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%'e complete our program of constructing the gauge theory of the superconformal group, and show that the
previously proposed action is completely invariant under both local supersymmetries. The gauge algebra
closes off-shell as well as on-shell. A flat-space model with a local supersymmetry is &iso presented.

I. INTRODUCTION

Supersymmetry unifies spacetime with internal
symmetries by adding new, fermionic symmetries.
The result is a graded group. Gauge theories
based on these graded groups are called super-
gravity theories. Since there are two spacetime
symmetry groups of interest, the Poineare (or
de Sitter) and the conformal group, there are two
corresponding classes of supergravity theories.
Poincare-supergravity theories, which can ac-
commodate Q(N) internal symmetries, have been
studied extensively in the past two years and their
advantages and shortcomings are by now fairly
well understood. ' In a recent series of articles"
we have started to construct conformal super-
gravity theories which ean accommodate U(N) in-
ternal symmetries. ' In this article we complete
our previous work on conformal supergravity with
U(l) internal symmetry. ' In particular, we es-
tablish invariance of the action under both local
supersymmetries (q and 8) corresponding to the
square roots of the translation P, and conformal
boosts K„(q= v P and S =~K). Previously we es-
tablished S supersymmetry exactly and q super-
symmetry of the complete interacting theory up to
terms in the varied action linear in the Q-gauge
field. We also demonstrate that the algebra of
conformal supergravity closes off-shell, unlike
the gauge algebra of Poincare supergravity
Hence the new Feynman rules' for Poincare super-
gravity are not needed for eonformal supergravity.
Finally, we show that a truncation of our theory
leads to a flat-space model with a local supersym-
metry, thus demonstrating that gravity is not
strictly necessary for local supersymmetry. -

Our method of construction" uses the group
curvatures P» given by

(l.1)

Proper choice of the coefficients q can only lead
to invariance under some of the local symmetries.
Invariance under- the remaining symmetries re-
quires constraints on the curvatures. As in Poin-
care gravity and supergravity' and in conformal
gravity, ' also in conformal supergravity, ' one
'needs the constraint

R'„,(p) =0. (l.4)

In addition, one also needs the following two con-
straints:

R„,(q)+ —,'R„,(q) y, =0,

R„,(q)g"'=0,
which imply

(1.6)

as well. The self-duality constraint on R(q) was
previously found to be necessary for K and 8 in-
variance. The new constraint (1.6) is necessary
for q invariance as we shall show. In the noninter-
acting theory, the linearization of this constraint
was found as an identity in Ref 9. .

The constraints on curvatures, which are the
pivot of our work, follow naturally from the re-
quirement of complete invariance under al/ local
symmetries. Fields which are expressed in terms
of other fields as a solution of the constraints in
general no longer transform according 'to the gauge
prescription. We present a useful theorem which

where&"„are the gauge fields corresponding to
the gener'ators X~ of the graded group with the
(anti) commutation relations

~. A& Bf fBA +C '

We consider an action bilinear in these curvatures,
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3 tp[tp ( 5pv spsv)

y yp& & ]y (1 8)

that is, a sum of the spin-2 Weyl, spin-1 Maxwell,
and conformally invariant spin-~ action, and con-
tain no lower-spin (gauge) components, as dis-
cussed in Ref. 4, since Q, S, D, and general co-
ordin. ate invariance eliminate them. The particle
content of this higher-derivative theory has been
shown' to be two spin-2 (since a describes two
particles with each one ), three spin- —,

' (since
describes three particles with each one pt'),

and one spin-1 particle. Thus there are an equal
number of bosons and fermions in the theory.

In this article, we present mostly new results.
A pedagogical review with many more details and
explanations of this and previous articles on con-
formal supergravity is in preparation. In Sec. II
we present the action and transformation laws. In
Sec. III we determine the modification of the trans-
formation laws of the nonphysical fields due to the
presence of constraints. In Sec. IV we demon-
strate invariance of the action under all 24 local
symmetries, in particular complete Q-supersym-
metry invariance. In Sec. V we obtain the gauge
algebra and show that it closes even off-shell.

enables one to obtain the modified transformation
rules immediately. Use of this theorem leads to a
simple proof of Q supersymmetry. These modified
transformation rules also allow us to give a geo-
metrical interpretation of the constraints.

