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Disconnected gauge groups and the global violation of charge conservation
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We show that a gauge group is naturally enlarged to include certain discrete internal symmetries such as
charge conjugation. The full gauge group is then disconnected. If space-time is not simply connected, then a
mechanism for the global violation of charge conservation results. Examples are given in space dimensions

one through three. Gauge theories based on non-Abelian simple compact I.ie algebras are also discussed.

I. INTRODUCTION II. FRAMEWORK

Our objective is to determine the meaning that
can be given to the notion of gauging a discrete
internal symmetry. We find that it is natural to
include symmetries such as charge conjugation in
the gauge group. On space-time manifolds which
are not simply connected, this leads to a picture
of charge and charge conservation which is strik-
ingly different from the ordinary one. Experts will
observe that the discussion can be reexpressed as
the problem of reducing the structure group of 4
principal bundle to the component of the identity.
The reader is not assumed to be an expert in dif-
ferential topology.

The inclusion of a discrete internal symmetry
in the gauge group does not lead to an additional
associated gauge field. . Instead, attention is fo-
cused upon the fundamental process of covering
the manifold with overlapping patches, each
equipped with its own set of conyentions for mea-
surement. The problem is to determine whether
or not these local conventions are related in such
a way that a global convention can be introduced.
On simply-connected manifolds, a. global conven-
tion is always admissible. Non-simply-connected
manifolds admit structures which are inconsistent
with a global convention. This leaves us with an
interesting situation in which charge, for instance,
can be defined and is conserved locally, but no'

global definition of positive charge is possible.
This allows for global violations of charge con-
servation. As bizarre as this seems, we can find
in it no inconsistency;

A byproduct of the analysis will be the realization
that there is a very natural sense in which ordinary
charge conjugation and its non-Abelian generaliza-
tions can be considered, to be discrete gauge trans-
formations. Or, in another way of putting it, the
full gauge symmetry group is disconnected. Of the
compact simple Lie algebras, the only one which
leads to a gauge group with more than two com-
ponents is so(8). Here there are six components.

2 Q~l +1 2 +1 + 2 A+2, ~2 2 +2

(2.1)

The internal-symmetry group is O(2) which is dis-
connected with two components. The component
which does not contain the identity contains the
orientation- reversing operation

(2.2)

Thus we can also think of the symmetry group as
the direct product group

0(2) =SO(2) ~(i, d). (2.3)

Observations of the system are made locally.
We therefore think of a la, rge system of observers,
each responsible for a small open region U; of the
connected space-time manifold M. We assume that
the U; cover M and that they and all multiple in-
tersections of them are contractible. ' M, how~

ever, may have some nontrivial topology.
Concentrate initially on one particular region

U;. This observer has no way to make an absolute
distinction between excitations which are related

In this section, we will review the application of
the fundamental concepts of gauge invariance' to a
Lagrangian with internal symmetry. The process
will be strictly conventional. However, we will
apply it both to the continuous and to the discrete
symmetries of the Lagrangian. At the end, we will
understand the consequences of including a discrete
internal symmetry in the gauge group.

Rather than confound both the reader and the
author by attempting to treat the most general
case, we will first consider a simple example. It
will then be clear how to treat a large number of
more interesting models. Some discussion of
these will appear in Sec. V.

Begin with the Lagrangian for two equal-mass
free scalar fields:



17 DISCONNECTED GAUGE GROUPS AN@ THE GLOBAL. . . 3197

g(i) 1[(s A(i)} +( )]T([(s A(i))g+(i)]

i ~2,„(f)T, (f)

(y(i))

(~(i))
A ($) +(k)+

p,

(o l)
I, lO)'

(2.4)

The superscript i identifies quantities associated
with the region U, . The use of (2.1) makes sense
only if parallel transport is integrable on U&,. If
the internal geometry is to be dynamical, a. kinetic
energy term for the connection is introduced as
usual:

g 8) g(f) g(f)0 + N

g(&& T fy( )y( ) ]6 8 I. gv Ju
(2.5)

t

Observe that (2.5) is invariant under any change

by a symmetry operation, He must establish an
arbitrary convention that defines which excitations
are p, and which are p, . Since we are dealing with
a local field theory, this must be done separately
at each point in U&. We assume that it is done in
a smooth way.

