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The MIT bag model for hadrons is treated in the static cavity approximation. The adiabatic deformation of
a six~uark hadron with quantum numbers of the deuteron is studied in a configuration which permits the

separation of two triplets with quantum numbers of the neutron and proton. The energy of the system is

computed to second order in the gluon coupling and presented as a function of two choices of a single

collective variable: a separation parameter for the nucleons and the baryonic quadrupole moment. The

present study considers only interactions at short and intermediate range in a state with nuclear spins aligned

in parallel along the deformation axis. It does not treat effects depending on nucleon momenta. The energy,

when expressed in terms of a nuclear separation parameter, exhibits a soft repulsive core at short range due

to a color-magnetic gluon interaction, and strong attraction in intermediate range due to a color-electric

interaction.

I. INTRODUCTION

The two-nucleon force is probably the most
studied of all hadronic interactions. Since it was
first proposed in 1935, the Yukawa model of mes-
on exchange' has served as the organizing princi-
ple for theoretical efforts to understand the two-
nucleon interaction. Highly sophisticated models
involving several meson species and multiple
meson exchange have been proposed to account
for the observed low-energy-scattering data. '
However well these models succeed in account-
ing for the long-range aspects of the interaction,
there is no reason to believe that their usefulness
extends to short range; indeed practical models
abandon theory and draw from experiment for in-
formation about the interaction in this regime. '
Because of the extended nature of the nucleons,
it is clear that at short distances a two-body wave
function must fail to describe adequately the com-
plexity of a two-nucleon system.

Present-day approaches to the understanding
of the structure of the nucleon have progressed
considerably from the early picture of a single
elementary fermion surrounded by a cloud of me-
sons. Obviously our understanding of the two-
nucleon interaction should keep abreast of these
developments. Accordingly, we have taken a
model which has been quite successful in account-
ing for the static properties of the light mesons
and baryons, namely, the MIT bag model, 4 and
have applied it in an effort to understand the short-
distance interaction of the two-nucleon system. '

The MIT bag model describes hadrons in terms
of the currently fashionable color-SU(3) gauge
theory of quarks and gluons. These elementary
constituents are confined to a finite volume by a
uniform external pressure, a key innovation of the

model. Taken in the static cavity approximation'
the model is perhaps the only one currently avail-
able in which calculations of the type presented
here are feasible.

In the static cavity approximation the nucleon
is regarded as a collection of three quarks (we
do not take into account mixing with states with
giuons or extra quark-antiquark pairs) interacting
via gluon exchange and confined to a volume with
fixed walls. The two-nucleon interaction arises
when two such cavities join and the quarks inter-
mingle, altering the effects of gluon exchange.
When the cavities are separated, no interaction
occurs. Clearly, this approach can give no infor-
mation about the long-range effects of pion ex-
change, for example, which presumably would be
associated with a proper treatment of quantum sur-
face fluctuations in which quark-antiquark pair
creation is involved. ' Thus we have devoted our
attention to the short-range properties of the in-
teraction. Here the cavity assumes a nearly
spherical outline. Since this is also the shape
which is assumed by the noninteracting hadrons,
whose static properties have been studied with
considerable success, ' we trust that our computa-
tions will have comparable validity in this regime.

It is conceivable that the meson-exchange pic-
ture and the quark-interchange picture of the bag-
model are complementary over some intermediate
range. The quark-interchange diagram viewed
from the point of view of the crossed channel ap-
pears as the exchange of a quark-antiquark pair,
from which mesons are constructed. However,
the correspondence between the crossed-channel
spectrum and the direct-channel interaction energy
is made obscure by the static cavity approxima-
tion.

The bag model, in present form, does not take
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into account the process of creation and annihila-
tion of the bags themselves. Thus what is obtained
from the present calculation is more properly re-
garded as a potential from which a unitary spatter-
ing matrix is to be constructed.

Our approach to the two-nucleon interaction in-
volves studying the adiabatic deformation of a bag
containing six quarks into two bags containing
three each. Normally the shape of the cavity is
determined by the condition that the internal field
pressure be a constant on the surface. Thus the
ground state of the six-quark system in the static
cavity approximation is, strictly speaking, the
state of minimum energy which achieves this pres-
sure balance. This state is the semiclassical deu-
teron, and in the present calculation it is a single
nearly spherical cavity containing six quarks with
a binding energy of -190 MeV. However, quantum
fluctuations about this minimum energy, in par-
ticular fluctuations altering the shape, modify
both the energy and the description of the sQte.
The approach we have adopted in order to follow
these fluctuations is one quite analogous to that
of the Born-Oppenheimer approximation for the
interaction energy of two hydrogen atoms. ' There,
a single collective variable, namely, the inter-
nuclear separation is fixed and the orbital energy
of the electrons is computed. What emerges is an
effective central potential for a two-body system,
which is then used to obtain vibrational and rota-
tional levels of the hydrogen molecule. The justi-
fication for this approach lies in the notion that
the nuceli, which are far more massive than the
electrons, move with very small velocities com-
pared to those of the electrons. Thus the impact
of their motion upon the electron orbitals can be
treated adiabatically and classically. In the pres-
ent application there is no analog to the massive
pointlike positive charges. However, it is felt
that any gross collective variable which describes
the bulk conformation of the six-quark system must
vary slowly on a time scale characteristic of the
motion of the essentially massless quarks. We
have two criteria in mind which establish qualita-
tive limits on this approximation: First, the cav-
ity energies of the quarks must be small compared
to the overall mass involved in the collective mo-
tion. Second, the kinetic energies involved in the
collective motion must be small compared to this
mass. We believe that these criteria are fulfilled
in the two-nucleon system near threshold. How-
ever, considerable care would be needed in order
to apply this method to resonance decays in which
large kinetic energies are encountered, or to de-
cays involving the w meson in which masses com-
parable to the quark-cavity energies are encoun-
tered.

We study the energy of the six-quark system as
a function of the collective variable by fixing the
expectation value of this variable by adding a con-
straint to the Hamiltonian:

w'here ce is a Lagrange multiplier and 8 is the
operator defining the collective variable. Two
variables are chosen. One is a parameter which
measures the separation of the three-quark sys-
tems. The second is the baryonic quadrupole mo-
ment. In order to interpret the resulting curves
as representing potential energies some care must
be exercised. First, one must find some way of
splicing together the short-range information from
the bag model and the long-range information from
meson exchange. Second, one must deal with at
least the rudimentary question of defining a mass
parameter to be associated with the collective co-
ordinate. This problem can be compared to ad-
vantage with the analogous problem in the theory
of nuclear collective motion. ' Presumably sim-
ilar techniques would work here. The objective
of such a study would be to obtain a probability
amplitude at a given energy for a given value of
the collective coordinate. Thus, for example,
the deuteron would be regarded as a quantum
superposition of states of a six-quark nature
at close range and two-nucleon nature at long
range. Whether a single collective variable suf-
fices at close range or more than one must be
considered is, of course, a question which must
be kept in mind in future work.

The present work represents the first serious
effort at applying a consistent model of confined
quarks to the two-nucleon problem. It is not meant
to be exhaustive. We have not studied the spin
and isospin dependence of the interaction, although
this can readily be done with similar methods. We
do not study dynamical effects which would lead to
a construction of the two-nucleon wave function
and a determination of static properties of the
deuteron. These questions are left to subsequent
work. We explore here the details and subtleties
of the model and use it as a theoretical laboratory
in an attempt to isolate the important phenomena
which control the interaction.