The physical fields in our theory are the spin-2
vierbein field e,„, the spin- —,

' Q-supersymmetry
field pp, and the axial-vector fieldAp. The gauge
field &„„oflocal Lorentz invariance is eliminated
by (1.4) while the S-supersymmetry gauge field is
completely eliminated by (1.5) and (1.6). The con-
straint (1.5) alone allows still an independent spin-
—,
' field X, which we previously gauged away by a
local S-supersymmetry transformation' but which
we now eliminate by (1.6). The gauge field of con-
formal boosts is eliminated through its nonpropa-
gating field equation while the dilatation gauge field
drops out of the action altogether. The kinetic
terms of the action are

Section VI contains the f1,at-space model with local
supersymmetry. In Sec. VII we interpret our re-
sults.

Our conventions are as follows:

r2r 3r4r

1234 1= ~»~ =+'-, r5 = r&r2r3r4, ~&
= r&, r5 = r5,

y„'=y, '=1, o'„v=a(ypyv-y, y„), e=dete, „
(1.9)

q" ~~A R =R e'" X=C XjIV ~ P&, Pea&

gall egg ep p

II. THE ACTION, CONSTRAINTS,

AND TRANSFORMATION RULES

The superconformal group" has the following 24
generators'» gauge fields'~, and gauge param-
eters q

X~ =PprEpr Mpv rD, A, Q Suarrr

A CX 0'.
cap rfap r ~paar 5p»p r 4p r rjr p r (2.1)

A a a ab —0! tX
~XD~Ag~ Qg~ Q g

The (anti)commutation relations of the generators
are given in 'fable I.

Parity conservation and the absence of dimen-
sional constants led to the following action3:

where B» is the Hicci tensor, g is a Majorana
spinor, and C is the charge conjugation matrix.
The tensor R„,(Q) starts with (8„(„+-,' g„o"cu„„)
—(p-v). gi'e define Rp„(Q) to be minus the charge
conjugate of Rrp„(Q) so that it starts with
(s„-—,'ur„,v

o")p„—(tj, -v). The vierbien field e,„
and its inverse e'" ar e used to convert local Lo.-
rentz to world indices and vice versa. gp„(and its
inverse@"") is used to lower (and raise) world
indices and the flat-space metric 6„(and 6") is
used to lower (raise) local Lorentz indices.
is a tensor density, so that e 'q""p' is a tensor (as
ls ecpvp )

xJLcP"P [nRp,"(M)R'p, (M) e,v,„+PRp,(Q)y, Rp (S) «yR„„(A)Rp (D)]+6eRp, (A)R""(A)),

P =6 =2iy=-8o, .
(2.2)
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TABLE I. (Anti) commutation relations of the super-
conformal group.

~gbg ~cd] ~bc~ad ~ad~&c 1ac~&d Ibd~ac

jar„,P,]= gb,P.—q„Pb

~ab ~ Kc] ~bcKa 8acKb

D;,D] =P.
[K„D]=-K,

lK„Pb] =-2(qabD+ &&ab)

$, &a]=yap, [$, &]=4 iy5$, [S,Dl=-2 S,

[Q, &,]=-r,&, [Q, A]=- f&r,Q, [Q,D]=$Q,

[Q, Mag]=O„Q, {Q„,Qgj ,=(r-'C)„e& a

[S,M.,]=o„S, {S„,Sg)=~g(y'C) p',
{Q~,S8j=-

g C«D+ (O' C)„&Ma&+ (irgC)~gA (a &b).

The curvatures are obtained from (1.1) and are
given in Table IL The sums over (a, b), (c, d), and

p, v are unrestricted.
The constraint R~„,(P) =0 can be solved alge-

braically to give

~p.g(e)+(egg& e p&g)

+a (4yg 4a 4pra 4g &arp4a) ~ (2 3)
&o„ag(e) =—,

' [e", (e,„„.—e» „)+e, e, ea~ pe'„]

TABLE II. Curvatures of the superconformal group.
All curvatures are to bq antisymmetrized in (p, v).