Some discussion of this point is necessary. We
can think of the establishment of the convention as
the process of selecting an orthonormal basis in
the internal-symmetry space at each point. It is
assumed that there is a process of parallel trans-
port by which the frame at P can be carried to P'.
The demand that the convention be smooth is that
the relationship between the frame transported to
P' and the one at P' should depend smoothly on p'.

From this we can deduce two facts:. First, all
of the frames in U, must have the same orienta-
tion. This follows from continuity and from t'he
fact that U, is simply connected. Physically, this
says that the observer can give an unambiguous
definition of po'sitive charge everywhere on U, .
Second, it is possible to introduce the connection
(gauge field) in the usual way. This gives the
infinitesimal rotation of a frame when it is parallel
transported to a neighboring point. We assume
that the reader is familiar with the connection and
its properties. Only those points which are im-
portant to our purpose mill be mentioned.

The choice of a basil in the internal-symmetry
space over U, is an arbitrary process upon which
the physics should not depend. In order to make
the theory invariant under this choice, the connec-
tion is introduced into the Lagrangian

of internal-symmetry basis on U;. This includes
changes in which the orientation of the frames is
reversed. Thus we have a gauge symmetry of
g"' on U& which is given by

A -g '(8+A)g

with g a smooth map,

U; -O(2),

(2.6)

(2.V)

which may lie in either component of O(2). A
transformation that reverses the orientation at
each point can be written

g =dgo ~

go: U; - SO(2),

EO' lj

(2.8)

It gives

(9,) , (w, )

A-g, '(8 -A)g, .
(2.9)

In such a region, there are two observers studying
the same physical system. Each observer has set
up his own basis in the internal-symmetry space
over U,-, 'The relationship between these twobases
is a gauge transformation

g;i '. U;i O(2). (2.li)
This map may lie in either component of O(2).
That is, observers i and j may have opposite
charge conventions. This is consistent, since if
they have opposite conventions about charge, they

We see that it is a combination of charge conjuga-
tion and an orientation-preserving gauge rotation.
With this enlargement of the gauge group the field
strength and the current are not gauge invariant
but only gauge covariant, each changing sign under
d. (Recall that in non-Abelian theories, field
strengths and currents are only gauge covariant
even under gauge transformations connected to
the identity. )

From studying symmetry on one, region U„we
have been led to two conclusions: First, it is
natural to include the discrete transformation of
symmetry frames in the gauge group. Second,
this does not lead to associating a gauge field with
the discrete transformations.

It is time to ask what happens on an overlap re-
gion

(2.lo)
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will also have opposite converitions about field.
They will agree about what an capitation does, but
they will disagree about what it is called. The
Lagrangians for i and j are ea,ch gauge invariant,
and the relationship between the i and j descrip-
tions is a gauge transformation. Therefore, ob-
servers i and j will agree when observations are
expressed gauge invariantly. (We emphasize
again tha. t I' a,nd the current j are not invariant
under the discrete transformations. Physical
combinations such as E' and A j are invariant. )

%e have now established a framework in which
to operate. The theory lives on a manifold M
which is covered by the (fI;). Over each point of
each U, , a basis in the internal-symmetry space
is chosen. On the overlap regions (U,.z}, there are
gauge transformations (g,&) which relate the i and

j bases. All of this is entirely standard except
that we included the discrete symmetry in the
gauge group. This shows up in the transition
functions Q';&j. They tell us whether or not the
i and j observers have the same charge conven-
tion.

III. SIMPLY&ONNECTED MANIFOLDS

In the last section, we studied the consequences
of including a discrete internal symmetry in the
gauge group. %e find our spa, ce-time manifold M
covered with regions U,-, each with its own charge
convention. This does not seem to agree with
ordinary experience. Charges can be moved around
over a great range of distances. No difficulty is
experienced in keeping track of their identities.
How can this be understood?

Begin with a positive charge in region U&.

Transport it to a neighboring region U, If
observer j thinks it is positive, fine. If not, re-
verse the orientation of his symmetry frames. It
will then appear positive. Continue to another re-
gion. In this way, we can attempt to extend the
convention to all of M. If we succeed, then one
charge convention applies to all of M, and we have
effectively reduced the gauge group from O(2) to
SO(2). What conditions guarantee that this is pos-
sible?

