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I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent
introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon,

giving a U(n)-based theory with outer product P%(u,v) =(1/2)(d** + if**)(ubv*

— v%u°) which obeys the

Jacobi identity, inner product S(u,v) = (1/2)(u%“ + vu?), and with the n? gluon fields elevated to
algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra
satisfies the condition S(P(u,v),w) = S(u,P(v,w)) for all elements u,v,w of the algebra, all the
standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case.
I analyze in detail the color charge algebra in the two-particle (gq, g4, gq) case and show that the above
consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark
and antiquark charges: Q2 = £, Q% = & +8°%(n/2)*"1, with £°£° = (1/2)(d*** + if )¢,

£8 = —(1/2) (@™ — if*™)&. The algebraic structure of the two-particle U(n) force®problem, when
expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an
ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the
color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to-
a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative
orientations of the classical source charges have physical significance. (For an application to the static ¢g
force problem, see my later paper). I conclude with a series of conjectures about the extension of

the algebraic results to the general N-particle case, and about the extension of the classical theory

developed here to a full field theory. -

I. GENERAL FORMALISM'

I propose in this paper and a following paper a
new approach to the problem of quark dynamics,
based on the idea of following as closely as pos-
sible an analogy with familiar methods of classi-
cal electrodynamics.! In electrodynamics, a dis-
tribution of stationary charges with charge den-
sity

JO= E Q(n)és(x = xn)

produces a static electric field E’ obtained by sol-
ving (8/0x7)E’ =eJ°. From the electric field the
forces on the charges can be calculated either
directly from the Lorentz force law, or indirectly
from a potential obtained by integrating the field
energy density. As soon as one attempts to gen-

eralize these simple statements to the non-Abelian.

case, one encounters fundamental conceptual dif-
ficulties. Given a distribution of SU(x) color
charges with density

JA0= Qe (x—x ), A=1,...,n%-1,
(m) A ]
m

the color electric field is determined by the equa-
tion
(8/8x7)E'4 + g fABCHIBRIC = g g A0

=g 3 Qo -x). 1)

If the charges an) are regarded as ¢ numbers, in
color-singlet states they must be parallel (or
commuting) vectors,: leading to a Coulomb force .
law.? Thus, for a classical charge formalism to
be useful, it must incorporate the fact that the
color charges Q{‘n) are q numbers, satisfying the
color commutation relation

[Q?n)’ Qf",,.)]= 6nmifABCQ(Cﬂ) .

However, since Eq. (1) is a constraint on indepen-
dent Cauchy data E’4 and 5’ on any given time
slice, when integrated with g-number source
charges Q‘(‘,,) it yields potential and field compo-
nents which are noncommuting for spacelike
separations. This noncommutativity cannot be at-
tributed to conventional quantum dynamics of the
gluon field, which produces noncommutativity only
for causally related quantities.® Furthermore, if
gluon field components do not commute for space-

like separations, then Eq. (1) is in fact not the

correct gluon equation of motion, since its deriva-
tion from local gauge invariance* assumes com-
mutativity of gluon field components.

In order to deal with these problems, I will con-
struct a modified form of chromodynamics in
which the gluon fields are regarded from the out-
set as algebraic fields over the, quark color charge
C* algebra. The construction starts from the

" fundamental relation of gauge field theory, the

statement that under the gauge transformation
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d . 9 . -
W +2gB"1=S(*a—F+1gB“)S 1,

i (2)
- i 9SS .
B, =SB,S™!+ Z o’ S,
the field strength
9B, 9B . ‘ ’
Fy, =3§5— W’fz -1g(B,B, - B, B,) (3)
transforms as
9B/ 9B/ . -
F,= _Laxv - —ax'(, -1g(B; B, - B, B)
=SF,,S™: (4),

Let the n% — 1 matrices A* be the usual SU(n)
matrices, normalized to tr(A*A%)=2642, and let
us extend the set to n? matrices A%, a=0,...,n?
-1 by adjoining A°=(2/%)}/21. These matrices
satisfy the multiplication. rule

lyalyb_ _abc Lyc
27\ Zl"q ZA:

qabc= %(dabc_*.ifabc)

(5a)

with d%% (f °%) totally symmetric (antisymmetric),
and with the 0-index extension defined by f °*°=0,
d % =(2/n)?5%, - Decomposing the fields into
algebra-valued (hence noncommuting) amplitudes
over the A’s,

B,=bi3z)%,

(6a)
Fyy= Zv%)*a ’
and specializing to the case of an infinitesimal
gauge transformation S,
S=1+iu%3)?, (6b)
Egs. (2)-(4) become
BIP=b% 43 P, b,) - — =0yt @)
W=by+iP%u, b, ~z YL v
ab% 8bs ., ,
f:n/= ax” - sz "lgP (buabu): (3)
s OB BB L
b= g = gyw 18P (0L D)
=f vt iPu, ), 4
with the (anti-Hermitian) outer product P® de-
fined by’
Pu,v)=-P%v,u)=q**u° - v%°). (5b)

At this point the reason for adjoining 0 compo-
nents becomes apparent: With 0 components in-
cluded, the trace identity

Lir(aaaen’) = Ltr(A®aa o) (7a)

implies the identity®
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qcamqefm:qaemqfcm’ ) (7b)

which in turn implies that the outer product P de-
fined in Eq. (5) satisfies the Jacobi identity

P“(u,P(v,w)) +P%w, Pu,v)) + P(v, Pw,u)) =0
' ' (8)

for arbitrary (noncommuting) u, v,w. The Jacobi
identity would not hold if 0 components were
omitted from the construction. It is convenient
to introduce a covariant derivative D,'J ,

9 y
D,,w"sW w®+igP%b,,w), 9)

which by virtue of Eq. (8) satisfies
DpP\a(u; 7)) =Pa(D,_Lu, v)+P“(u,D“v) 9
(DuD,, - D,,Du)w“ = —igP“(f,“, W) .