RpvabVW =Rpvab —4(ea pfbv ebpfav) —2$p+abA(0)

R„v(D) =-2&&bv+ 4e, &fv+ g„Qv

R„v(&) =-2~„&v- »& &gatv

R„v(Q) = (2Dv $~+ 2$pyv+ bvf~-+gigvfpy5)

Rqv($) =(2Dvy -2&pyaf '„-bA p+2iAv&P 5)

R]Iva(P) =-28&ga v'+2 pae'bv+ g ~p'Ya~v+ 2~apbv
b

(Z) =-28„f +2(d„ fb„- 2 Qpy Q„-2f pb„.

The field y is an arbitrary spin —,' field related to

p& by )(=—,'y p. The new constraintR„„(Q) z""=0
eliminates X,

j.- pvX=2o Sp. -

Substituting (2.5) into (2.4) yields

Pp
=

g r"(Spv+a rgSpu),

(2.5)

(2.6)

which can also be obtained directly from solving
R„,(Q) y' =0.

The field equation for the proper conformal gauge
field f,„ is algebraic so that f,„can be eliminated,

fpu = a(Rvp a 8'puR) + gRZ (pQ) r
—(s-&) . — '

R„„,(A) (2.7)

Thus there is torsion if b„or g„are nonzero.
The duality constraint Rz„(Q) +—,

'
R&„(Q)y, =0 can

be solved algebraically for p„,
(t)p =a r"(Spu+g rgSpv) +rp)(~

S..=(D, S. .'&.C. '.—iA,r,-y.-) (i —.),-(2.4)

1 abDut]'p=evkp g ~uag& 4p ~

where 8„&denotes R„p,„(M)e'p with f,„put equal to
zero, and 8 =g""Rz, . Note that R&, is not symme-
tric due to torsion and the pop term. This equa-
tion holds whether or not u&„„and p„have been
eliminated since they' are f independent Note. also
that f =g""fp u

= - g'g R.
Inserting (2.7) into (2.2) yields the action,

I =8m dax{eRp„(M)R'"(M) —(e/3)Rg(M) +4@"" 'Ppy, y, D, .&„-(3e/4)R„„(A)R""(A)

+e(i/2) qpyuR"'(A) + (3i) (),A„(p yp
f""P' +e(i/2) Rp„(M)R""(A) —3i f""P ' spy, ypA„

—eR""(M)R&p(Q)y„(~+e(i/4)R""(A)R&&(Q)y„g +e ,' [Rp (A)y" g—][Rzp(Q)yvg~]

'4o' a4'v copra& 4' ~ (2.8)

where p„ is given by (2.4). The first four terms
yield (1.8). As we shall show shortly, the dilaton
field b„drops from the action, so that 5& can be
put to zero in each of the terms in (2.8).

This action is invariant under gauge transforma-

tions on the remaining physical fields, e,„, g&,
andPp.

5gauga I g =(D„e)A S &A+f AI B (2.9)

for M, D, A, S, and Q symmetries. Invariance
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under K is trivial since the physical fields are K
inert, while the action is not invariant under P-
gauge transformations but rather (by construction)
under general coordinate transformations. For
example, under Q supersymmetry, the physical
fields transform as

1—
q ag 8 qya(8 a

5qpp =&geq 8 ~p b(e, ()O' Eq (3g/4)Apyg&q a

5qA I
= (-g/3) ~q r, r'(&u g +ar &8~ g), (2 1o)

~pu =[Su 8 &uab(ea tl') C' —(3g/4)Au'Ygl (p

—(g-v).
The field P„may be omitted from the transforma-
tion laws since it is not present in the action.

III. MODIFICATION OF TRANSFORMATION LAWS

IN THE PRESENCE OF CONSTRAINTS

As mentioned in the Introduction, the transforma-
tions of v„„and p„as given in (2.3) and (2.6) dif-
fer from the group transformations in (2.9). One
can of course obtain the former by tedious applica-
tion of the chain rule; instead, one may. apply to
advantage the following obvious theorem:

Theorem: The actual transformation laws of
gauge fields in the presence of constraints are
such as to maintain these constraints under vari-
ation.