Suppose we attempt to orient all the frames by
beginning in region U, . To orient the frames on

U» a charge which is positive in U, is transported
to U, The orientation of the U,- frames is re-
versed or not so that the charge appears positive
there. Now if all other paths to U& from U, give
the same orientation for U, , everything is fine. If
this is true for all regions U» we have succeeded
in giving a global orientation to the internal-
symmetry space. The only possible hitch is that
there may be a region UJ for which a path P, from

U, leads to one choice of orientation on U,- and
a,nother path P, leads to the opposite choice. How-
ever, if P, and P, are homotopic, this is impos-
sible. Thus, if M is simply connected, it is al-
ways possible by an appropriate choice of orien-
tation over each U; to give a global definition of
charge.

If space-time is simply connected, our conven-
tional use of the term "positive charge" makes
sense. Over a very broad range of distances
space-time does appear to be simply connected.

IV. NON-SIMP LYXONNECTED MANIFOLDS

This section will study the notion of charge on
some manifolds which are not simply connected.
In order to keep the discussion as intuitive as
possible, we will deal with examples in which
space-time is a product manifold

Mg~ —-M~ x P. (4.1)

+d )f(E p

to obta. in

(4.2)

(4.3)

since

(4.4)

Thus simply-connected compact manifolds such
as S", n ~ 2 ean never be charged. However, on
compact manifolds which are not simply connected
S', T", etc. , we can circumvent this result. This
will be seen in the examples.

Let M be a circle,

Example 1

(4.5)

From now on, we will refer to the space manifold
M~ simply as M. Furthermore, we will look at
static electric fields on M.

It is important to keep in mind that over a given
manifold M there may be many inequivalent inter-
nal-symmetry spaces, and for each of these, many
ways to choose the bases. On a simply-connected
manifold, all choices will be equivalent to a globa, l
charge convention. Over a manifold which is not
simply connected, an internal-symmetry space
may or may not admit a global convention.

Before we discuss the examples, another general
point can be made. A compact manifold (without
boundary) on which there is a global definition of
charge must be neutral. Intuitively, there can be
no net charge on such a manifold because the
electric field lines have nowhere to go. Formally,
we integrate Gauss's law'
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Although we should cover S' with three regions, it
is sufficient and easier to use only two. Thus let
U, be the bottom of 8 a,nd U, the top so that

8'=U, ~ U, , (4.6)

and the intersection is two disconnected regions,

Uy2 Uy & U2 Vy & V2

v, nv, =y.

From the point of view. of the discrete gauge
symmetry, there are essentially two different
structures possible. If the internal-symmetry
space has no "twists" in it, then on V, and V,
the relati. ve orientation of the frames of U, and
U2'will be either both the same or both opposite.
If the latter, reverse the orientation on U,. This
gives a global charge convention. On U„ the
charge and field direction conventions of U, and

U2 agree. Thus the electric field is global aed by
(4.3) the net charge m. ust vanish.

We will now take a brief look at the behavior of
charges in this case. For simplicity, assume that
initially there is no background field; the field
strength vanishes and the charge density is zero.
A positive and negative charge can be introduced
close to each other so that the field is constant be-
tween them the short way and zero between them
the long way. They will attract. Carry the posi-
tive charge the short way around to the other side
of the negative charge. There will still be a con-
stant field. between them the short way and a zero
fieM the long way. They will attract in the short
direction. Now return to the original arrangemeht
and carry the positive charge the long way around
to the opposite side of the negative charge. There
will now be a zero field between them the short
way and a constant field the long way. They will
attract in the long direction. Thus knowledge of
the initial background field and the positions of
charges does not predict the forces. Homotopy
information about the field must also be specified.
String aficionados may find this appealing.

Now consider another possible structure with a
twist. In this case, the orientation of the frames
of U, and U, will agree on one of the overlaps and
will disagree on the other. Arrange these to be
V, and V. „respectively. On V, there will bp
agreement on the sign of the charge and the direc-
tion of the field. On V„U, and U, will have oppo-
site conventions. ; however, they will agree on

phys ical things such as the direction of the force
on a charge.

In this case, a background electric field is not
allowed. Nonzero total charge is allowed. An
electric field can be consistently associated with
each charge, and the total field is the sum of the

fields from each charge. While this seems satis-
factory and in accord with ordinary experience,
no global charge convention is possible. Some
rather bizarre global properties of charge result.