Since for arbitrary small variations in the fields '
one has

5f%,=D,8b% - D,6b%, : (11)

(10)

and since from Eq. (2')
6gaugeb‘:1 =‘g—1Duua’ S (12)

we can immediately derive Eq. (4}) as an applica-
tion of Eqgs. (10) and (12),

a _ a a
6gaugefux.!—Du 5gaugabu "Du gaugebv

=g D,D,~D,D,)u’

=iPu, f ) (13)
It is also easy to show that Eq. (3’) implies that
D)\fl:w"'Duf(;\u"'Dpf:X:O' (14)

As a further application of the formalism of
Egs. (5)-(10), I examine next the properties of an
assumed gluon equation of motion

D, [ =g, ' (15)

with J®* the quark source current. This equation
will be gauge covariant provided that

OgaugeJ ' =& T Ogauge (D, f ")
=g "M Ogauge Do) f 7+ & 7Dy Sgavge f ")
=g " gP(bgauge by, f ") + g "D iP(u, f *Y)
=iP%u,d"). (16)

Hence if we express J* in terms of quark (anti-
quark) source charges, positions, and four-velo-
cities by writing

Jou - [ar 3 @t ut@e e, A7)

Eq. (16) specifies the gaﬁge transformation pro-
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perties of the quark source charges to be
Bgauge @n) (T) = 1P Y u( x,(7)) , @y (7)) . (18)

Applying a covariant divergence D, to Eq. (15) and
using Eqs. (10) and (14), we get

D,J% =0, (19)

which implies that the proper-time evolution of
the quark charges obeys

ﬂcgﬂ = —igpa( bu( xn(T)) ’

Qm(MNu (7).

Up to this point my development parallels the c-
number classical Yang-Mills formalism given by
Wong,® except that in the above formulas all
charges and fields can be arbitrary algebraic
variables.

"To proceed further, we need a Lagrangian den-
sity and a stress-energy tensor. To construct
these, it is necessary to introduce an identity on
algebra-valued variables which is not valid for
arbitrary algebras, but which, I conjecture, does
hold for particular finite algebras (the “color-
charge algebras” defined below). I introduce an
inner product S defined by

S(u,v) =3 @ +v°u®)=S(v,u) (21)

(20)

and restrict the discussion from now on to algebras
satisfying

S(u, Plo,w)) =S(P(u,v),w) (22)

for all elements u,v,w of the algebra, a condition
which guarantees that the covariant derivative of
Eq. (9) is distributive over the inner product,

%S(u,U)EDuS(u,v)=S<D“u,v)+S(u,Duv). (23)

In terms of the inner product, a Lagrangian den-
sity can be defined by

—_1
£=-1 S(f v ’f 1”’) + "G( interaction + quark kinetic ) ? (24)

with s( interaction + quark kinetic) Obeying7 in the isolated
quark limit

& (Euler-Lagrange) e(“’( interaction + quark kinetic)

=—gS(6bﬂ,J“)+E My U H(T) 0, oT)
n

(25a)

0 gauge £ interaction 4+ quark kinetic) =0 (OT total derivative),

(25b)

while a stress-energy tensor can be defined by

TOLB =Taﬂgluon +Tanua;k 3

Taﬁgl‘“’“:"s(f ay;f By)_'_%,nst(fy&,f)’tS),

af \ 27 B (26)
T quark = de Z gL (T)un (T)

X 8% x — x,(7)) .

It is now easy to check, by use of Eq. (22) and
Eqs. (8)-(14), that all the standard formulas of
Lagrangian chromodynamics follow from Egs.
(23)-(26). For example, varying b, we find

0=5 J’ d*x £
= a0 £ ) - 25(88,, )]
= fd‘*x[-s(pu 6b,,f 1) — g S(8b,,,J*)]

= [a*xs(en, D, - g"), (27)

which yields the equation of motion of Eq. (15).
Similar calculations give for the quark equation
of motion (Lorentz force law)

M () d—“;f(—i =gS( fu a2, (TN, Qmy (T k(7)) ,
(28)
which implies
S T o = =g S(f %0 1), (29)
and which together with
%T"‘f’gmoﬁgs(f %) ' (30)

implies overall stress-energy—tensor conserva-
tion. It is also easily checked, again using Eq.
(22), that & and T*? are gauge invariant.

"~ II. THE N=2 COLOR-CHARGE ALGEBRA

I turn next to the crucial issue of defining a
suitable quark color-charge algebra, and ex-
amining whether it satisfies the condition of Eq.
(22). The elements of the color-charge algebra
will be operators acting on the product Hilbert
space constructed by taking the direct product of
the color Hilbert spaces for the various quarks
and antiquarks which are present. Since classi-
cal chromodynamics -must be the isolated quark
limit of a quantum color field theory, I assume
that (up to possible shifts in 0 components) the
color charges behave algebraically as do the one-
quark projections of the charges »"x%, T (-a*)%y,
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with T =(a],...,al) an SU(n) color spin operator.
(The af are color state creation operators for a
given quark or antiquark, with {a;,a,}={a],a}=0,
{a;,al}=5;,.) Specifically, I define a one-quark-

projected color spinor

a [T -n)

Jj#1

a, H(l -n;)

i=2

$p= ’ , (31)

-

j#n

a, IIa-»

-

with n; =a;'aj the number operator for color type
j, and introduce n2-plet charges &%, £* defined by

E = PLENYp, E=yi(—EAF)Yp. (32)

Since

Z/)Palp;B: 60(6 H (1"nj) 3
i=1

and since
n

H (1 ‘nj)‘ppzlpp’

i=1
the charges defined in Eq. (32) satisfy the simple
algebras

TS S DLYEP L LN

EUE =l (— 2 A*0) (=S A*)p = —q POEC
For the quark and antiquark color charges, I take

Q=&+ 0 K1,

QL=E"+5"KA,

(33)

(34)

where I have allowed for possible unit-operator
shifts in the 0 components, which will be specified
shortly. .

