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Field theory on a lattice: Absence of goldstone bosons in the U(1) model in two dimensions
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Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305

(Received 31 October 1977)

We study the U(1)-Goldstone model in two dimensions. We formulate this model on a one-dimensional

spatial lattice and show that Coleman s theorem (i.e., there exist no Goldstone bosons in two dimensions) is

satisfied by the solution found by the variational approach of dissecting the lattice into small (4-'site) blocks
and iteratively constructing an eAective truricated Hamiltonian.

I. INTRODUCTION

In a series of papers' we have developed rela-
tively simple variational techniques for solving
quantum field theories on a lattice and have applied
them successfully to construct low-lying physical
states and to find phase transitions. Toward the
eventual goal of understanding quark confinement
and calculating the observed hadronic- states on
the basis of non-Abelian color gauge theories (or
quantum chromodynamics), we have thus far ap-
plied these methods to simple two-dimensional
models with known exact properties that were
successfully reproduced. These applications in-
clude, in addition to free massless bosons and

fermions, the Ising model in a transverse mag-
netic field and the massless Thirring model on a
lattice. We conclude this phase of our program
by studying the U(1)-Goldstone model in two di-
mensions. This model is of particular interest
in view of Coleman's theorem' for the continuum
theory which says that there is no Goldstone boson
in one space and one time dimensions, in spite of
the predictions. of the naive classical analysis to
the contrary. The lattice analog of this theorem
was proved first by Mermin and @wagner. ' Having
shown in paper III that our techniques successfully
reproduce phase transitions known to occur in the
Ising model, we now further demonstrate that they
also do not predict them when they are known not
to occur.

'The basic idea of our variation renormalization-
group approach is to dissect the lattice into small
blocks, each containing a few lattice sites which
are coupled to one another by the gradient terms
in the Hamiltonian. The Hamiltonian for the re-
sulting few-degree-of-freedom problem within
each block is diagonalized and the degrees of
freedom "thinned" by keeping an appropriate set
of low-lying states. We then construct an effect-
ive Hamiltonian by computing the matrix elements
of the original Hamiltoniari in the space of states
spanned by eigenvectors having the lowest energy
eigenvalues in each block. ' The process is then

II. U(1)-GOLDSTONE MODEL ON A LATTICE

The continuum model is specified by the I agran-
gian density

Z=(B„Q*)(8~$)—X(2P*P -f /2)', X,f'&0.
(2.1)

The corresponding Hamiltonian, in d=P+ 1 dimen-
sions q is

dg g*g+V * ~ V +g 2 * 2

(2.2)

In the classical limit, m=m*=0, there is a orie-
parameter family of degenerate ground states re-
presented by

4,(x) = rfe" (2 3)

with the constant phase angle 8 arbitrary in the
interval (-n, v), corresponding to the minimum of
II with zero energy. The naive approach to the
quantum theory (2.2) expands the field Q about
Q„specifying 8= 0 for convenience,

1
0(x) -=~2lc(x)+ iX(x)J

1 fc'(x)+ iy(x)+ ~ (2.4)

repeated for the new effective Hamiltonian, whose
couplirig parameters change at each step. 'The

procedure is iterated until we enter a regime that
can be handled simply by perturbation theory,
either for very weak or very strong effective
couplings.

In Sec. II we formulate the U(1)-Goldstone model
in two dimensions on a one-dimensional spatial
lattice. In Sec. III we prove by the variational
approach that this model has no false Goldstone
bosons. In Sec. IV by perturbative calculations
we provide a heuristic explanation of why they are
absent.
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This leads to

where

+ o'(o"+X')+ 4', (o "+X')', (2.5)
2 f

with all other commutators vanishing. We observe
that diagonalizing (2.10) is equivalent to solving
the 2(2%+1)-degree-of-freedom Schrodinger
problem

@(X Ejy--N j ~ '. jXjjyg) ' ' ' 1 j( )yjj)()

where

m, .'= 4Xf '. (2.6)
1 9 1 9p„=—. and pi 9x) '& i 9yq'