In each of regions U, and U„Mmvvell's equa-
tions are separately valid. So local charge con-
servation is good, and the net charge seen by U,
can change only when currents flow across the
boundaries of U, . The global situation is not so
familiar. A positive charge in U, carried into U,
through V, will enter U, as a. negative charge. If
the charge is now carried across U, and into U,
through V„ it will reenter U, as a negative charge.
Thus, ,while neither observer has seen any local
violation of charge conservation, the charge in U,
plus the charge in U, has changed. "7his is possi-
ble because there is no proper global definition of
charge. On V„U, and U, do not agree. Thus a
charge carried around a circle does not maintain
its identity. This is no more unusual than the fact
that a Mobius strip is not an orientable surface.

Example 2

Let M be a cylinder. ,

M =S'xA'. (4 8)

This example is basically the same as the previous
one. It is included to show that the results are not
special to one dimension and to help introduce the
subsequent models.

Let the regions Ui and U2~ and Vz and V2 be
product of B' with the corresponding regions of
the previous example. Assume first that the con-
ventions on V, and V, agree. Since field lines can
escape to infinity, it is possible to have a net'

charge on the cylinder. As a consequence, the
total field onM can be regarded. as the sum of the
fields from each of the cha, rges and a possible
background field which we will assume is zero.

The field of a point charge is easily exhibited,
Begin with the plane R2 and an infinite line of
equal equally spaced point charges. Solve for the
field of this set of charges. Identify all points
separated by a translation parallel to the line and
equal to the charge spacing. This gives a cylinder
and the correct field.

Now assume that the orientations of U, and U,
are opposite on V, . The discussion given for this
case in Example 1 applies here. We will content
ourselves with constructing the field of a single
point charge. Use a construction similar to the
previous one, except that the sign of the charges
on the ling in the plane should be alternated.
Solve for the field in the plane with the charges on
the x axis at positions
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q =+1 at x = 0, +2, +4, +&, . . . ,

g = -1 at x =+1, +3, +5, . . . .

Cut out the strip bounded by the lines

and x = —-q=2 2
6 6 (4.10)

and call this U, . For region U, use the strip be-
tween

x= —and x= —.5
6 6 (4.11)

Form these strips into a cylinder by overlapping
the x=-', edge of U, to x=-'on U, and the x= —'edge
of U, to x= —-', on U, . The first over lap will be V,
with the fields agreeing, and the second will be V,
with the fields opposite.

Take

~=+'=S'x S'.

Example 3

(4.12)

This manifold differs from S' and S' &A' in that
the fundamental group has two generators rather
than one. This gives us three possibilities. There
may be a global charge convention. The charge
may reverse when carried around the torus on a
path corresponding to one of these generators but
not the other. The .charge may reverse when car-
ried around in either way.

Consider the second possibility. Let the regions
U, and U, be two finite-length cylinders on which
the charge conventio~ is global. Join them into a
torus bp overlapping one end from each in a re-
gion V2 so that the conventioris agree there. When
the other pair of ends are overlapped to form V„
a twist is put in the internal-symmetry space so
that opposite conventions result in this region.
Then if a charge is carried around a loop which
links the hole in the torus (thought of as embedded
in R'), it will return unchanged. However, a path
that goes around through V, and V, will cause the
charge to return reversed.

We can change this example into one which is
more interesting. Deform the torus until it looks
like a very large S' with a small handle attached.

.Do it so that V, is in the handle. If a point on this
S' far from the handle is identified as infinity, the
next example is suggested.

Example 4

Begin with A2. Cut out two D' disks. The bound-
aries of the holes which are left are two S"s. Join
these two S"s with a handle S' x D . Thus the man-
ifold M is a plane with a handle attached. Arrange
to have a reversal of charge take place in the han-
dle. Moving a charge around in any way on the
plane will leave it unchanged. However, if it is

carried through the handle„ it will come out with
the opposite charge.

Example 5

Qur last example is the most relevant, but is
not as easy to visualize as the others. . Generalize
Example 4 to one higher dimension. From R'
remove two three-disks D . The surfaces of the
resulting holes are spheres S'. Connect these
boundaries with a "handle" S' && O'. Proceed as
above.

The conclusion of this section is that manifolds
which are not simply connected may have a
"twist" in their internal-symmetry spaces which
is inconsistent with a global convention for charge.
As a result, a charge carried over some nontriv-
ial loop may reverse its sign. At the level of
classical gauge fields, matter fields, and particles
on manifolds of given geometry, this is consistent.

%e have not discussed the dynamics of the man-
ifold geometry or the quantum mechanics of these
configurations. We do not know how this would
affect the classical discussion that we have given.
However, some vague comments will be inserted
anyway.

(1) The topology of space-time on a cosmological
scale is not known.