The details of the model and computational me-
thod are set forth in the previous article" (here-
after refered to as I). In the interest of complete-
ness, a brief review of the construction of the ef-
fective Hamiltonian is given in Sec. II. The six-
quark configuration is defined in Sec. III and the
computation of the "configuration factors" of the
effective Hamiltonian is described in the Appendix.
The only essential difference between the computa-
tion for the quark-antiquark state in I and the
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six-quark state appears in the configuration fac-
tors. A two-orbital approximation to the cavity
Lamb shift (quark self-energy) is developed in
Sec. IV, and the results are presented and dis-
cussed in Sec. V.

II. REVIEW OF THE MODEL

In the interest of completeness we give a brief
review of the methods of I (Ref. 10), mentioning
the few novel features which emerge in the two-
nucleon problem. The reader is referred to I for
a more complete discussion.

The energy of the bag is computed variationally
in the static-cavity approximation using a Lagrange
constraint to fix the expectation value of a collec-
tive variable. The variational expression is

Two choices of constraint are considered here.
Qne is a measure of the distance between the two
orbitals. We have chosen the same measure as
used in I, namely,

~ =' """"'f s' t-)e (-) sv.1+ p,
' (2.5)

(There is no legitimate operator corresponding
to 5, so it is treated as a c number. ) The other
is the quadrupole moment defined with respect
to baryon number density, namely,

~ =&s@s+&&@» (2.6}

where ns and n„are the operators giving the quark
occupation number in the symmetric and antisym-
metric states and

(Hr —ce8)+BV, (2.1) s 3 ~sqs 3z2 r~ dV

where H~ is the Hamiltonian for the fields for a
given cavity shape; 6 is the operator defining the
collective variable; V is the cavity volume and
ce and B are constants. Minimization of (2.1)
with respect to the cavity shape determines the
shape itself, and as ce is varied, one obtains an
expression for the energy

E = (Hz) +BV (2.2)

as a function of (8). Only axially symmetric cav-
ities with reflection symmetry about the equatorial
plane are considered. The surface is defined by the
three-parameter formula in cylindrical coordin-
ates.

Q~ 3 Q~g~ 3Z f dV ~

These are normalized so that when p, =1 (so that nz
=n„) and the orbitals are well separated, Q= 5'

where r» is the two- nuc leon separation.
Whether more than one collective variable should
be used and which one is the proper choice are
questions which can be answered only in a dynam-
ical study of the collective motion of the system.

The effective Hamiltonian giving the field energy
to second order in the gluon-coupling constant g
restricted to states with quarks is given by

p' =n'(I —z'/d ')(1+az'/d') (2.3)
H~= dV:q~ -in ~ V+Pm q.

qz =qs —~yq
9'g =Vs+~PO'~

(2 4)

where p varies in the interval [0,1] for minimal
to maximal orbital separation.

Although this parameterization permits a wide
variety of shapes, it does not permit fission with
a sharply indented neck. Since the fissioning
regime was in any event considered to be beyond
the range of validity of the computation, we did
not undertake an improvement of the parameter-
ization (2.3). It is quite adequate for the short
and intermediate range where the departure from
sphericity is slight.

The separation of the quark triplets is described
in terms of two orbitals, left and right (L and R),
which are expressed as a linear combination of or-
thogonal orbitals, one symmetric and one anti-
symmetric (S and A) with respect to the replace-
ment z- -z, where the z axis is the deformation
axis. Thus the spatial part of the fermion spinors
is written as

+ dv-,' E"+ B'' -~" '+&, V,

(2.8)

where in the static limit

J =g:~tg p Q':
~

v ~ E =J ~, Vxg =I'

n ~ X'=0, n x B'=0 on S

(2.9)

and Eo(V) is the finite part of the zero-point ener-
gy of the fields. With only two orbitals under con-
sideration the quark-field operator becomes

q(x} = g [qz,z (x)bz,&
e '"z'

Cyfpm

+q„,f (x)b~~ e '"&'], (2.10}

where the b's are annihilation operators for the
quark-cavity eigenmodes in the absence of gluons
and c, f, and m are color, flavor, and spin quan-
tum numbers, The unperturbed-cavity eigenmodes
are defined by the equations
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( i-ol ~ v+Pm)q„(%}=lo„q„(x}in v,

in ~ llq (x) =-yoq„(%) on S.
(2.11)

When the field is inserted into the effective Ham-
iltonian we obtain terms both bilinear and quadri-
linear in the quark creation and annihilation oper-

ators, which are depicted graphically in Fig. 1.
The Hamiltonian may be written as a sum of terms
each involving a e number configuration-indepen-
dent energy, and an operator which depends on
color, spin, flavor, and orbital quantum numbers.
Its expectation value on a particular quark con-
figuration gives the field energy

Es=ns lds+n„oo„+W„s, Cs.+ W„s,Cs,}+(W„„,C~ + WS~C~}+(W»~Cs ~+ W»~Cs~+ WsnCs)

+ [(Wsxc.+ Wxxl)Cxls+(W», + W», }Cxcc+(W»+ Wax)Cxs]

+ [(W„»-Wz»)Cxlo+ (W»c+ W», )C„,o + (W»+ W»)Cxo]+Ecclf+ Eo

The eight terms (not counting the zero-point ener-
gy E,) have been grouped in order so as to cor-
respond to the eight types of diagrams in Fig. 1.
The four self-energy diagrams are all grouped in

Ese„. Theterms (os, ~, ~~s„etc. are shape-de-
pendent, configuration-independent energies and
the coefficients ns, n„, Cs, , Cs„etc. are config-
uration-dependent numbers which we cal1. the
"configuration factors. " The various energy con-
tributions appearing in (2.12) are determined by
solving the Dirac and Maxwell equations variation-
ally according to procedures described in I. We
give a brief account of the steps leading from
(2.8} to (2.12):

The terms denoted by S' represent contributions
from the gluon fields, of which there are three
types corresponding to the three types of currents:
two "diagonal" currents S-S and A-A, and one
transition current S-A. Consider the S-S fields.
The magnetic field operator can be written in a
two-component basis for the spin as

where we have suppressed the spin, flavor, and
color labels and used the notation

=0' g~ + C 82. (2.15)

B~„dV=S~~ b„v X'b„+8'~~ b~5 ~'b

Bss ~ ~dV=S'„s~ b~o' X'b~ bso A, bs

+ W» (b'„5'1.'b„) ~ (Vsff'~'bs),

The commutator resulting from the ordering of
(2.14) contributes to the self-energy. The normal
ordered expression represents the exchange of a
gluon [diagram (c) of Fig. 1], and involves a pos-
sible interchange of spins and colors between the
lluarks. The other quantities in (2.12) are defined
in a similar fashion:

&ss =
SfSt5 ~ ftl

f yg~S S 1 S c 'fm' Om' m c ' cbS cfmt

(2.13)

sz 'dV =~~x. ~'~'J'~'bs s~'~' ~

+W x (b~„iF'X'bs) (bls i5'Xcb„), (2.16)

where the index i on the c-number fields refers to
the spinor basis, not the Euclidean basis of the
field. When the field operator is inserted into the
Hamiltonian and integrated over the volume of the
cavity, some simplification occurs due to the azi-
muthal symmetry of the fields and the cavity with
the result