The form of (2.5) suggests that for fixed mass
m. .. and large f'» 1 we can make a perturbation
expansion about the free modes for a massive 0'
field, with mass (2.6), and a massless X field,
the "Goldstone boson. " If this were valid, we
would expect that for f» 1, (o'& = (X& = 0, and hence
from (2.4),

(2 'I)

This result is believed to be valid for p=2 or 3.
However, it is known to be false for p =1. This is
the so-called Coleman theorem' which requires
that

8~—= tan 'x~/y~, -)T ( 8~( v

and rewrite (2.10)

-1 92 1 9 1 92
H=& .-+r''

N 2 9rg 2rg Brg 2rg 9 eg

(2.12)

+ X(x,.'-f'/2)'

N A—A ~p;„cos(8, —8~„)——(~ „'+~()(').

We attack this problem by going to polar variables

(y&= 0 (2.8)
(2.13)

for all finite values of f, no matter how large.
The failure in the naive analysis is the result of
infrared divergence in the propagator of the X field
when p = 1. 'This expresses the fact that the quan-
tum fluctuations are uncontrollably large, leading
to (2.8). For fixed m, 2, and f' arbitrarily large,
X-0 according to (2.6), and we are in the weak-
coupling region. In the opposite strong-coupling
extreme of m, ,'- ~, and f' fixed but arbitrary,
so that X- ~, we expect from (2.5) that the infin-
itely massive 0' excitations will "frozen out, " so
that presumably only the false Goldstone bosons
survive. Study of this region provides the most
severe test of our methods and therefore we shall
analyze (2.2) in this limit. '

First we transcribe (2.2) to a lattice in terms of
dimensionless variables by writing, ' with p = 1,

1 . A
(t)(x)- jtj~= ~ (x,+iy,.), n(x)-)T~=- ~(p„,—ip, .),

+ const.

The set of basis states

(2.14)

m „.. .m~& =- II ~m, & (2.15)

provides a convenient representation for H when
we identify

In the limit Xf '- ~ it is apparent that the radial
modes in (2.13) are frozen' at r&=f/V 2 and the
Hamiltonian reduces to

N 1 92 N-

&()~i~j--)= ' —
2 82- ~f' cos(8&-8&+i)

— =-N 8 8j J=-jj

y*(x)- It,*= (x, —iy,.), v*(x)-v,*= (p„+.ip-, ),
(2.9)

H=& Q [-'P„.'+ —,'P, '+ X(xq'+y j'-f'/2)']
j=-N

J,(j )
~
mz& = e" '

~
mz& =

~

m z + 1& .
In this representation

(2.16)

+A [,(xq„-xq) +, (yq„—y~) ) .
=-N

The canonical commutators are

[p, . xp]= -i5g, r,
[p...y p]= -i6g, r,

(2.10)

(2.11)

jj('/y)A+I J(j) f [Z(j)J(j+1)

+ J (j)Z(1+ 1))I,

(2.17)
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which describes a rigid planar rotor with all pos-
sible integer values m& of the angular momenta at
each lattice point j. The rotors have moments of
inertia f '/2 and adjacent sites are coupled by a
force proportional to the angle between the rotors.
For infinite moments of inertia, f'- ~, one finds
the classical limit of the lowest-energy state,
i.e., at all sites 8$ 80 with -n& 8, &m. This is
the same as described in Hec. I for the classical
continuum limit. Our interest is to show by our
variational procedure how the 1/f ' term in (2.1V)
modifies this conslusion and. removes the false
Goldstone boson for finite f'. For simplicity we
shall keep 1/f '=x,' fin—ite but small so that we can
expand to leading order in x,'«1.

t

III. VARIATIONAL ANALYSIS

1
exp( p-p'/u 2 ) = exp —

4~2 f'(8» - 8,p„)', (3.4)

(3.4) shows that for large f'» 1; the variable (8»
8,~,) is restricted to be very nearly zero. This

justifies the quadratic approximation to (3.3) as
well as the application of periodic boundary con-
ditions to gp in the interval (-v, v). We can now
rewrite the block Hamiltonian (3.3) in this approxi-
ma.tion