Consider now a system of N (=N,+N7) quarks
and antiquarks, with color charges Qf,),...,Q{y)-
I assume that the color charges for different par-
ticles commute,

[Q((li)’Q?j)]zo) i#j; (35)

hence the inner algebraic properties of the charges
are completely specified by Eqs. (33)—(35). Putting
things in less abstract terms, the Q2 and the Q%
can be regarded simply as the matrices A% and
—3A*%, with shifted 0 components, and the color-
charge algebra I construct is an algebra built

from direct products of the A matrices for the
various quarks and antiquarks which are present.

Definition. The rank-N, type (N, N7) color-
charge algebra is the minimal algebra containing
N, quark charges and N7 antiquark charges which
is closed under composition using the outer
product P of Eq. (5).

I have computed in detail the rank-2, types
(2,0), (1,1), and (0, 2) color-charge algebras,
and find that they are all finite (containing 4 or 5
elements each), all have essentially the same in-
ner algebraic structure, and all satisfy the condi-
tion of Eq. (22) provided the following choices of
0-component displacements are made:

K,=0,
Ky=(n/2)*".

That is, charges transforming in the same sense
as the outer product P (having g% in the charge
multiplication law) have an undisplaced 0 com-
ponent, while charges transforming in the opposite
sense to the outer product P (having —g?% =g*2*
in the charge multiplication law) must have a
displaced 0 component in order for Eq. (22) to.
be satisfied.?

The computations which lead to these statements
are lengthy, but are greatly facilitated by the

(36)

" fact that the usual SU(z) identities® for the struc-

ture constants f48¢, d4BC (where indices range
from 1 to #2-1) take on a simpler form when
reexpressed as identities for ¢®° (which has
indices ranging from O to #%-1). All the iden~
tities which I have used are summarized in Table
I. The building-up process leading to the rank-
2, type (2,0) algebra is summarized in Table II.
Starting from the quark charges w{=£{, w}=£

as the initial elements of the algebra, one applies
the outer product P¢% giving three more elements

TABLE I. U(n) sfructure-constant identities.

qab":%(dabc+ ifabC)

abc cab _ bca
q

=q""=9

1/2 1/2
Obe_ - 2 sbe
1 2(%)
1/2
mmc=500 (E)
q "3

qcamq efm_ qaemqfcm
map Pbmziz_ éab
979 )
map mbp_:_’_z_ 6a05b0
q q 2

qmapqpbrqrcm_:ﬁ qabc
2

bbr ,mer

1/2
7 (_nz_) 50051117:_’_21_ 520 a0

o=

qmaﬁq
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TABLE II. Building-up process in the rank-2, type
(2,0) case. Initial basis: w{=£{, wz—‘g’z, wg= q“”(&b’g’c
—E3E9), wi=(Fm)1/2(egE] — 690EGES), wi= (3m)' 2(EdES
- 8¢§ES).

Outer-product table: Table gives P(w;ow, Wcolumn)

wy Wy wy w, wy
1
wy 0 w3 wy ws 3z wy
) .
wy | —ws 0 —ws, —3 W3 —ws
1 1
w3 | —Wy ws 0 Wy —2 Wy —WytzWs
1 1 3
wy | —ws 3 W3 —ws+zwy 0 —31 Wy
1 1 3
ws -2 ws ws Wy—3 W5 - g W3 0

Inner-product table: Table gives S(w ows Weolumn)

ADLER , 17

w3, 5 as indicated in the table. From then on.the
algebra closes, yielding the outer- and inner-
product tables shown. [Although there is one linear
relation among the w, ..., w, in the (2,0) and

(0, 2) cases, I do not explicitly reduce to a four-
element basis. As a result, the three rank-2
algebras are nominally five-element algebras

and have the same diagonalized form. After
diagonalization, the element z, is zero in the
(2,0) and (0, 2) cases, showing that these algebras
really have four elements in minimal form. ] 1t

is straightforward at this point, but tedious, to
verify directly from Table II that the identity

of Eq. (22) is indeed satisfied. A much better
procedure, which turns out to yield useful math-
ematical and physical insights, is to observe!®
that w, , ; form an ideal of the P product table,