B,, ;,dV- J..~ .,dV

ss ' ssdV

+Wss b~s5~Xcbs bs d &'bs, (2.14}

ss+ ~~ dV=-~ s — ~'dV bshe'bs

dV=%g~g b~& X'bs bshe X b

+ Wsx, (bt„P'X'bs)(b~si5'X'b„)

+ W»(b~„X'bs )(b~~ &'b „)

All of these terms enter in the effective Hamil-
tonian (2.8). The configuration factors in (2.12}
arise from taking the expectation value of the var-
ious operators (2.16) on the state defined in Sec.
IQ below. They are
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ns = {b',b, ), n„=(b'„b„)

C = ( br rr'r 'b br rr'r 'b )

Cs, =( br i5'r 'bsbr fr'rl. 'bs. ),

C =(:b„' 'b„b„' 'b„:),
C =( b i5 'b b„ff 'b„:),
Cs ~ =2 (:brArr

'rl'b Abrsrr sX'bs: ),

Cs~=2(: brA59'bA . brsi5'rl'bs:),

CX~=2 (:brAff'X'bs brsff'VbA:),

Cxs = 2 (:brAr 'bs brs r 'b A: ),

(2.1V)

n' = (br (X o')'b, ) n' = {b' (r '0')'bs)

n' ={b'(x' o'}'b ) n' =(b'(z'(f'}' b)

n'={b'(r')'b ), 'n={b'(x')'b ).
(2.19)

These are all simply proportional to the respec-
tive occupation numbers ns and n„. With our nor-
malization for the matrices X',

have made use of the color-singlet property of the
state which provides that the electric part of the

graphs Figs. 1(c), 1(d), and 1(e) and the electric
parts of the diagonal self-energy graphs Fig. 1(h)
combine to give the term WssCe in (2.12) (see the
discussion in the Appendix). The configuration
factors in (2.18) are defined &y

(a)
(c)

(e)
4

Cx~ = 2(:br' irl'bs brAi5 9.'bs: ),.

Cxo =2(:br''bs brArl'bs: ),

C = —(:bP'b b„il'b„:).
The self-energy contribution from the 8 and A
orbitals alone is given by

lr ( Ns*ns Nsi si}

+(wN~nA, + wNAnA, )+(wNxg+ wsx, )(nAI+nsg)

+ (~Nxi rrxi}( Ai sl } ( rrx Nx}( A s }

(2.18)

where the first two terms grouped in parenthesis
are represented by the S-S-S and A-A-A "diagon-
al" graphs in Fig. 1(h) and the remaining terms
collect contributions from the off-diagonal graphs
S-A-S and A-S-A. In writing (2.12) and (2.18) we

n' =-'n' =n' =-"n
Sg 2 S1, S 3 S~

c 1 c c 16fl~ ~zM tl A ~3A'
(2.20}

The expression for the self-energy actually used
in the computation (4.5), (4.6) differs from (2.18),
as discussed in Sec. IV.

U U U

d d d

III. SIX-QUARK-CONFIGURATION INTERNAL-SYMMETRY

COEFFICIENTS

In Sec. II we presented an effective Hamiltonian
for the state containing only quarks. We now pro-
ceed to define the state upon which its expectation
value is to be evaluated. It will then be possible
to evaluate explicitly the configuration factors
(2.1V).

We shall consider a color-singlet configuration
of six nonstrange quarks with a definite total spin
S and isospin I. If all quarks are found in the
same spatial orbital, then the values I, 5, and
ms specify the state uniquely. If we use the nota-
tion (r, y, b} for the quark colors, (0, 0) for the
quark-spin projections, and (u, d) for the quark
flavors, then the completely antisymmetrized
wave function for I=0, S =1,

~ ms ~

=1 is given
by the antisymmetric part of a direct product
of Young tableaux" as

S
FIG. 1. Diagrams representing terms in the effective

Ham iltonian.

(2 1)
We want to consider the separation of the quarks

into two spatial orbitals labeled L and R, each
containing three quarks in a color-singlet state.
(A separation into noncolor-singlet states would
be energetically unfavorable because of the strong-
ly attractive color-electrostatic force. ) There are
two possibilities for nonstrange quarks. Either
the separation results in two nucleons or in two
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L L L R R R
L L L R

R R

(3.2)

The first tableau is the only one which survives
in the limit that all quarks appear in the same or-
bital, i.e., when L-R. In general, however, both
spatial configurations may contribute. This ar-
bitrariness in the choice of spatial wave function
is related to the arbitrariness in choosing a sep-
aration resulting in two nucleons or two 4's

For present purposes we consider only the sep-
aration into two nucleons, thereby specifying the
state uniquely. Of course the resulting configura-
tion will necessarily overlap with the two-4 con-
figuration as long as the L and R orbitals are not
orthogonal. Since we do not attempt to diagonalize

b(1236) resonances. For a static calculation the
state symmetric under the interchange of left and
right spatial coordinates is appropriate, since it
is convenient for generating the even partial waves
in the two-baryon channel. For the spatial part of
the wave function there are two Young tableaux with
this property, namely,

the Hamiltonian on the two-baryon basis, we can-
not discuss subtler effects caused by the interac-
tion of these two channels, such as the question of
how much 44 component there is in the deuteron.
This question can be answered by a small exten-
sion of the present calculation.

The quark triplet with the quantum numbers of
the proton and m, = ~ is created by the linear com-
bination of quark-creation operators (in obvious
notation)

(18)' 'p (0) =2u„(f)u (j)dt(f)+2ut(k)d (4)ut(0)

+ 2dt (t)ut (f )ut (4) —ut(i)ut (k)d t (i)
-ut(t)dt(t) t(S)- d'„(i)ut(i)ut(t) (3.3)

—ut(4)u, (i)d, (t) —ut(t)d, (t)ut(4)

—d'„(e)u'„(S)u', (S).

We have written u„(f) in place of b„„t, etc. for
ease in reading. The corresponding expression
for the neutron is obtained by replacing u-d and
d--u. If we label the spatial orbitals by L and
R, the six-quark configuration with quantum num-
bers I=O, S=l, ~ms ~=1, which we study in the
present work, is given by the unnormalized expres-

TABLE I. Configuration-dependent coefficients for the six-quark system with I =0, S = 1,
~ m&~ = 1 as a function of the configuration-mixing parameter p, defined by (3.6) in the text.
The labels over the column headings refer to the relevant graph in Fig. 1.