1 8'
H=AZ -pxo ~-— ~+g&oo Pp +c 1

Bp 2&

1
, cos[(P~, —g )+x,(g „+P )], (3.5)

P 0

where

Our first step is to divide the lattice into blocks,
each containing two sites, rewriting the sum over
sites as

j= 2p+s. ~

where

and

(d 2
Q c, = -1/2x, ',

p= -&N, .. . , + &N and s = 0, 1, (3.1)

and introducing new angle variables within each
block:

2' —8,p+ 8,~„-v gp + w (3.2)

24 =f(8 p
—8 p.,)--(& —

i @pl) - ~- (v —
leap )

Substituting in (2.14) gives (up to an irrelevant
constant)

f&H= A —
& z —— ——cos—p2f 8(p 2 Bgp 2 f

cos Pp, —Pp+ (Qp„+ Qp}— (3.3)

In the small x,'=- 1/f ' «1 region the single block
terms describe an uncoupled rotor and oscillator.
In particular, up to corrections O(x,') the motion
in Qp describes a simple harmonic oscillator of
frequency u, = V2 and mass unity. Since the
ground-state wave function for this motion varies
as

We are now ready to initiate the procedure of
iteratively forming higher blocks and thinning de-
grees of freedom. Our basic truncation algorithm
is to retain the lowest oscillator degree of free-
dom plus the trivial rotor in each block. Proce-
eding next to coupling two blocks together in (3.3)
we will find the rotor plus three oscillator degrees
of freedom, and our thinning procedure consists
of retaining just the rotor plus the lightest oscil-
lator per superblock, always truncating away the
two. higher oscillators in constructing the new ef-
'fective Hamiltonian. This truncation is accomp-
lished by taking the ground-state expectation val-
ues of H with respect to the degrees of freedom of
these higher oscillators. Formally these steps
imitate those described in papers III and IV and
will be simply sketched. They lead to recursion
relations from which we find a soluble fixed form
for II which describes a theory with no gap in its
spectrum but with (J,(j))=(e'P&) = 0 in accord with
Coleman's theorem, where ( ) denotes the ground-
state expectation value for the higher oscillators.

The general form of (3.5} after n iterations and
truneations is written

H& i M c m» c + + tc„gc) l3„ccc[g'» —the» il„(gc + Qc)]I. (3.6)

Next we perform the (n+1)st iteration, definingp=2I+s, s 0, 1, where p =N/2™, and rewrite H„as
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H—
&„&

=~ 2c„l1 + 2 c(„
21 2l+1

—8 8

os�+�(
tn+t 1 ) t os((ti ~ tl)+S(t 1 ~ st l))I

2 l 2 l+ 1

Z Ptt ~~2(lo1) ~2lot+ tt(~2( lot) ~2(ol)~ ' (3 7)

We introduce new angle variables within each superblock /, with 0', and 4, defined as in (3.2):
'1

~21 ~2lolt l ~2 (42lo1 ( 21) t
I

v2
2@1 (~21 ~2(ol) t l ~2 (421+1 ~21)

~n

In terms of (3.8), (3.7) becomes

(3.8)

1 2 82 . j 82 82 -82
H(.)=g 2c,l+ " —

2
+- .—

~ ~ +-2'(o„'(r, '+v, ')-p„cos(-M2n„e, +M2()„r,)
g

8
g

2. 84g 8%
g 85)n„5„os @1 —+(+~ (@1 + @ )+ ~ (r l + r1+ (tl -()1) ~ (3.9)

We again make the quadratic approximation to the single l-block terms in (3.9) and diagonalize the re-
sulting system of coupled oscillators. As discussed above (3.4) this procedure is justified if, in terms of
the original 8 parameters, the oscillators to be frozen out have sufficiently narrow ground-state wave
functions. We verify this a posterior2 at each step of the iterative calculation for f » 1.