Wy Wy w3 Wy Wy . ? . . .
which implies that the algebra can be diagonalized.
w, o 5 0 0 v As already noted, the diagonalized forms of all
s 5 B 0 ¥ 0 three rank-2 algebras [types (1,1) and (0, 2) as
wy 0 0 -y 0 0 well as (2,0)] are the same, and so I have sum-
Wy 0 Y 0 Y 3V marized the relevant structural formulas for all
Wy Y 0 0 2Y R4 three cases, in a uniform notation, in Tables
a=n@/2%), B=n(/2)1/2%), v=4n2tlt) 35S, MI-VI. Before turning to a discussion of these
=£{£3. tables, let me make two brief techmcal comments
on the computations.
TABLE III. Rank-2 color-charge algebra tables: original and diagonalizing bases.?
Algebra’ (2,0)=4q (1,1)=qq 0,2)=737
Original basis _
wy 131 13 E{+6%0(n/2)/
w, £g E‘§+5“°(:n/2)3/2 §¢Zz+5ao(n/2)3/2
wy=Plwy, wy) *  q®°(E3ES — £5E9) g (EJES — EBES) q e (E5ES - EBES)
~ wy=Plawy, w;) (n/2)1/2(E3E] — 69%¢5¢3) (0/2)1 (838G — 5 2%£5E9) (n/2)! 1 2EGES — (n/2) q P EYES + ERES)
ws=P(ws, wy) (n/2)Y 2(£3£Y — 5995£9) (0/2)1 /238G — (n/2) g (EJES + EBES) (n/2)M*EYES — (n/2) q“P E3ES+ EBES)
Diagonalizing '
basis
2y wy + wy — (3 (wy + w;) wy+wy — [2/ 0 — 1)]lws + (37% — 1)wy] wy+ wy — [2/ (n® — 1)) (ws + w,)
2, Wy — Wy + 2(wy — wg) =0 wy — wy — [2/ (% = D1[3w5 — (1 + 31 w,] Wy — wy + 2(wy — wg) =0
z3 (2i/V3)wy [24/(n% — 1)/ 21y [2i/ (n? — 1)1/ 2)0,
24 ) (wy+ w5) 4/ @® = D22+ 8)Y 2) (w, + 5) [2/ (n? = 1)](wy+ wg)
2z (2/V3) (w5 — wy) [4/ (n® = 1Y%+ 8)1/ 2] [3w;5 — (L + 3 22) w0, S 12/ = DY (w5 — wy)
Inverse
transformation
w, 32+ 2y+ 24+ VBzg) Sey+ 25) + (02 + 8)1/2[3z5+ (02 — 1)1/ 22 lzy +zy+ 24+ (1% — 1)1/ 2]
W, 2 (2 —2y+ 24— V32y) 32y — 2) + (2 + 8) VY —(L+ 3udeg + (02— 1)1/ 22,] 3z — 2yt 2, — (0% = 1)1/ 2]
w3 —(V3i/2)z L2 -1)"2%/21z, —Lt? = 1)1/%/ 2]z,
wy —(V3/4) (25— V32, —[(2 = 1)/20%+ 8)/ )25 - 3(n? = 1)1 /22,] —l? = DY Y/4)lz5 — (n® = 1)V %2,]
ws (V3/4) (25 + V32, [ = 1)/20%+ 8)1 M5+ (1+ 30Y) (n? = 1)/ %2y [(e® = 1)1/2/4][25+ (% = 1)1/ 22))

*Repeated lower-case indices are summed from 0 to #? ~1.
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TABLE IV. Rank-2 color-charge algebra tables: scalar products.?®

Algebra (2,0)=qq 1,1)=qgq 0,2)=979
Inde_pendent scalar products
in original basis
@ =S (wy, w) nln/2)t/2¢) nn/2)t/ 2} (n/2)®
B =S (wy, w,) n(n/2)t/ 2} /2y (n/2)°
¥ =5 (wy , wy) 13131 ENEY+ (/21 + ELES [E)+ /20 21EG+ (n/2)%/ %) + ELES
6= (wy, ws) el -5 0E) . Gozn)EE G-anDEfE GRt-DEE -2 EE

Independent scalar products
in new basis

A=S(z(,2) Q+B+2y—4/3)6  a+p+2y—[n%/(n-1)16 a+p+2y—[4/( - 1)15
B=S(z,2) @+B-2y-46=0  a+B—2y—[(2+8)/ (=16 a+p_2y—46=0
C=S(z{,2,) a-B=0 a—B-[(4=n"/(t>-1)16 a—-B=0

D=S(z3,25) (4/3)6 [4/0? - 1)16 [4/(n*~1)16

2Repeated lower-case indices are summed from 0 to #° — 1; repeated capital letter indices are summed from 1 to

n®—1.

- (i) Although the computations are most readily
done in #®-plet notation using the identities of
‘Table I, the role of the 0-component shifts is
better understood if Eq. (5) for the outer product
is rewritten with 0 components explicitly sep-
arated, '

1 /2 1/2 1/2 1/2
Pu,v)= 2~<;) [, 0] + E(n_) [u®,v4],

PAu,v) = %(%)1 /2[u°, v+ é(i)l/z[u“‘, 0]

n

(37)

+édABC[uB’,UC] +%ifABC{uB,UC}.

TABLE V. Rank-2 color-charge algebra tables: outer-
and inner-product tables on the z basis.’

Outer-product table: Table gives P(z,ow, Zcolumn )

zy 2y 23 2y 25
2y 0 0 0 0 0
2 0 0 0 0 0
23 0 0 0 iZg -1z,
z2y 0 0 —izg 0 izg
Zj 0 0 iz —izg 0

Inner-product table: Table gives S(Z;ow,Zcolumn)

24 2, 23 2y 2y
24 A C 0 0 0
2, C B 0 0 0
23 0 0 D 0 0
2y 0 0 0 D 0
Zg 0 0 0 0 D

Equation (37) shows that the 0 components appear
only in commutators, never in the anticommutator
term. Hence, since w, and w, do not reappear

as entries in the outer-product tables (cf. Table
II), unit operator shifts in the 0 components of
w,,, have no effect on the structure of the outer-
product algebra. The shifts, of course, do change

TABLE VI. Rank-2 color-charge algebra tables: ma-
trix elements of the scalar products.

(2,0)=gqq algebra

Color type (r) U@E) UE) UE) UE)
Matrix element ()3 (% (N N
A 2 4 0

=

D 1

08 ECREC

4
T
(1,1)=qq algebra

Color type (n) U@) U@B) U@ U@ U
Matrix element  (); (1>3 (n O n
X 0

4 o L
B 0 & 0 0 0
c 0 - 0 0 0
D SO TS S

(0,2)=¢q algebra

Color type (z) U@ UEB) U@ U@
Matrix element (V3 (s N ()3
A 9 4 0

lon =I5
-
o cofoo

1
D 3

-
o
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the values of inner products of elements of the
algebra.