8$ C$g Cwz Cz j.
cde
C~

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

6.00
5.76
5.25
4.77
4.37
4.05
3.78
3.55
3.35
3.16
3.00

0.00
0.24
0.74
1.23
1.63
1.95
2.22
2.44
2.65
2.84
3.00

8.53
8.04
7.03
6.07
5.31
4.71
4.24
3.84
3.51
3.22
2.96

-13.87
-12.56
-9.90
—7.43
—5.55
-4.16
-3.10
-2.27
—1.60
-1.05
-0.59

0.00
0.16
0.50
0.87
1.23
1.56
1.88
2.18
2.46
2.72
2.96

0.00
0.33
0.92
1.30
1.40
1.27
0.99
0.64
0.24

—0.18
—0.59

0.00
1.06
3.19
5.06
6.35
7.17
7.69
8.00
8.18
8.27
8.30

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00
0.60
1.82
2.90
3.62
4.10
4.40
4.58
4.68
4.72
4.74

0.00
2.88
8.66

13.74
17.24
19.48
20.86
21.72
22.20
22.44
22.52

0.00
-0.15
-0.46
—0.72
-0.91
-1.02
-1.10
-1.14
—1.17
-1.18
-1.19

f
Cx&z

0.00
0.76
2.28
3.61
4.54
5.12
5.49
5.72
5.84
5.91
5.93

Cx&

0.00
-1.97
—5.92
—9.40

—11.79
—13.32
—14.28
-14.86
-15.19
—15.36
-15.41

Cx~o

0.00
10.33
16.71
19.69
21.02
21.69
22.06
22.30
22.43
22.50
22.52

g
Cx. o

0.00
2 33
3.73
4.34
4.57
4.66
4.70
4.72
4.73
4.74
4.74

Cxo

0.00
—5.94

—10.03
—12.44
—13.93
—14.94
-15.63
—16.11
—16.40
—16 ~ 55
-1e.59



17 HADRONIC DEFORMATION ENERGY. II. T%0-NUCLEON. . .

sion

(3.4)

u'„~(t) =ut(t) —~put „(t),
u'„s(t) =u"„s(t)+~pu'„„(t),

(3.5)

and similarly for all other operators. The result-
ing configuration, symmetrized under L R con-
sists of a linear combination of the orbital occupa-
tions S', S A', $'A', and A', with weights deter-
mined uniquely by p, and the internal symmetry
quantum numbers. As p, varies on the interval
[0, 1] a definite path in configuration space has

The use of the algebra of creation operators sim-
plifies the notation for the antisymmetrization of
the state.

To define the contribution to the Hamiltonian it
is useful to express the left and right orbitals in
terms of the orthogonal symmetric (S} and anti-
symmetric (A) orbitals introduced in Sec. II. Thus,
introducing a subscript for the spatial orbital, we

have

been chosen. Since the nucleons are the lightest
of the baryons, we suspect that path is the one
which gives the best estimate of the ground-state
energy.

Having defined the state, what remains is to
compute the expectation value on this state of the
various operators in the effective Hamiltonian
(2.8) both bilinear and quadrilinear in the creation
and annihilation operators for the quarks. The re-
sulting expectation values give the configuration
factors denoted by n~, n„, and C in the expression
for the field energy of the cavity (2.11). As far
as we know, there is no simple and straightforward
procedure for finding all these quantities, although
individual coefficients and combinations of coef-
ficients can be found. The source of this difficulty
lies chiefly with the introduction of a spatial degree
of freedom with two permutation symmetries (3.2).
We have accordingly made use of a high-speed
computer to calculate these matrix elements es-
sentially by brute force. The method is described
in the Appendix.

We obtain the following result for the state with
I=0, S =I, lm. 1=1:

N= 5+67(p, '+p')+5y, ',
nz

——(30+268p'+134y, )/N, n„=6 —nz=(30' +268p~+134p')/N,

C~, =(128+896g'+256', ')/3N, C~~ =(-208 —608p, '+560'')/3N,

C„g = (128', '+896p, +256', )/3N, C~~ = (-208p, —608' + 560g')/3N,

C»„=2[192(p, + g') + 640'.']/3N, Cr~0 = 2[848(p + u, ') + 3168' ~]/3N,

C»-—-2[480(p. +p. ')+2624'']/3N, Cx,, =2x 46(0p, ' +p4)/3N,

Cr~~ = -2 x 128(p, '+ p')/3N, Cr~ = -2 x 1664(g' + p~)/3N,

Cz„,=2x512(p, ' p+')/3N, C~» =2x24 23(g' +p')/3N,

CD = 1792(g' + p~)/3N .
These factors are listed for a few values of p, in Table I.

(3.6)

IV. QUARK SELF-ENERGY

We now have available essentially all of the
terms required to evaluate the field-energy of the
cavity (2.12): the configuration factors given by
(3.6) and the configuration-independent fermion en-
ergies u~ and u„and the gluon-field energies de-
noted by W, computed according to the variational
procedure given in I. The self-energy contribution
E «requires special treatment, which we describe
here. The same treatment was adopted in I.

The complete quark self-energy to second-order
in the color coupling constant is evaluated by sum-
ming diagrams of the type [Fig. 1(h)] for all possi-
ble intermediate states. The quark self-energy

contributions perform three important functions in
the bag:

(i) They provide the color-electric field compo-
nent needed for the color-electric field to satisfy
the linear boundary condition. This component
arises from the diagram in which the fermion or-
bital remains unchanged in the intermediate state.

(ii) For massive fermions they generate an in-
finite mass renormalization. This infinite term
arises from the short-distance free-field singular-
ity in the fermion and gluon cavity propagators.
(For massless quarks this infinite term is absent. )

(iii) They produce a finite-cavity Lamb shift
which is orbital, mass, and shape dependent.

Previous phenomenological work in the static-
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cavity approximation' has made use of only the
first two of these functions for computations with
spherical cavities. In the work of Ref. 7 the fi-
nite part of the zero-point energy of the fields in a
sphere of radius R is introduced with a term

(4.1)

where Z, is determined phenomenologically by ad-
justing the masses of the states. For massless
quarks, the cavity Lamb shift has the same form.
Thus, one might say in partial defense of the pro-
cedure OX Ref. 7, that the Lamb shift has already
been absorbed in the determination of Z„. what was
called the zero-point energy is, in fact, a combi-
nation of zero-point energy and Lamb shift:

—ZJR = Z,'/-R + g n; 5u; (4.2)

where n; is the quark-occupation number of orbital
i, 5e; is the corresponding Lamb shift, and Zp is
the true zero-point energy parameter for the
sphere. Thus the effective value of Zp could well
be different for mesons and nucleons which have
different quark numbers. Although choosing differ-
ent values for these two species might well im-
prove the mass calculations, there is no compell-
ing reason to do so, given the nature of other ap-
proximations of the model. A phenomenological
determination of Geo; is not called for at present.

To compute the finite Lamb shift theoretically
involves a summation over all intermediate fer-
mion and gluon states, a task which is apparently
not possible in closed form for the sphere, and all
the more hopeless for cavities of general shape.
However, some ingenuity" may provide an indica-
tion of the shape dependence of these terms.