(2) The topology of space-time on a scale small-
er than the 10 "cm associated with present high-
energy experiments is not known. Indeed, it has
been emphasized that quantum fluctuations of the
topology of space-time should occur at distances
comparable to the Planck length. 4

(3) Fluctuations in the topology of the internal-
symmetry space may also be possible. A change
of relative orientation may occur with no cost in
kinetic or potential energy whenever all fields
vanish on the overlap region.

(4) Suppose that a small handle exists and that a
positive charge passes through it and emerges as
a negative charge. From a large distance, it will
not appear that charge conservation has been vio-
lated. Rather, it will appear that two positive
charges have been left behind in the handle. How-
ever, a close examination of the inside of the
handle will not reveal the existence of any such
charges.

(5) Electrodynamics on manifolds which are not
simply connected has been discussed previously. '
It was assumed that the field strength two-form
is global. The possibility that we are considering
was thereby excluded.

V. NON-ABELIAN GROUPS

The discussion in the previous sections can be
generalized to any discrete internal symmetry.
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The discrete symmetries associated with gauge
theories based on simple compact Lie groups will
be considered here.

An SU(N) gauge theory with matter fields in the
defining representation. of the group has a discrete
internal symmetry which is the natural generaliza-
tion of charge conjugation in a. U(1) theory. In the
SU(N) case, the name particle conjugation is more
appropriate in that the symmetry interchanges
particles and antiparticles while some of the non-
Abelian charges change sign and some do not. If
the T, are the N &&N anti-Hermitian matrix gener-
ators of SU(N), then the gauge field is conveniently
expressed as the matrix one-form

A. ='A'„T]dx" . (5.1)

The action of the particle conjugation symmetry
on the gauge field is then given by

A- —A~. (5.2)

SO(2N+ 1), N = 1, 2, . . . (5.3)

with a single multiplet of matter fields carrying
the defining representation of the group will have
the full O(2N+ 1) symmetry. However, the dis-
crete transformation

d= —1
~ (5 4)

which lies in the component of O(2N+1) discon-
nected from the identity, is a multiple of the iden-
tity. As a consequen. ce, it acts as the identity on
the gauge fields and on the

~ (2N+ 1) (2N) = N(2N+ 1) (5 5)

conserved charges. Thus it can be simultaneously
diagonalized with the commuting charges. States
will transform into themselves under the discrete
symmetry. Thus, even in the cases in which 3,

global convention for this discrete symmetry can-
not be established, the effects are not as striking
as in the previous examples.

Among the so(2N) algebras there are three
special cases. SO(2) is not semisimple. We have

Since (5.2) is an automorphism of the Lie algebra,
it is a symmetry of the SU(N) Yang-Mills action.
For N=2, this transformation of the gauge field
can be obtained by a global SU(2) gauge rotation.
But for all larger N, the transformation (5.2) is
disconnected from the identity in the group of auto-
morphisms of the Lie algebra. ' Thus, the SU(N)
case is very similar to the U(1) case. It may not
be possible to give a global particle-antiparticle
convention. on non- simply- connected manifolds.

Some general statements can be made about
SO(N) theories. Individual attention must then be
given to several special cases. Gauge theories
based on the algebra of

already treated this case. SO(4) is semisimple
but not simple. In the algebra,

so(4) = su(2) S su(2) . (5.6)

SO(8) is simple, but it is special in that it is the
only simple algebra which has six components to
its automorphism group. ' All others have one or
two. The general results will apply to these spe-
cial cases. Consequences of the special proper-
ties of SO(4) and SO(8) will be discussed at the end.

Gauge theories based on the algebra of SO(2N)
with matter fields in. the defining representation of
the group wil. l have a full O(2N) symmetry. We
can select, as a standard element in the component
disconnected from the identity, the matrix

d = diag (1, 1, . . . , 1,-1). (5.7)