(ii) The matrix-element computations sum-
marized in Table VI are of the usual type familiar
in the nonrelativistic quark model. As an il-
lustrative example, let me compute the singlet
expectations for general U(z) color in the ¢
case. According to Table IV, one needs (£9),,
(£9%%),, and (£4E4),. [The notation ( ), used
here and in Table VI indicates the expectation
of the operator u (which acts on the two-particle
product color Hilbert space) in the two-particle
state transforming according to the representation
¢ of the color group.] The first two are obtained
from Eq. (33), which tells us that £° and Z° behave
as multiples of the unit operator 1 in their respec-
tive algebras, giving in any color state

0 00 _ 1 /2\1/2
(=a= H2)",

@ =-e=-1(2)", (38)

n
(EVE) =(E(E). ,
To get ( £4%4), one uses the standard identity

CERER), = B[(E0 A EAD, = (ED®), ~(EAP))
= (&N,
== (@ - q°°)(&Y)
==(n?-1)/2n. (39)

Equations (38) and (39), when substituted into
Table IV, give the values (A),=(B) =(C), =
(D), =n/2 listed in Table VI.

Let me now proceed to a discussion of the
interesting structural features revealed in Tables
II1-VI.

(1) In the diagonalized form given in Table V,
it is easy to check that the identity of Eq. (22)
is satisfied. Since both the P and S product tables
are block diagonal, the algebra decomposes into
two independent subalgebras spanned by z, , and
Z4 455 respectively. Over the z, , subalgebra,
both sides of Eq. (22) vanish identically. The
z, 4 ; subalgebra is just an SU(2) Lie algebra,
and so over this subalgebra we have

it
P(z;,2;)=i€"*2,

} ’ i1j7k=394’5
S(z;,2;)=D2d;,

(40)
€ =alternating tensor with €3%°=1,
giving
S(P(23,2,),2,)=S(2;, P (2;,2,)) =D (€' 6,,, — 5,,¢ ™*")
=D (¥ — i) =0,

(41)

ADLER 17

so again Eq. (22) is satisfied.

(2) Focusing now on the ¢7 algebra, we see
from Tables V and VI that in the color-singlet
state, the scalar-product expectations (A,B,C),-
associated with the z, , subalgebra all vanish.
Hence despite the fact that the gluon structure
is U(n) rather than SU(#), the color forces in
the singlet state are entirely non-Abelian in
character. This is just what is required for the
color forces to be asymptotically free. Evidently,
algebraic chromodynamics has two levels of Lie
structure: an underlying U(z) algebraic gauge
theory which always leads, in the two-particle
case, to an overlying classical SU(2) Yang-Mills
chromodynamics. In the color-singlet state, the
only remnants in the overlying gauge theory of
the original choice n of color group appear in two
places: in the value of (D), the scalar product
expectation in the non-Abelian sector, and in the
effective charges for the classical SU(2) theory
obtained by reexpressing the original charges
w$ and w3 in the 2z, , ; basis. Referring to Table

-III, we see that for the ¢q algebra the effective

charges, in an obvious vectorial notation ap-
propriate, to SU(2), are

2 1/2
xorr n® =1 3
sz’v(o’(n%fi) s (n2+8)1/2)’

(42)

_Q,e _( n2-1 1/2 (1+%n2))

a - n®+8 ’_(n2+8)1/2 ’

which satisfy

Aeffyz _
(Qee=1, (43)
(Qeff)z__n / X
Qgﬁ, ngf % (44)

6(Q,» Q) =cos™(~1/n) .

Hence the effective charges, for allm =2, are
nonparallel. Analogous effective charges can
be defined for the z, , ; sectors of the gq and
47 algebras. In color-nonsinglet states, the
expectations (A), (B), (C) do not all vanish,
and so the color forces contain Abelian as well
as non-Abelian components.

(3) In order to study the physical significance
of the effective charges, I have explicitly com-
puted the effect of making a general infinitesimal
local algebraic gauge transformation in the case
of the gq algebra. According to Eq. (18), the
gauge variation of each charge is determined by
the value at the charge of the gauge parameter
u; hence for an N =2 algebra the effect on the
charges of a completely general gauge transfor-
mation is described by
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wi=w, +iPlu,w,),

wy =w2‘+iP(u2,w2) ’

) . (45)
Uy=Q W0 +B W,y +10Wy+Y, W, +€ W,
Uy = O, +BW, +TOW 5+ W, + €W

Working in the qq case (w,=§,, w,=£&,; P table
before diagonalization given in Table III) I have
explicitly constructed the P and S product tables
generated by starting from initial charges w/ and
w}. After transforming to new diagonalizing
bases z/,...,zl, these tables become identical
to Tables IV and V. The new diagonalizing bases
are related to the original ones by '

21=2; ,
z2;=2, ,
(23, 24, Z;) = (‘333 Z;! 25) ' ‘ (46)
V3 V3
+(T(51+ 8,), =2(0, = 6,), (63 + 92)>

X (23:34; 25) ’
1
91;_(61'*' 71+§€1) )
- 1
0,=Q,+€,+37,,

where I again use a vectorial notation for the 3,4,5
components and where X denotes the usual vector
cross product. The new diagonalizing bases are
thus obtained from the old ones simply by making
an infinitesimal rotation. This calculation shows -
that the effect of making a local algebraic gauge
transformation in the underlying algebraic chrom-
odynamics is to induce a global rotation of axes

in the overlying classical Yang-Mills theory.
Hence the effective charges cannot be rotated to
be parallel; their relative orientations have in-
trinsic physical significance. This result is the
basis for the analysis of the static quark force
problem given in the following paper.

' (4) From Table VI it is apparent that within each
algebra the expectation (D), decreases monotonic-
ally as the size of the color representation in- -
creases, and that the largest value of (D) occurs
in the color-singlet state. Thus there is a sense
in which algebraic chromodynamics gives color
forces which are strongest in the singlet state.