We have explored the possibility of evaluating
the spherical-cavity Lamb shift for the two orbitals
of present interest by summing over a few lowest-
energy fermion intermediate states. The series
does not appear to converge very rapidly in the co-
variant gauge although it was felt that in this gauge
convergence would be more rapid than in others. "
However, an interesting qualitative feature
emerges which is relevant to the two-orbital treat-
ment of quark separation. The substantial negative
magnetic-dipole terms in the diagonal transition
Sj /2 S$ /2 Sy /2 are nearly cancelled by the electric
dipole and magnetic-quadrupole terms in S, /, -P3/p-
S, &, when all permissible values )m,.[=-,' and —,

' occur
in the intermediate state. The corresponding
statement is also true for the P, /, level. Thus if
only these two orbitals appear, the resulting cavity
Lamb shift is less than 10% of the magnitude of the
individual terms. (Qf course higher contributions
may well alter this result. ) Thus for want of any
better procedure short of an exhaustive study of

this problem, in what follows, we shall restrict
our attention to these two orbitals and assume this
cancellation takes place in the sphere. We may
then accept the parameterization of the zero-point
energy of Ref. '1 (and the other parameters) at face
values and put

5~~(sphere) = 0,
5~„(sphere) = 0,

(4.3)

so that Z, is the same for both mesons and bary-
ons.

Having established a procedure for treating a
spherical cavity, let us consider other shapes.
Obviously, if the cavity should divide into two
spheres, for consistency, the descriptions should
correspond in each sphere to what we have already
established for one. Here an interesting and im-
portant constraint on the handling of self-energies
emer ges. When the cavity divides into two spheres,
the orbitals S and A become degenerate linear
combinations of S-type orbitals for the left and
right spheres. Let us call these individual orbitals
S~ and S„. Obviously, the electric-monopole terms
in the self-energy diagrams Si Si Si and S„-S„-S„
are needed in order to satisfy the linear-boundary
condition for the color-electric fields in the indi-
vidual spheres. If we reexpress these contribu-
tions in terms of the orbitals S and A we discover
that we are actually computing the electric part of
the off-diagonal self-energy terms S-A-S and A-
S-A together with the diagonal contributions. Thus,
for the fissioning cavities, the electric part of the
S-A-S and A-S-A self-energy terms are essential
in providing for the confinement of color-electric
flux. Notice also, that the magnetic terms in the
diagonal contribution S~ -S~ -Sl, and S~-S„-S„must
now, according to our prescription for the sphere,
be cancelled by higher terms of the type S~-A~-S~,
etc. These new intermediate states correspond
in the language of the single cavity to still higher
orbitals with more modes which we have not con-
sidered.

Further evidence for the physical importance of
the electric terms in S-A-S andA-S-A may be
found by considering the separation of a quark and
antiquark in a long cavity as discussed in I. In this
configuration one might expect that for large sep-
arations of the quarks, the classical result would
be obtained —namely, that the field energy is that
of two opposite classical charges separated by an
appropriate distance, with field lines confined to
the cavity. If the charge distribution is described
in terms of the orbitals S and A, a careful exercise
in bookkeeping reveals that only half of the re-
quired field energy arises from gluon-exchange
diagrams. " The other half comes from the self-
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energy terms —in particular, the electric terms
in S-A-S and A-S-A.

To summarize, therefore, in the notation of
(2.18) we must have in the two-bag limit

0.6

0.4—
&s &x 3 &sx ~

~ ~l (4.4)

Having established the two limits (4.3) and (4.4),
we seek a smooth interpolation between them.
Since we have not carried out the full quantitative
analysis of the self-energy series, we make what
appears to be the most straightforward interpola-
tion based upon a truncation of the series at the
lowest two orbitals, regarding these orbitals as
essentially degenerate. We shall find that with
only minor modifications the two-orbital expres-
sion (2.18) can be used for the interpolation. The
modifications which we require involve enforcing
(4.3) explicitly, and arranging for the spherical
Symmetry of the S,&, Lamb shift. These are now
discussed.

Our analysis of the gluon fields provides con-
tributions from the four transitions S-S-S, S-A-S,
A-A. -A, and A-S-A in which the intermediate quark
orbital has a magnetic quantum number ~m,. ~

=-,'
and in which the states S and A are taken to be
degenerate. In the sphere, the state A is inden-
tified with P, &, and there are two other states
with ~m,. ~

= 2 with which it is exactly degenerate.
As the sphere is distorted into a prolate ellipsoid
the magnetic terms in S-S-S and A-A-A fall off.
This can be seen in Fig. 2, curve (a) where the
quantity -(W„s,+ 2W„s,)/o is displayed for cav-
ities of ellipsoidal shape with unit equatorial radius
and a range of values of the polar radius d. This
quantity is proportional to the negative of the con-
tribution from the magnetic terms in S-S-S. The
curve (b) displays -(W», + 2W», )/n correspond-
ing to the negative of the magnetic terms in A-A-A.
The spin-independent E, , electric terms in S-A-S
and A-S-A grow quite rapidly, because they rep-
resent the field produced by the separation of two
opposite charges towards the poles of the ellipsoid.
This term is displayed in the form (Wsx+ W„r)/o.
as curve (c) of Fig. 2. The E, , field produced
by the transition S-A, &,-S, i.e., to the lowest anti-
symmetric state with ~mz~ = &, is not computed.
However, we can get some feeling for the qualita-
tive shape dependence of its energy by resorting
to the following argument: The form of the trans-
ition charge density is that of two charges separ-
ating lengthwise (parallel to the deformation axis)
along the ellipsoid. Thus the field energy should
fall with increasing length for long cavities of
fixed equatorial radius. For spherical shapes it
can be shown that the total contribution from in-
termediate states of all magnetic quantum num-
bers should exert a spherically symmetric pres-

0.2—

0 l

I.O
l

2.0

FIG. 2. Components of the self-energy evaluated in
the approximation of degenerate orbital energies for
cavities of ellipsoidal shape with unit equatorial radius
and of polar radius d (see Sec. IV for details).

sure for the S», level. The same is not true for
the P, &, level, however. Thus the derivative of the
level shift for the S orbital with respect to length
should vanish for spherical shapes. Our estimate
of the contribution from this term is shown for
ellipsoidal cavities in Fig. 2(d) and the resulting
total contribution Fig. 2(e) of Figs. 2(c) and 2(d)
is seen to have minimum at the spherical shape
d= 1.

Since the self-energy contributions that we can
compute and estimate already have nearly the de-
sired qualitative behavior, we take them with
small modification and write the self-energy (cav-
ity Lamb shift} as follows:

8(os --~s[(Wsr+ W~r} + c, n/d'Ro

+ (Was + 2Wss~)x

5(u„= s [(Wsr+ W„r)+ (W„„,+ 2W~~)xcs,
x= 1 —(1-n/d}s.

(4.5a)

(4.5b}

(4.5c)

The terms W», W», etc. are defined in Sec. II.
The level shift for the S orbital is comprised of
three parts grcuped in [4.5(a)]. The first term
gives the positive, spin-independent contribution
from the S-A-S transition and corresponds to the
E, , component in the sphere [Fig. 2(c)]. The sec-
ond term estimates the contribution from the other
terms, including those corresponding to the Ey
and E,~, components in the sphere [Fig. 2(d)].
[We have omitted several small terms in (2.18).]
The geometrical parameters n and d are defined
in Sec. II. The parameter R, is the maximum value
attained by p on the surface (2.3). The constant
cy is adjusted so that 5E ~ is minimum for the
sphere, as discussed above (c,=0.081}. The third
term in [4.5(a)] represents the magnetic contribu-
tion from the diagonal S-S-S transition [Fig. 2(a}]
with a coefficient x which suppresses this term as
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fission takes place (n/d-0). The constant c, is
adjusted so that the level shift vanishes exactly
for the sphere (c,=1.34). The level shift for the
A. orbital is constructed in such a way that it also
vanishes for the sphere (c,=0.93). Both constants,
c, and c„are nearly equal to unity since the de-
sired cancellation is nearly automatic. The net
contribution to the fie1d energy of the cavity is
weighted by the occupation number. Thus

E Jf gg 5(d8 + 5+547+ (4.6)

together with (4.5) takes the place of (2.18).
We feel that this treatment of the level shift

represents the most straightforward approach
which provides an expression consistent with our
qualitative expectations for the behavior of the
self-energy and with the desire for a minimum of
complication. Of all contributicns explicitly in-
corporated into the model it is the most uncertain,
and it offers the greatest theoretical challenge.