This acts nontrivially on the charges and the gauge
fields. A basis can be chosen in which 2N —1 of
each change sign and the rest do not. This sym-
metry cannot be obtained by a gauge rotation con.—

nected to the identity. ' SO(2Ã) has N commuting
charges arid N independent invariant polynomials
in the charges. In. both cases„ these can be chosen
so that one changes sign under (5.7) and the re-
mainder do not. Refer to the charge which changes
sign as Q and the (Nth-order) invariant which
changes sign as C . Those which do not, change
sign will be referred to collectively as Q, and C„
respectively. The stable particles and the reso-
nances of the theory will fall into multiplets. (We
treat the case of normal rather than broken sym-
metry. ) The multiplets will be labeled by the val-
ues of C, and C, and the members of a multiplet
will be distinguished by their values of Q, and Q .
Let D be the symmetry of the theory associated
with the matrix of (5.7). Consider the action of D
on the multiplets. If C vanishes for the multiplet
and Q is zero for all members of the multiplet,
then we are dealing with a singlet, and D will
carry the state into itself (with a multiplication by
-1 possibly). This is similar to the SO(2N+ 1)
case. If C vanishes for the multiplet, but Q
takes on nonzero values, then D will permute the
members of the multiplet. States with opposite
values of Q will be interchanged. Thus, the action
of D on any particular member of the multiplet
could be obtained by an appropriate combination of
global symmetry rotation. s. Finally, if C is not
zero for the multiplet, then there will be another
related multiplet with the opposite value of C and
D will interchange these multiplets of particles.
This situation is similar to the charge-conjugation
example. C plays the role of charge and D that of
charge conjugation. On. non-simply- connected
manifolds, it may not be possible to give a global
convention, for the C labeling of states.
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For N&2, the fundamental gauge fields have C
zero. For N &1, the funda. mental ma. tter fields
have C zero. Thus, if particles with C nonzero
exist, they will be bound states unless N is 1 or 2.

The SO(4) theory ha, s six gauge fields and four
real 'scalar fields. Although the algebra is a direct
sum (5.6), this representation of SO(4) is irre-
ducible. Thus, the gauge part of the action is a,

sum of contributions from the two subalgebras,
but the matter part of the action. is not. The sym-
metry (5.7) corresponds to interchanging the two
subalgebras. Thus, when the manifold is not
simply connected, it may not be possible to give
a global convention for dividing the six gauge bo-
sons into pairs of three corresponding to (5.6).

The SO(8) theory may have more discrete sym-
metries. The gauge-field a,ction has the full dis-
crete symmetry group of order 6. However, the
amount of symmetry in the matter-field action
seems to depend on the representation, of the group
that acts on the matter fields. For a, single multi-
plet of matter fields in the defining representation
of SO(8), we could find no way to implement a
symmetry larger than O(8). However, for a multi-
plet of inatter fields' in the adjoint representation,
all of the discrete symmetries can be represented.
The full symmetry group has six components.

Let S represent the order-6 finite group of dis-
crete symmetries. The particles of the theory
come iri. multiplets. Ah. element of S either car-
ries the multiplet into itself or produces another
degenerate multiplet. Now it s possible to have
as many as six degenerate multiplets related to
each other by the action of X). When th- man. ifold
is not simply connected, there will be many pos-
sibilities. There will be as many possibilities as
there are inequiva. lent homomorphisms of the
fundamental group of the manifold into 5).'
— The remaining simple Lie algebras can also be
used to construct gauge theories. These will not
be treated in any detail. However, two simple ob-
servations can be made. The Yang-Mills action
for an E, gauge field has a disconnected symmetry

group with two components. We cari expect a simi-
larity with the O(2N) case if the matter fields are
in a real representation, and with the. SU(N) ca,se
if the representation is complex. The Yarig-Mills
actions for theories based on the algebras C„, G„
F4, E7, and E, have connected symmetry groups.

I

We can expect these cases to be- similar to the
SO(2N+ 1) case.

Thus much of the discussion of the previous sec-
tions carries over to the non-Abelian theories.

,However, the details of the physica. l interpreta, tion
depend upon the group, the representation of the
group carried by the matter fields, and the bound-
sta, te spectrum of the model.

VI; CONCLUSION

We have found tha.t it is natura. l to include cer-
tain discrete internal symmetries such as charge
conjugation in a, gauge group. The full gauge group
is then disconnected. Particularly interesting ex-
amples arise in gauge theories based on the alge-
bras su(N) and so(2N). SO(8) is a special case.
The Yang-Mills action has a. symmetry group with
six components.

This enlargement of the gauge group does not
lead to new results if space-time is simply con-
nected. However, on non- simply-connected mani-
folds, it may be impossible to give a global inter-
nal-symmetry convention. The simplest and most
graphic example is electric charge. A pa, rticle
could leave as a. positive charge for a, trip around
a noneontractible loop and return as a negative
charge. Although a, handle in space with this pro-
perty would be, useful, we cannot imagine how one
might be constructed.
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