In this approximation the single block terms in (3.9) describe coupled oscillators in the r, , C, variables.
To find the normal modes we rotate the coordinates

X, =r, cos)„—4, sing„,

8, =r, sing—„+4, cos$„,
so that we can rewrite the H„as

(3.10)

~n 5„
t) eos Oi Oi +

" cost„+ t sin(„(S„,+ Si)+ 't cost„—t sin( }(ti + Xi)

+ ~2 ('Ul 1
—Vl) (3.11)

where

40
&

=0
co =0

n +
(3.12)

+ [P„'(6„2+(2„2)2+P„(6„2—C(„')ur„2+ —,'&O„']'~',

We now complete the r(eduction of H„ to the trun-
cated Hamiltonian H, for the (n+ 1)st iteration by
"freezing out" the two higher-frequency oscilla-
tors in the variables v, and X, with frequencies
e„and 'P„, respectively, both of which are greater
than ~,. Specifically we take the expectation val-
ue of (3.11) using normalized ground-state oscil-
lator wave functions of the form

g exp(-2 &„x,') exp( ——,'(d„v, ') .
l

(3.14)

(3.13) Comparing the result with H„ in (3.6) we see that
the truncated H, has the same .form with
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5„' (n„sing„—5„cosg„)~
p —

8
+

n

(3' 15)

c„.,= 2(c„)—P„+-,(~„+&„),

after the Nth iteration. We find by the same steps
leading to (3.15),

(ei8~) (p /p ) &-NE p2

and K is a constant. The dependence on xp' is ex-
plicitly shown as deduced from (3.15) and (3.16)
in the sixth column of Table I for xp= 0.1, and in
Table II for xp=0.01: E-0.368. Since the volume
is proportional to 2, we have

2=— 2= 2n, =-Xp =op,

p
=2 (3.16)

~N &-c(lnL )xp2

Pp

p , 2 ~

p

Equations (3.12), (3.13}, and (3.15) provide us
with an analytic recursion relation for the para-
meters in the truncated Hamiltonian. The results
of a numerical solution of this relation are given
in Table I for xp= 0.1. As we can see, the trun-
cated Hamiltonian rapidly iterates to a fixed form
which is, to all intents and purposes, the fixed
form to which the massless free field would iter-
ate. In particular, the oscillator frequency, ~„,
goes to zero like 1/2" or (volume) '. Thus we
find that the gap to the lowest-lyirig state above the
ground state of this model vanishes as 1/(volume),
and we are dealing with a massless theory. It is
apparent from (3.11) and (3.12) that the higher
oscillators have frequencies in the ratio &o„'/e- 2 and 'V„'/ar, '- 2" to the lowest one that we re-
tain.

In order to verify that our procedure satisfies
Coleman's theorem, we must show that

(e"~)„=0,
where ( )„denotes the ground-state expectation
value (3.14) with respect to the higher oscillators

which is the result one obtains heuristically by
evaluating the expectation value of c'~'~' for a
massless free field in one space and one time di-
mensions. ' The variational analysis described
here applies to the f '» 1 limit of (2.14). In the
opposite limit off'«1, the theory switches over
to one of massive excitations —a result which has
recently" been obtained by going to a dual lattice
formulation of the X-Y model and then discussing
vortices in the path-integral formulation of this
theory.

The occurrence of such a transition to a mass-
ive theory is evident from an inspection of (2.14)
or (2.1 l) since, in the limit f -0, the' single-
site terms proportional to 1/f ' dominate

+()tl/ 2f~ eo) ~

Therefore the ground state is the unique state (m&
= 0) by (2.15) and (2.16). The first excited states
of the theory have a mass 2/f', corresponding to
any one m& equal to +1. We discuss the perturba-
tion about this limit in the next section. From the
point of view of our variationa1 analysis the break-
over to this phase occurs when P„.,(P„/2 so that
the single-site terms grow in strength relative to
the coupling terms. Table III shows that this hap-

TABLE I. Iteration for x0=0.1. The notation in this table conforms to that given in Eq.
(3.15) except for the definition of &„. This is defined by the relation P„+~=e "0 P„. Note in
particular that u„decreases by a factor of 2, for each iteration and hence co&~1/2+
~{volume) ~