300

IOO

0"
OP

0

- IOO—

-200—

I

I

I

BAG
I

I

I

I

I

I

I

I

I

V. RESULTS AND DISCUSSION

Calculations were carried out following the same
variational procedure as in I. For the color-cou-
pling constant and hag-pressure constant we have
used the values n, = 0.54 and 8 ' '= 145 MeV, es-
sentially the same as were used in Ref. 7. These
and the constant normalizing the zero-point energy
discussed in I give the correct masses of the nu-
cleon and 6, a matter of obvious importance to the
present calculation. "

The present calculation refers to a six-quark
system with total isospin zero, spin one, and spin
projection one on the deformation axis. The result
of minimizing the energy at a fixed value of the
separation parameter 5 (2.5) is presented in Fig.
3 (solid curve). The mass of two noninteracting
nucleons has been subtracted to give the interaction
energy shown. The interaction is repulsive for 6
~ 0.35 fm and exhibits a "soft" repulsive core at-
taining a maximum repulsion of -285 MeV at zero
separation. The interaction is attractive at inter-
mediate range 6 ~ 0.35 fm, with maximal attraction
appearing at 6 = 0.8 fm at ™-180 MeV. The energy
rises above that of two nucleons at 6 ~ 1.4 fm —this
last feature is believed to be an artifact of the cav-
ity geometry (2.3) since it occurs for cavity vol-
umes considerably larger than that of two nucle-
ons. " (At 5 = 1.4, BV = 600 MeV compared with
I3V = 4VO MeV for two nucleons. ) The two-nucleon
volume is reached at 5 =1 fm when the cavity has
a slightly nonspherical geometry. The one-pion
exchange potential" for two pointlike nucleons sep-
arated by the distance |) is also plotted in Fig. 3
for comparison. It is striking that in the region 1
&5 & 1.2 fm both expressions for the interaction en-

FIG. 3. Two-nucleon interaction energy (MeV) vs
separation parameter 4 (fm) for the six-quark system
with &= 0, $=1, jm~ t=1 (solid line with circles), com-
puted variationally at fixed separation. Shown for com-
parison are the one-pion-exchange potential (Ref. 16)
(solid line) and the interaction energy computed varia-
tionally at fixed quadrupole moment (dashed line and

plus signs).

ergy are more or less in agreement. Presumably
this value of & is the best choice for the change-
over from the six-quark to the two-nucleon de-
scriptions.

The existence of a repulsive core in the single-
orbital six-quark system has already been noted
for spherical shapes. ' It is due to a repulsive
magnetic-gluon interaction (the same repulsive
effect that makes the 6 more massive than the nu-
cleon) in the configuration in which all quarks oc-
cupy the same spatial orbital. The repulsive core
also depends critically on the presence of a nega-
tive zero-point energy as proposed in Ref. 7, since
this term serves to lower the two-nucleon mass
relative to the energy of the spherical, single-or-
bital six-quark system. The repulsion is still
greater in isotriplet states.

The intermediate-range attraction obtained in the
present calculation could not have been predicted
without a quantitative calculation. Although the
color-magnetic repulsion of the single-orbital sys-
tern is expected to diminish, as separation into
two orbitals takes place, this effect alone is not
strong enough to result in attraction. Instead, an
examination of the magnitudes of the various ener-
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FIG. 4. Cavity geometrical parameters (2.3) vs the

constrained separation parameter 6.

FIG. 5. Configuration-mixing parameter (p ) and

baryonic quadrupole moment Q as a function of the con-
strained separation parameter.

gy contributions suggests that the main cause of
the effect is a strong color-electrostatic attraction
within the quark triplets (see below).

The quark triplets are quite well organized at ~
= 1.2 fm with the configuration-mixing parameter
p =0.75 corresponding to a 25/g overlap in left and
right orbitals. Thus the dominating factor in the
long-range interaction appears to be the cavity
geometry, as we have argued above, with quark
interchange playing a secondary role.

%e display the geometrical factors for the cavity
shape in Fig. 4. The expression for the self-ener-
gy (4.5) has the tendency to make a negative
(= -0.5) at zero separation. This effects lowers
the overall repulsive maximum by about 30 MeV.
Since it was judged to be an artifact of the approxi-
mation (4.5), and in any case within the error ex-
pected in the computation, we have for the sake of
simplicity forced a & 0. (In obtaining spherical
symmetry for the S,~,-state Lamb shift, the a-de-
pendence was not taken into account. ) Thus for
distances 6 ~ 0.5 fm the cavity shape remains
spherical (to within F/0 in the ratio of the major to
minor radius) and shrinks in radius with increas-
ing 5. A nonspherical shape appears only when the
energy is close to minimum, after which the cav-
ity becomes rapidly elongated. Fission occurs
when n 0 and a-~. For values of a ~ 1, the max-
imum cylindrical radius attained is given by n.
The corresponding value for the nucleon is about
1 fm, only slightly less than that attained by the
six-quark bag after reaching the energy minimum-
It is interesting to note that the cavity semimajor

axis d rises above the bag-nucleon diameter (2 fm}
at 6 =1.2 fm, and is consistent with our previous
reasoning that with an improved cavity geometry,
fission would occur near this point.

In Fig. 5 we show the configuration-mixing pa-
rameter as a function of the separation parameter.
It is a measure of the degree of separation of the
18ft and right orbitals. It is interesting that at the
energy minimum it has already attained a value of
0.5 and rises rapidly to 1. Fission cannot take
place until p = 1, since only then are the left and
right clusters color singlets. Also shown in Fig.
5 is the baryonic quadrupole moment as a function
of the constrained separation.

The baryon number density is shown in Figs.
6(a), 6(b), 6(c) for three choices of separation, and
in Fig. 6(d) the density for two noninteracting
spherical nucleons is shown for comparison. The
development of concentrations of quarks in the two
halves is well pronounced in Fig. 6(c).

The various contributions to the energy are ana-
lyzed in Figs. 7 and 8 and Table II. The total field
energy (exclusive of the zero-point energy) and
volume energy follow rather closely the total ener-
gy, with the volume energy (and therefore the vol-
ume) reaching a minimum at a smaller separation
than the total field energy. The zero-point energy
has a rather weak separation dependence but gen-
erally decreases. The several contributions to the
field energy are shown in Fig. 8. The fermion ki-
netic energy actually rises steeply as the quark
triplets are localized and the volume is reduced in
passing from the repulsive core to the minimum.
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(c)

(b)

FIG. 6. Curves of equal baryon density (baryons/fm3) in a full longitudinal cross section of the six-quark bag
at various constrained separations: (a) &=0; (b} ~=0.8 fm, minimum energy; (c) 6=1.4 fm; (d) Two noninter-
acting nucleons for comparison. Scale markings are in 0.5 fm.