(5) As is readily apparent from Eq. (42) and .
from the tables, the theory is not symmetric bel
tween quarks -and antiquarks. I will have more to
say about this below, when I speculate about the
extension of classical algebraic chromodynamics
into a full-fledged quantum field theory. It is
easy to check from the tables that in the n=2 color
case the qq, gq, and gq algebras become identical,
reflecting the fact that the fundamental 2-repre-
sentation of SU(2) is self-conjugate.
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(6) After discovering the algebraic structures
given in the tables, I searched to find known math-
ematical antecedents, and found a partial answer
in papers by Albert'! and Santilli'? on nonassociative
algebras. Albert, in his fundamental paper pub- -
lished in 1948, introduced the concept of a trace-
admissible algebra. To explain this idea, let
u,v,w be elements of an algebra @ with nonassoci-
ative product wv. The algebra @ is a Lie algebra
if the product operation is anticommutative and
satisfies the Jacobi identity

uwy=-vu ,
(47)
u(vw) + wuv) + v(wu)=0.
(These conditions also imply that the associator
[u,v, w]= (wv)w — u(vw) satisfies the identities
[u,v,wv]=-—[w,v,u] ) (48)
[w, v, w]+ [v, w, u]+ [w,u,v]=0,

which in Albert’s terminology define a more gen-
eral type of structure, called a flexible Lie-ad-
missible algebra.) The algebra @ is trace-admis-
sible if there is a symmetric bilinear function, or
trace form, 7(u,v) with arguments «, v in @ and val-
ues over a field F, such that

T(uv, w)=T(u, vw) . (49)

[Albert’s definition of trace includes other techni-
cal conditions, one of which, T(u,v)=0 if uv =0,

is not satisfied by the color-charge algebras.]
Referring now to the concepts I introduced above,
if uv is identified with the exterior product P(u,v),
then the conditions of Eq. (47) [and of Eq. (48)] are
satisfied. Similarly, when Eq. (22) is satisfied
the inner product S is a trace form as defined
above. [To see that Albert’s extra condition men-
tioned above is not satisfied, note that P(z,, z,)=0
but S(z,, 2;)#0.] Hence the N=2 color-charge
algebras are trace-admissible Lie algebras.

III. DISCUSSION

I turn next to a discussion, based on the features
of the N=2 algebras, of what might be expected in
the general-N case.

(1) 1t will clearly be worth the effort to do an
explicit calculation of the rank-3, types (3,0),
(2,1), (1,2), and (0, 3) algebra tables. These will
give additional checks that the 0-component shifts
given in Eq. (36) produce color-charge algebras
satisfying Eq. (22), and assuming this test is
passed, will provide the algebraic basis for the
calculation of static baryon properties. A com-
parison of the (3, 0) and (0, 3) tables for n=3 color
will also answer (or at least begin to answer) the
following question: Are the diagonalized S and P
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" tables symmetric between quarks and antiquarks
when specialized to color-singlet states? [This
question cannot be usefully posed for the N=2
tables because in the color n=2 case, which is
the only case for which gg and g can couple to
form color singlets, the (2,0), (1,1), and (0, 2)
algebras become trivially identical.] The answer
to this question will determine whether a full color
theory will require only one set of gluons coupling
with outer product P(u,v), or two sets of gluons,
one set coupling with outer product P(x,v) and with
quark and antiquark charges as given above, and a
second set coupling with outer product *P%(u, v)
= —q**°(u%° — v"%°) and with the role of quark and
antiquark charges interchanged. In calculating the
N=3 (and higher N) tables, generalizations of the
identities of Table I to larger cycles of chain-
linked ¢’s will be needed, but it appears that the
needed identities can be obtained by repeated ap-
plication of the identities contained in Table I.

(2) Assuming that no problems are encountered
in the N=3 case, I make the following conjectures
(weaker conjectures are indicated with question
marks):

(i) The rank-N color-charge algebras satisfy
Eq. (22), that is, the inner product S is a trace
operation as defined above.

(ii) When put in block-diagonal form, the P
table has an Abelian sector containing projected
initial charges (the generalization of 21,5 above)
and possible additional elements on which P van-
ishes, and non-Abelian sectors on which P takes
the form of an SU(j) Lie algebra with j <N,

P20 2 ) = (552 (om - (50)
On the non-Abelian sectors, S is a multiple of
unity,

S(2 (jyrs 2¢531) =D )01 - (51)

The S product vanishes for entries from different
non-Abelian sectors or if one entry is from a non-
Abelian sector and one is from the Abelian sector,

S(z;, 2;)=0, z;,2; in different
non-Abelian sectors

, (52)

S(z;,2;)=0, z; in Abelian sector,

2z; in non-Abelian sector.

The expectation of S in color-singlet states, (S),,
vanishes identically on all Abelian sectors. The
expectations (D(i,), or at least some dominant

subset of them, are largest in color-singlet states.

A complete solution of the rank-N, type (N,, N;)
algebra, containing all information needed for

physical calculations, would consist of explicit
expressions or algorithms for the diagonalized
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P and S tables, and for the inverse transforma-
tions giving the initial chargesw,,...,wy interms
of the 2z’s.

(iii) Local algebraic gauge transformations in
the underlying U(x) color theory induce rigid glo-
bal axis rotations in the overlying SU(j) classical
Yang-Mills structures. Hence the magnitudes
and relative orientations of the effective charges
in the SU(j) sectors have intrinsic physical sig-
nificance.

(iv?) The scalar product expectations (S), and
effective charges in color-singlet states are iden-
tical for the types (4, k) and (%, j) algebras, giving
color forces in color-singlet states whichare sym-
metric under quark-antiquark interchange.

(3) As an application of (ii), let me assume that
when algebraic chromodynamics is quantized,
the form of the color-singlet axial-vector current
anomaly will turn out to be

2
@=C ;;7:“0, S(FH, foT) . (53)

Decomposing the algebraic fields f*¥ into clas-
sical Yang-Mills fields over the SU(j) sectors
discussed in (ii),

fuv:;f(j)kuuz(j)k , (54)

Eq. (53) becomes

2
@=C5—2.D;»G0) , (55)
J
with
) &(]) = iuvmf(j)kuv]c(j_)kor , 5 6)

a classical Yang-Mills anomaly. Since the f ¢%#¥
are ¢ numbers, the standard argument that G ()
is a total divergence'® applies to Eq. (56), and so
the algebraic anomaly @ will also be a total diver-
gence.