Iteration(n) Cn

0
1
2
3
8
9

10
14
15
16
17

p.01
0.005
0.002 5
0.001 25
3.9062 x10 ~

1.9531 x10 ~

9.765 6 x10
6.103 5 x10 7

3.0518 xlp 7

1.525 9 xlp ~

7.6294x1p '

2
0.763 93
0.222 26
0.059 722
6.3112 x 10 ~

1.5802 xlp
3.953 5 x10
1.5454 x1p-8
3.8637 xlp ~

9.6594 x10 &0

2.4149 xlp &0

50
49.906
49.77
49.612
48.733
48.554
48.376
47.669
47.493
47.319
47.145

0.1
0.097 325
0.077 379
0.05778
0.010 803
0.007 646 8
0.005409 9
0.001 353 1
9.568 2 x 1P
6.7658 x10 -4

4.7841 x10 4

0.188 31
0.27347
0.31801
0.366 35
0.367 27
0.367 74
0.368 19
0.368 2

0.368 21
0.368 21

—, 50
-149.08
-347.38-
-744.05

-25 336
-50 721

-101490
-1624 562
-3 241710
-6498 389

-12 996 826
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TABLE II. . Iteration for xp= 0 01 This table is included to show that for bothxo=p. l and
x0=0.01 the iteration is basically the same up to a scale factor. The fact that o,„and ~„both
drop rapidly with respect to P„ tells us that the oscillator approximation is valid at all stages.

Iteration (n)

0
1
2
3
9

10
11
14
15
16
17

0.0001
x10 '
xyp 5

1.25 x10 5

1.9531 x10-7
9.7656 x10-'
4.8828x10 8

6.1035 x10 ~

3.0518 x 10
1.5259 x10 ~

7.6294 x10

2
0.763 93
0.222 33
0.059 757
1.5813x1P '
3.956 2 x10 6

9.8941 xlp
1.5465 x10 '
3.866 3 x10 ~

9.665 8 x10
2.4165 x10 "

5000
4999.9
4999.8
4999.6
4998.5
4998.3
4998.2
4997.6
4997.4
4997.2
4997.1

0.01
0.009 732 5
0.007 738 5
0.005 778 8
7.6469x10 4

5.4099 x10 4

3.8264 x10 4

1.353 1 x10
9.5682 xlp 5

6.765 8 xlp
4.7841 xlp '

0.188 31
0.273 46
0.318 01
0.367 17
0.367 63
0.367 86
0.368 07
0.368 08
0.368 09
0.368 09

~ -5 000
-14 999

34 998
-74 994

-5 114571
-10234 139
-20 473 277
-1.64 x 10
-3.276 5 x 108
-0.655 30 x, lpe
-1.310 60 x 10~

pens for x, & 1. In this region we have to be more
careful in taking account of boundary effects since
the Gaussian approxima'tion (3.4) to (3.3) breaks
down but the analysis is still straigthfotwa, rd.

IV. HEURISTIC PERTURBATION TREATMENT

N 1
H, = A —,J,'( j)

with all rotors in their ground state —i.e.,
m&= 0 for each j.

To first order the perturbation

(4.2)

Having shown that our lattice techniques do not
predict a nonvanishing expectation value for Q&,.
in this section we carry through a perturbation
treatment in order to provide a better heuristic
understanding of the mechanism that prevents
this occurrence. In particular, we want to show
why Goldstone bosons disappear for arbitrarily
large but finite f', although the .f'- ~ limit is a
classical theory uith Goldstone bosons. In other
words, why can we not do perturbation theory in
1/f'«1?