The predominantly color -magnetic contributions
from the diagrams (c, d, and e) in Fig. 1, so la-
beled in Fig. 8, show a mild decrease, turning neg-
ative, as they should for the nucleon configuration.
The terms which drive the attraction are evidently
the gluon-exchange diagrams of Figs. 1(f) and 1(g),
shown in curves with the same labels in Fig. 1.
The dominant contribution to these terms arises in
turn from color-electric fields generated by the
A-S transition. It is precisely the same terms
which give rise to the strong attraction between
quark and antiquark in I that produce the strong
color-singlet condensation here. As a simple il-
lustration of this condensation phenomenon, con-
sider the elementary problem in quantum mechan-
ics of two spherical infinite-potential wells barely
connected and containing two electrons and two
positrons. The ground-state orbital is nearly de-
generate, consisting of one symmetric and one
antis ymmetric spatial orbital. From these one
may construct left and right orbitals as in (2.4).
All particles can be placed in the symmetric orbit-
al, or a positron and an electron can be placed in
the left orbital and the other pair in the right orbit-
al. The latter configuration has a lower electrostat-

ic energy because the attracting members are more
strongly correlated. A similar effect occurs in a
spherical cavity, but the lack of degeneracy in this
case means that the increased electrostatic attrac-
tion must compete with an increased kinetic energy
due to the localization of the particles. In the six-
quark bag the color-electrostatic attraction is very
strong and has no trouble in overcoming the in-
crease in kinetic energy due to the localization of
the quarks as can be seen in Fig. 8.

The self-energy contribution (right scale in Fig.
8) grows sharply as soon as the cavity elongates.
It is zero for spherical shapes according to the
prescription of Sec. III. Thus the shape of the
curve of Fig. 3 up to separations of 0.5 fm is un-
affected by the approximation (4.5). If we restrict
our attention to purely spherical shapes with no
self-energy included, an energy minimum occurs
at about the same separation, but about 20 MeV
higher. Varying the shape can only lower the re-
sult. Thus we have established an upper bound on
the intermediate-range minimum at about -160
MeV in keeping with the assumption (4.3) that no
net Lamb shift occurs in the sphere. This result
could be changed, however, if it develops that ei-
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quark bag as a function. of constrained separation 5. -0.8
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ther orbital is shifted, since it obviously depends
upon a rather important compensation between the
orbital kinetic energy and the electrostatic inter-
action energy. However, there is hope that the full
Lamb shift can be evaluated more readily for
spherical geometries; in that event this method of
obtaining an upper bound may well prove to be use-
ful. The behavior of the self-energy at 5a 0.5 fm
has an important effect on the total energy: It is
essential to include it if fission is to take place. At
the point of fission p. -1, and the self-energy con-
tribution cancels the electrostatic contribution of
graphs (f) and (g) of Fig. l. To see to what extent
the cancellation is taking place prior to fission in
our treatment, we present in Fig. 9 the total of all
gluon contributions to second order. The value for
two nucleons is -310 MeV, or about 200 MeV above
the values of Fig. 9 at the largest separations.

If we allow for a reasonable 30% error in the de-
termination of the self-energy from the approxima-
tion (4.5}we see that there could be an error of
50-100 MeV in the result for the energy at 5& 1 fm
but an error of %30 MeV for 6~ 0.7 fm. These er-
rors are larger than the next largest expected con-
tribution, namely, an error of approximately 1.0%
in the variational determination of the gluon-ex-
change energies, due to the neglect of the S-A en-
ergy difference. (We do not attempt to estimate
errors due to the choice of the model —the static-
cavity approximation, the neglect of quark-anti-
quark pairs, the effect of higher-order gluon con-

FIG. 8. Energy contributions corresponding to the
graphs of Fig. 1 plotted vs constrained separation 4.
The labeling is the same as in Fig. 1.

tributions, etc. )

When the same calculation is carried out at a
fixed baryonic quadrupole moment (2.5} an inter-
esting result appears and is shown in Fig. 10 and
Table III. Because arbitrarily negative quadrupole
moments may occur, a different aspect of the
"short-range" interaction can be explored. In this
case there appears to be an infinitely repulsive
core (the computation was stopped when the curve
reached about +1 GeV with no sign of a maximum).
As the quadrupole moment is decreased from zero,
the separation parameter (at constrained values of
the quadrupole moment) begins decreasing very
slowly (possibly to a limit) and the cavity develops
an approximately oblate ellipsoidal shape. The
larger negative values of the quadrupole moment
are attained by a simple scaling-up of the bag di-
mensions. For oblate shapes there is a natural
negative quadrupole moment. 'The volume increases
accordingly and gives the lar ge values for the energy.

It is interesting to replot the quadrupole-con-
straint curve as a function of the separation pa-
rameter. This is done in Fig. 3 (the plus signs and
dashed line). When this curve is compared with
what was obtained using only the separation param-



CAR LETON DETAR

TABLE lI. Energy contributions, baryonic quadrupole moment Q, and mixing parameter
p at various values of the constrained separation 5 for the six-quark state I =0, 8 = 1,
~ ms~ =l. All energies are in MeV. Equark is the kinetic energy of the ttuarks, E,d„Et, E,
Eh, thecontributionsof the graphs of the same label in Fig. 1, and Eo, the zero-point energy.
The last line gives the corresponding parameters for two nucleons.

5 (fm) Q (fm~) Equark Ecde Ef Eh BV E Etot

0.00
0.08
0.14
0.24
0.36
0.45
0.50
0.62
0.70
0.81
0.95
1.11
1.25
1.38
1.53
1.62

0,00
0.00
0.00
0.02
0.06
0.10
0.13
0.28
0.43
0.61
0.87
1.27
1.76
2.22
2.75
3.14

0.000
0.007
0.026
0.073
0.159
0.233
0.284
0.373
0.434
0.516
0.651
0.721
0.760
0.824
0.850
0.872
1.000

1853 39 0 0 —5
1863 40 0 -15 —5
1902 40 —3 —56 -5
2013 36 -22 -160 -5
2203 21 -91 —318 —5
2297 5 -155 -402 -5
2330 -5 —191 -436 —4
2387 -17 —261 —497 34
2410 -21 —307 -535 78
2386 -26 —347 -565 130
2345 -27 -383 —582 190
2297 -27 -451 -636 367
2258 -32 -516 —687 553
2251 -30 -589 -754 744
2208 —22 —657 -810 929
2195 -16 —730 -881 1110
2448 -312 0

537 -278
529 —279
500 —285
435 -298
370 -314
362 -317
370 -315
377 -319
384 -323
420 -320
478 —313
527 —322
570 —335
596 -351
644 —364
668 -379
466 -734

2147
2133
2093
2000
1866
1786
1750
1704
1686
1679
1708
1756
1810
1865
1929
1968
1868

eter as a constraint, we expect that the energy
should be increased at a given value of 5 when the
quadrupole constraint is imposed in accordance
with the variational principle. Indeed this result
is obtained. But we also find a remarkable agree-
ment between the two curves at large separation.
Agreement should be exact at the overall minimum,
since here no constraints are imposed. But the
fact that this agreement persists to within 10-20
MeV at all separations larger than the minimum
suggests that the baryonie quadrupole moment and
separation parameter may be regarded as equiv-
alent variables in this range. For separations 5
~ 0.5 fm the variables depart drastically. A simi-
lar effect is seen when the points from the curve
generated by constrain&ng the separation are plot-
ted as a function of tluadrupole moment (see Fig.
10). The curves agree for Qa0. 1 fm', but the sep-
aration constrained points rise to 280 MeV at zero
quadrupole moment.