(4) So far T have neglected quark flavor (and
quark spin, which in the static limit behaves as
simply another flavor variable). Assuming that
each quark has F =2n, flavor-spin states, and
that (at least in an approximate sense) color
couplings are diagonal in flavor, theé quark and
antiquark charges are replaced by

F F '
Q:~; Q% Q%»; Qs (57)

with the charges for different values of the flavor
index f commuting. Although the algebras gener-
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ated by the charges of Eq. (57) are more compli-
cated than those with F=1, in actingonacompon-
ent of a state vector |f,f,***fy) with definite
quark flavors, all the “wrong flavor” charges can
always be commuted through to the right and give
a vanishing contribution. Hence all calculations
in flavor-conserving processes can be done using
just the F =1 algebra tables, and exhibit the ex-
pected SU(F)=SU(2xn,) symmetry.

I wish to conclude with some further comments,
in a more speculative vein, about the likely form
of the extension of classical algebraic chromo-
dynamics to a full quantum field theory.

(1) Up to this point, there is nothing in what I
have done to single out a particular choice of
color group U(xz). I suspect that the necessity for
taking n=3 will appear only when one extends clas-
sical algebraic chromodynamics to a full quantum
field theory. One strong hint pointing toward the
choice n=3 is summarized in Table VII, where I
work out the complete (as opposed to one-particle-
projected) color-charge algebras for the U(2),
U(3), and U(n), n>3 cases. This analysis shows
that =3 is the largest color group for which the
complete color-charge algebra is spanned by
charges which are either (a) singlets which com-
mute with all charges, or (b) n?-plets which obey
the simple algebras of Eq. (33). Mathematically,
this is simply an elementary statement about tri-
angular numbers: »=3 is the largest » for which
the binomial coefficients (}), j=0,...,n, take on
only the values 1 or #n.

(2) The fact that the natural charges appearing -
in classical algebraic chromodynamics are pro-
jected charges acting only on states of definite
quark number suggests that the structure of the
. quantized theory may be an unconventional one,
taking full advantage of the Fock space structure
associated with the color degree of freedom. In
particular, I think it probable that the underlying
quantum field will be a “prequark,” giving rise
to both quarks and leptons as different color ex-
citations.'* From Table VII, we see that when
the U(3) color charges are factored into the form
ATA, the natural creation operators A" which ap-
pear are quark creation operators
al(1 -n,)(1-mny), ..., diquark creation operators
alal(l —n,), ..., and a triquark creation operator
alalal. The triquarks, which are color singlets
and which obey the Pauli principle, are natural
candidates to be leptons. Note in particular that

total talat
. A30,0,0,0,0, + Q,0,0,0,0,4;

= 10y — 1y — 0+ 0y Ny + 1y Ny + 1y Wy

=1=(&+8,), (58),

which vanishes on one-quark and two-quark states

and is 1 on the vacuum and on triquark states, so
lepton fields constructed from the triquark oper-
ators will have the right canonical commutation
relations. Obviously, for this idea to work the
prequark field must be constructed so that the
momentum, spin, and mass carried by a lepton
are the same as those carried by its three color
components, not the sums of those carried by the
color components. There is striking, and famil-
iar, empirical evidence for this idea: The masses
of the known leptons are m,~0, m,~0.5 MeV,

m, =106 MeV, m,~ 1850 MeV, while the effective

.quark masses are m,~m, ~few MeV, m =100

MeV, m,~1850 MeV, ... . Clearly, a crucial
empirical test of this idea will be whether heavier®
quarks, such as the one presumably bound in the
T, have associated heavy leptons.

To carry this idea just a little further, natural
choices for the charge operator are either
Q=~3(n, +n,+m;) or @=1—3(n, +n,+n;), giving
quark dlquark and lepton charge assignments
-3, -2, -l or %, 3, 0, respectively. Through a
suitable Fock space construction, it may be pos-
sible to reinterpret the diquark degrees of free-
dom as quarks. I do not at this point have an
identification which gives a satisfactory account
of the known quark-lepton spectrum, but I believe
it possible that the construction of a consistent
quantum algebraic chromodynamics will reveal
one. Some other open questions are the following:
Are 9 gluons needed, or 18? Is the photon an
additional gluon, or is the 0 component of the
color field coupled so as to play this role as well?
Are weak interactions introduced through an ad-
ditional flavor-changing gauging at the algebraic
level, or does the color field cause flavor-chang-
ing as well as flavor-diagonal transitions which
lead to an effective SU(2) X U(1) weak-electromag-
netic gauge structure at the overlying Yang-Mills
level? (Note that flavor-changing color charges
have different algebraic properties from flavor-
conserving ones, and may not lead to additional
strong forces.) Finally, how is the gluon field .
to be quantized? Here I make a guess, which is -
that the algebraic gluon field is quantxzed by quan-
tizing the overlying classical Yang-Mills fields
according to the usual rules.

(3) Let me close with some brief remarks about
the cosmological implications of unifying quarks
and leptons in the manner described above. One
of the most striking facts about our universe is
that charge neutrality is apparently achieved, not
by balancing protons against antiprotons and elec-
trons against positrons, but rather by balancing
protons against electrons. While this can simply be
accepted as an empirical fact, quark-lepton unifi-
cation into a prequark field offers the possibility
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TABLE VII. Quark color-charge (number-preserving) C* subalgebras in U(2), U(3), and U(z), n>3 color theories.