For f'«1, which is normally called the strong-
coupling limit, since the gradient term in'H is
small compared with the single-site potential
terms, we have a unique ground state to the theory.
It corresponds by (2.1l) to the eigenstate of

N-1
H = =,'A f' g [J,(j )J (j + 1)+J (j )J,(j + 1)]

f= N

(4.3)

has no effect on the ground-state section. It does,
however, lead to a first-order shift in the 2(2&
+ 1)-fold degenerate sector of first excited states,
in which any one rotor is excited to m&=+1. py
standard degenerate perturbation theory we find
these states split into two degenerate momentum
bands with

1E(+k~)=ll —, f' cosk~+ . . )—
for f'«1, k&-—— . (4 4)= 2rp

TABLE III. Iteration for xo =2. This table shows that when xo) 1 we can no longer apply our
oscillator approximation. It breaks down in the sense that p„ tends to zero faster than &„and
w„, which means the Gaussian approximations see the boundaries of the region in 0 and one
must use Mathieu functions to iterate. The columns (u„) and (w„) are not significant except
insofar as they show this effect, and the large positive values of &„ for n &1 show that the
Gaussian approximation is quite poor.

Iteration |'n) ( +„)

0
1
2

4
5
6
8

4
2
1
0.5
0.25
0.125
0.062 5
0.015 625

2
0.763 93
0.185 27
0.036 168
0 0059441
7.8728xlp 4.

7.3716xlp 5

3.630 5 x 10 8

0.125
0.058 855
0.019007
0.004 998 3
0.001 092 3
1.7597 x10 '
1.5154 xlp 5

4.669 3 x10-«

2
1.946 5
1.470 1
1.015 2
0.676 25
0.442 95
0.28813-
0.126 38

0.188 31
0.282 58
0.333 93
0.380 20
0.456 45
0.61300
2.186 85

-0.125
0.506
1.609 2
3.463 05
7.030 5

14.1015
28.217 5

112.88
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Thus the theory has a mass gap

4E= —— 2 (4.5)

and the ground state remains unique for f'«1, so
that

Turning to the limit f».1, we first show the fail-
ure of a perturbation expansion in terms of (4.1).
A convenient product basis for diagonalizing (4.3)
is in terms of

(4.7)

where

(4.6)

and there is no Goldstone boson. Note, however,
the gap begins to narrow in (4.5) with increasing

1

(81 8)
" m'

(2N+ 1'

(4.13)

which evidently diverges. Thus the effects of cor-
recting the classical f'= ~ limit cannot be pertur-
batively analyzed for the theory as formulated.
We can, however, proceed perturbatively if we
cut off the sum over rotor excitations at a finite
M and study the disappearance of the Goldstone
bosons in the M - ~ limit.

A finite M cutoff on the sum over m can be
imposed simply by appending to (4.8) and (4.9) the
definitions

(4.8) (4.14)

Rnd

1 oo

&8'I8&=—2 """"'
2m

= 5(8q —8~6) .

so that

(j)lm&s= m+1& for l~l ~M

J (j) I
aM )~= l+M )~.

(4.15)

Since

we find

(4.9)

This requirement is equivalent to making the
angle variable 0& discrete at each site so that it
can only take on (2M + 1) values 8~—i.e., in
place of (4.8) we write

) = — f ' cos( 8—s„—8i') (4.10) + &max 4

x Q exp im( ) ~
m)~, (4.16)

m= N~ -- max

In this limit we have a classical description,
since the conjugate variable to 8&, i.e. , is/8 8&, -
has been dropped with the neglect of (4.1). Equa, -
tion (4.10) tells us that there is a one-parameter
family of ground states,

where p is an integer: -M ~~p &M ~. The
classical f '- ~ limiting results of (4.S)—(4.10)
still obtain except that ther'e is a discrete set of
(2M + 1) permitted values of the parameter,

4140(8) with 8& = 8 for all j,
where

(4.11)
8 - 2'p' m. +1 (4.17)

-r~ 8&7.

