
culate the gauge field strength E„„=B„A„
-&„&„+[A.„,A,], and the self-duality equations
E;„+E„-=O, eight in number, become two real
equations:

(S„S;+S,S —,) nIts+I, (p„p;, + p„p„)+ [-(P,„PP )(P;-, PP )+-(P -PP )(P-PP )—]-= 0, - (A5)

(AB)

and six complex equations:

P3, —P2Pj P3z - P2pjz 0
1 2 y, 1 2 z

(A7)

p;, -p,p — p~ -pp~
1 2 y 1 2

(AB)

(lt12P1.
[P2, (P2, —P2P12)+P2-(Ps —, P2PI )] =Ol

1 y 1 Z 1 .2
(A9)

[P.„(p;„-P.p -)+ P Cp P.P )]-= O, --
1 y 1 z 1 2

(A10)

( + ', + [P (P.„P,P-)+P -(P P.P„-)]=O, -
2 y 2 z 1 2

(A11)

2 2 +
I P12(P22 P2P12)+PI CP2 —-P2PI2)] =. O

2 2 2 2 1 2
(A12)
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APPENDIX B

(Bl)

The 8 gauge as defined in EIl. (4) is lower
triangular. One can equally well take for the A

gauge an upper triangular matrix such as

~I 1/2I 1/2 I Y'a
(42) P2 yI . (yl )1/2

pl
1/2 pl~I (e')'"

514 2 P2P241 P3P342

I
3

Q Q
2

I
3

p Q
2

Psp241 + pspsIII2

~S42
P2P24 1 P3P34 2

identification (B2) implies that if (Q„Q„.. . , ps)
are solutions to Eels. (A5) to (A12), then so are

I I I
(Ill» Q». . . , Ps), where

0 0
(yl )1/2

I P1P34 2 P24 1

0142 P2P24 1 P3P34 2

One can verify that the self-duality equations
I„—+E„—=0, resulting from the choice AI, are
identical in form to those in Appendix A, except
that everything is labeled by I. This suggests
that we make the identification

gI gI C (B.2)

which implies (8 '8 ) is unitary, so that we can
always go from the A gauge to the 8 gauge. The

&3PIIII2+ P24' i
4 142 P2P241 P3P34 2

1 2

Plpl(42 41P2P2) 41(4 142 P3P3 PlpsP3 P1P2ps)

P 1(4 2 P2P24 1) P2~34 1

P1P1(42 41P2P2) 4 1(4142 P3P3 PlpsP3 Pl 2 3)

I P 1(4 2 Psp24 1) Psp241
P1P1(42 01P2P2) 01(4142 gasps P1P2P3 Plpsps)
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