Which of the two collective variables to use (or
whether both should be used) is a matter which can
be answered only ia a dynamical study. Essentially
what is expected is that in a many-parameter de-
scription the variable which lies more nearly on
the trajectory of "least resistance" as the system
climbs out of the potential minimum is the best
candidate for a single collective coordinate. Since
we have not carried out the multiparameter calcul-
ation, we cannot draw any firm conclusions.

0.2

p

-0.2—

a -0.4—
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FIG. 9. The total contribution of gluon exchange and
estimated self-energy to second order vs the constrained
separation 6.

A number of future lines of research are sug-
gested by these results:

(1) One is the investigation of other channels.
With results for I=O, S =1, M~=0, and the isotrip-
let channel it should be possible to isolate the spin-
spin, tensor, and central components of the two-
nucleon interaction.

(2) There is the interesting question of developing
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I I I I a dynamical description for the six-quark compo-
nent of the deuteron at short range. From this the
various static properties of the deuteron can be
calculated.

(3) Adding the && component could help to resolve
the question of its significance in the two-nucleon
interaction.

(4) The deep-inelastic structure function for
electron scattering from deuterons depends very
sensitively upon the six-quark nature of the state"
for values of the scaling variable in the range 1
~ «2. A better understanding of this component
of the deuteron wave function may not help much
in extracting information about the structure func-
tion of the neutron, but could be used to make a
direct comparison between theory and experiment
for the structure of the deuteron.

(5) The strong color-electrostatic condensation
observed in the six-quark bag is undoubtedly of
relevance to an understanding of the transition from
high density to low density in neutron stars.
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Q (fm ) 5 (fm) E&ot (MeV) d (fm) n (fm)

-0.72
-0.64
—0.60
—0.13
0.14
0.19
0.49
1,21
1.75
2.32
2.95
3.54

0.48
0.50
0.49
0.53
0.58
0.65
0.77
1.05
1.22
1.39
1.56
1.69

2213
2162
2121
1828
1724
1714
1686
1742
1812
1886
1951
20 14

1.40
1.36
1.32
1.21
1.19
1.20
1.28
1.49
1.68
1.79
1.91
2.02

1.75 -0.3
1.70 —0.2
1.65 —0.2
1.34 —0.2
1.19 -0.1
1.20 -0.1
1.17 0.0
1.15 0.2
1.20 0.2
1.20 0.4
1.19 0.6
1.19 0.8

TABLE III. Geometrical parameters and total energy
of the six-quark system with I =0, S =1,

~ ms~=1, com-
puted at a fixed value of the baryonic quadrupole mo-
ment. Geometrical parameters are defined in Sec. II.

APPENDIX: COMPUTATION OF CONFIGURATION

FACTORS

We describe here the computational procedure
used to evaluate the expectation value of the con-
figuration dependent operators (2.17) on the six-
quark state defined in Sec. III. Since we were
unable to find a simple analytical approach that
gave all of the desired matrix elements, it was
necessary to use a high speed computer. The re-
sults are consistent with a number of simple tests.

The method of computation was essentially by
direct use of the anticommutator algebra of the
fermion creation and annihilation operators; this
is the most foolproof method. Computation was
made more efficient through use of the following
device: Products of spin and color generator ma-
trices can be expressed in terms of permutation
operators

(zj, ' 0'2 = 2PI2 1 Pj's~,

A.,A., —2P,", ——' . (A1)
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(ii) Because the state is a color singlet, the color
Casimir operator has the value

((b~ A'bx+ b„'A.'b.„)')= 0 . (A4}

No normal ordering is intended here. Using sym-
metry properties under S A it can be shown that

(bshe

bsbs~X bs) =(bx)Fbxbxh bw)

(ba~ bxbs x bs)
(A5)

This result, used in (2.16), ensures that only the
difference in the electric fields and charge densit-

In each case the product of matrices acts on a di-
rect product basis of spinors and the permutation
operators Pyp aGd I',", interchange spin and color
labels of the spinors in the two bases. Thus the
internal symmetry part of the matrix elements in
(2.17) can be evaluated in terms of the complete
set of operators

12 l2t F18 1 2I Pig! Fim& 1 2 r (A2)

These, of course, are multiplied by the quark
creation and annihilation operators which depend,
in addition, on the spatial orbitals. The computa-
tion proceeded by considering one by one the six-
quark terms in the definition of the state (3.4).
Since the operators (2.17) with the replacements
(A2) merely had the effect of rearranging orbital,
spin, and color labels with a particular weighting,
it was then a straightforward bookkeeping rnatter
to compute the inner product of the rearranged
term with the full configuration and to tabulate the
sum for all of the six-quark terms. The results
are given in Sec. III and Table I.

The following consistency checks may be applied
to the results:

(i) For general values of p, interchanging the
roles of S and A is equivalent to replacing p, -I/p,
in all terms, including in the normalization factor

¹ This condition equates coefficients of p.
" to co-

efficients of p.
' " between the pairs

(CSgi CAz)~ (CS& i CAJ. ) I (+ST &A) i

and internally in all other terms in (3.6). When p,

=1 it follows that

ies fox the S-8 and A-A transitions appears in the
expression for the energy.

(iii) In the limit p, =0 the six quarks are all in
the S orbital and the results of Ref. 7 should hold.
In par ticular

ns=6,

e„+C„=-,
(A6}

and all other coefficients vanish. The latter iden-
tity follows since the sum of the two coefficients
gives the expectation value of 30Ayg™o'y o'2 as com-
puted by Ref. 7.

(iv) In the limit p =1 the six quarks divide into
two triplets with quantum numbers of nucleons,
each in orthogonal orbitals. The following identit-
ies must hold in order that the computation repro-
duce the result for two nucleons:

Pls flg

sz + sj. sA~ Cx go Cx

(A7a)

+Cx«+C», +C»+C„~ = 2 x16, (A7b)

Cxo+Cx~+6(3 ) =0 . (A7c)

(:b~x'c'b~b„A'o'bs:) =0,
(:b~z'o b~bsa'o b„:)=0,

whence it follows that for p, =1

Csg +Cz, +Csz, —Cxg~ —Cxgo-

C„+C„.+C,„,—e „-C„„=O.
We do not claim to have found an exhaustive list

of identities, but those presented here served as a
useful consistency check for the computed results.

The second identity follows since the combination
reproduces the sum of the expectation of 6A.', g™o~ o,
on each "nucleon". The third identity follows from
the color-singlet property of the two triplets.

(v) When p, =1 further identities follow from the
color-singlet property of the triplets. If we write
(suppressing internal-symmetry labels)

bl. = b~ -
bshe bs = b„+bs

then a single gluon cannot be exchanged between
the two "nucleons":
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