These are "classical" states with energy

E~ = —(2N)Af 2/2

and with a nonvanishing value for

(4.12)

(@ (-))@(-))(4,(8)le"&lk,(8))=e"

in apparent contradiction to Coleman's theorem.
When we now treat (4.1) as a, perturbation on these
states, we find

For the (2M + 1)-fold degenerate ground states
the integers pz assume the same value at each
site. In the limit of M„-~ the ground state is
infinitely degenerate and we retrieve the classical
Goldstond picture. 'The lowest-lying excitations
correspond to "microsharp kinks" for which p
jumps by its minimum step

g
2w

2M +1 (4.18)

at one lattice point E. These configurations are
generated from. the degenerate vacuums by the op-
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erators
N

Q'(I)-=exp ai58+ J,(j)

1.e. ,

~'(I) =- e'(I)
l
w.&

and have energies, to leading order in f,

(4.19)

Next we compute the energy shifts due to (4.1)
for the ground state 4, and the excited kink states.
Analogously to (4.13) we find that the ground state
is shifted up by

ax
gpss 2

(~+ 1)
)s(ss dlSx

m=+lmax
A=——

~ (2N+ 1)D(0)

Z(l) = fAN+-1—sosf 'A 2)f

mRx
= —2(2N+1)—',M ' for M~ »1. (4.21)

+ 0(f '/M 4) . (4.20)

To calculate the energy shift for the kink 'state,
we compute first the matrix elements of (4.1)
among the degenerate states for different values
of /.

(l ') gS ()) 0' (l)' (0N+ ) )(D0)Illy + D(0 S)(Sg * + ll~ s )
isN

where
~max

D(5 8)
— g m2ei (N6(() )

2M +1 (4.22)

(0Ns()
"""

whose first-order eigenvalues are

(4.23)

E(ff) = ED+f 2 (1 —cos5 8)—

+ —,[(2X+ 1)D(0}+2D(5 8) cosk J. (4.24}

From (4.20)-(4.24) we find, to order 1/f ', that
the gap between the microkink and the ground
state is

;. &E(k) =f' —(1 —cos58)
2

2A+,D(58) cosh for f'»1. (4.25)

The perturbation is diagonalized in a momentum
basis

I

the microkink states cross below the (2X+ 1}-de-
generate mould-be ground states. As M ~- ~
(4.27) is satisfied for all finite f, In fact, one
can construct microkink states that lie still lower
than the single kink (4.19) by applying Qt(l,.) many
times and building up a series of steps of the form
(4.18). An example is the class of states built
from (4.19) with x microkinks, i.e. ,

l~(~}&= g e'(I }"e'(Vl+.&.
$ yo ~ ~ $~

Furthermore, when x~ 2M + 1 the evaluation of

(~(~)
l
e"i

l
~(~)&

gives zero since each phase contributes, and the
sum of the roots of unity vanishes.

As a final comment we note that these low-lying
microkink states which cross below the vacuum
states are unique to one dimension. In higher di-
mensions they would require a line or surface of
kinks rather than just one single step and therefore
would be higher in energy by an amount diverging
as L-~.

)Ta 2

AN(0)= A ~,—4M 'fs'f') .
max

Equation (4.26) shows that for

16m 4
4~ max

(4.26)

(4.27)

For 58 as given by (4.18) for large M, (4.22)
becomes

D(58) =-2M „'/v2

and the mass gap, AE(k= 0) in (4.24), is

V. CONCLUSION

We have demonstrated that our iterative proce-
dure of constructirig as effective lattice Bamilton-
ian when applied to the Il(1)-Goldstone model in
two dimensions leads to a solution in accord with
Coleman's theorem. Adding this to i.ts earlier
success in reproducing known exact features of
the transverse Ising and Thirring models, we be-
lieve this techriique is now ready for application
to gauge theories in three and four dimensions in
quest of answering whether or not-quantum chr'om-
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. odynamics can provide a basis for understanding
quark confinement. Our interest lies in this direc-'
tion. There is of course much more work that
should still be done with these calculational tools
in further analyzing the cutoff models that we have
already discussed in this paper and in preceding
papers. For example, analyses of the equations of
motion, operator-product expansions, current

I

algebra relations, Lorentz invariance, and of an
SU(2) Goldstone model are of eonsiderabl'e interest
in their own rights. We leave these problems as
"exercises for the reader. "
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