U(2) color-charge algebra

Quark number of

1
state acted on 2

Singlet charge? =30, =n+ny—2mqny  Cy=mymy-
Triplet charge® A= yhiny, cee
U(2) form g = gha Ny, &

2 \? 2 \?
Dimensionality 1) = 4 ( 2) =1
Algebra® gagb = gabcge RES

Decomposition of yT5a%h: $Hirdy=£4, YN =30 +ny) =54+ 28,)

U(3) color-charge algebra

Quark number of 1 : 9 5

state acted on ) . .
Singlet charge? 026712, L =ngtngtng—20nmgF nyngtngng)  E0= =672, Cy=nynyt nyng+ nyny L3=nyngng
. + 3nyngng —3nynyng .
Octet charge® tA =yl My, £A- w’}’w(_é A% A)ih, .
" U(3) form Ea=yhe ATy, £9 = gh (kA O, 4
Dimensionality <i >2 =9 (2)2 -9 <§>2 .
Algebra® ael=g g2 =g £ =t

Decomposition of #T5A%p: A p=tA+ A YT 3N =6"1/2(n; + ny+ ng) = 671/ 2(L, + 28, + 3L,)

U () color-charge algebra n>3

Quark number of
state acted on

Ufn) charge g=alade W, b E =gz M pr  Lp=my e,

n
a,B=1,...,{.
) ) <7> )
Dimensionality <?> =n? (?) ) <nn 1) =pn? 1

Algebra £agb= gabete Contains U(n) representations  £%0=—qgbtecte £,2=¢,
which are not n?-plets or
singlets®

1 . ji=1l,n-1 n—1 n

2The ¢’s are all idempotent: £2=¢,, £2=8,, &2=¢s.
b a N ai(l-nz)(l-n3) o
As in the text, wp:<"1 "‘z) in the U(2) case, ¥p=(abt-rHd-nd ) in the U(3) case.
ay{1-ny) a5U-ny) -y
a2a3(1-n1)
The second U(3) spinor is ¥p.=| agayi-ny) |.
ajay(=ng)
¢ All products of charges acting on states with different quark number vanish.

dAs above, -
o I1 (1 —n;) Haj(l—n1)
KPP: J#l , lpp': J#
The ¥;)s are (7)) linearly independent operators of the form a;,** 'aij(l —"ijq)“ *(L—n;), with 4;,...,i, a permutation
of1,...,n.

® For example, in U(4) there are 36 color charges acting on the two-quark sector. Since ¥(,); spans a 6 representa-
tion of SU(4), the 36 charges transform as 6 x6=1+ _1_5_+;‘2_Q" under SU(4). [See D. Amati et al., Nuovo Cimento 34,
11732 (1964), for a discussion of SU(4) representations.]
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of explaining the proton-electron balance as a
consequence of a postulate that the prequark quan-
tum number of the universe is zero. If the uni-
verse has zero prequark quantum number, then all
matter could have been created gravitationally, and
if ordinary matter has zero prequark quantum
number modulo the addition of neutrinos or anti-
neutrinos, then the problem of particle number
nonconservation in black-hole evaporation could
be resolved. It will be especially interesting to
see, in connection with these speculations,
whether 9 gluons suffice to construct a satisfactory
theory of strong interactions, or whether 18 are
needed. As I have already noted, the 9-gluon the-
ory gives an asymmetry between quark and anti-
quark forces in color-nonsinglet states.'® If
such states were predominant in the early very
hot stages of the universe, then a 9-gluon theory
might well predict an asymmetric condensation
of matter with zero net prequark number, yielding
color-singlet states with nonzero, and balancing
lepton and baryon numbers.

Added note. After this manuscript was submit-
ted for publication, I learned from R. Giles and
L. McLerran that they are studying a related (but
not identical) algebraic approach to the problem
of finding a semiclassical approximation to QCD.
See R. Giles and L. McLerran (unpublished).

NOTES ADDED IN PROOF

(1) Although the definitions of Eqs. (47)-(49) are
satisfied by the outer and inner products P(u,v)
and S(u,v), the n®-plet elements u,» are not ele-
ments of a field (they are operators with a multi-
plication rule defined only implicitly by their con-
struction), and hence the standard definition of a
Lie algebra (with a trace) is not satisfied. I wish
to thank V. Rittenberg for pointing this out. This
means that all of Conjecture (ii) remains to be
proved, including the assertionthat the diagonalized
P table is composed entirely of Lie algebras.

(2) The assertion following Eq. (46), that the
general algebraic gauge transformation of Eq.

(45) leaves the relative orientations of the effective
charges unchanged, needs amplification. This as-

" sertion is true if, as I tacitly assumed, the effec-

tive charges are always defined as the decomposi-
tion onthe diagonalizing bases of the original quark
and antiquark charges, which satisfy the color
commutation relations [@%,), @%,)]= 8,4 42°QE,).
These are the charges which specify the state vec-
tors for the quantum mechanical color problem.
If, alternatively, one defines effective charges

‘as the decomposition of the gauge transformed

charges w;, w, on the diagonalizing bases, these
effective charges remain invariant in magnitude,
but the angle between them changes for general
local algebraic gauge transformations. However,
the new charges w{, w; do not in general satisfy

the color commutation relations, and thus do not
provide a unitarily equivalent quantum mechanical
description of the color state of the system. If the
class of allowed gauge transformations is restricted
to that which gives w; , which satisfy the color

'~ commutation relations, then the effective charges

defined by w; , do have the same relative orienta-

- tion as the original effective charges. I wish to

thank R. Gonsalves, R. Giles and L. McLerran
for a discussion of this point.

(3) A simple calculation shows that S(Q,,Q,)
=n/2,5(Q;,Q ;)= (n/2)° which implies that the sym-
metry between quark and antiquark persists in the
overlying classical structures, irrespective of
color state. Thus, Conjecture (iv?) is in fact
false; an 18 gluon version of the theory is needed
to give a charge conjugation symmetric theory of
strong forces.
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