Let a constraint be given by JlA» I"A"" = 0 where I"
may depend on PA&. Defining

~rIA ~actus I A ggaugeI A (3.1)

one finds by applying the above theorem

(5 gaug~ RA ) Flu +RA (5 gauge Fpu)

From (2.9) and the corresponding homogeneous
rotation of curvatures,

5 gauge RA f AR—e C
v~ &~ v~ (3.3)

5 CO/g ab 8 [ E qpyR(aQb) +Eq yaRp (bQ)

+~q r Rb.~(Q)] (3.5)

Using the cyclic identity of (1.7) one finally ob-
tains

%gab 8 [ ab(Q)ypeq] ' (3.5)

A similar procedure applied to the constraint
y'R&„(Q) =0 [which is equivalent to (1.5) and (1.6)]
yields

one can directly obtain 5'&g and 5'p.
Under Z, M, D, A, and 8 gauge transformations

one finds that the constraints transform into
themselves. Consequently, the left-hand side of
(3.2) vanishes and 5'lgA„=0 for all these symme-
tries. Under Q-supersymmetry gauge transforma-
tions, however, the constraints are not maintained
so that one finds nonzero 5'u and O'P. Since R&„(P)
rotates into R„„(Q)under Q, (3.2) yields

—.'[-.r' R„( Q)] (5' ...)".-(5' ...)".. (3.4)

This can be solved for 5'+ in the same way as one
solves for the Christoffel symbol in terms of g&„,~.

y" [(3g/4) y, eqR„„(A) - ,'R„,(D) eq +-,' c-„eq R'„', (M) --,' 5'(u„„c"y„+-,' 5'ur. .bc" tl„]+-,' (~q y„p.) r'R„„(Q)

=25'P, +y„(y O'P). (3.7)

After multiplication by y, one solves for y 5 p, and reinserting the result and using (3.6) one finds

5'4. --'y" [r.R .(A)+-'R .(A)) —lr [R .(D)+ 'r, R .(D)]-

+,—'r& c"[R»„(M)+(r, /4) R».,(M)] ~q +-.' (~q r"0')[»R»(Q)] —&', (~q r"0 ")[r.R»(Q)]

8[~q ruRab(Q—)](r"~"4p) + 2'4[ ~q r"Rab(Q)](ru ~'" ef ) 8(r"~q)[R—y/ (Q) ru 0"] a

whirr~ + ~= e~ +~o ~. amazing simplifications lead to the final resu

5'y„=(i/4) y" [y,R„,(A. ) +-,'R„,(A)] eq,

which we now prove. We proceed in several steps:
(1) We extract the f,„dependence from (3.8). This is,

(3.6)

(3.9)

(3.10)g4 =-r"fj
and this can be expressed in terms of R (M), R (Q), and R (A) by means of (2.7).

(2) We collect together all R(M), R(Q), and R(A) terms. The total R(A) dependence is just that of (3.9)
while the R(M) terms sum to
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12 y"(R~u Ru. ) eo +(e '/12) y, yp so[ e" '
Ru y 2 E R y 7 g~ ] ~ (3.11)

(3) Some R(Q) ( terms in (3.8) must be Fierz transformed so that they are all of the generic form
[ (R (Q)] go. All terms in (3.8) then have the spinor structure O~go where O~ are the 16 Dirac matrices.
The terms for which 0" is a scalar, pseudoscalar, or tensor come only from a Fierz transformation of
R(Q) g terms and must vanish separately. Using the R(Q) constraints this can be shown to be the case. All
remaining terms have 0" equal to a vector or an axial vector.

(4) We collect together all the "Pp" terms coming from R (M) and R (D), but not R(A).
The result of these manipulations is'

&'p, =(f/4) r'[r R&.(&) +-,'R&.(&)]~& + —,'y"(bu, +r, bu. /4) ~& ——.', [Tt rR&.(Q)]r'~o

1Q[ 0 y r,R ~.( Q)1rsr'~o + 8 [ 0 "r&r,R u. (Q)]r5r'~o + &'. r" ~& (R",u -Ru'. )

+(e '/12) y, y~e o(e" "'R'u"„,+ 2&„" 'R",'„')+ ~', r"~o(4o'„4~ —4xo'„4u- 4~ o'u 0'~ +'0), o'~4~ )

—(e '/12) y, rheo eu "(duo„p, —g, o„pu ) +(e '/12) y, rheo e" " g„o„p@g, p

lp ( 4u Qll gv Qu) r" ~& + (e '/24) r, ru ~"' "'(7~p&)~&gpv (3.12)

where b„„=e„b,—e 5„. In Fig. 1 we give a sche--
matic representation of where all the various
terms come from. Riuo „is R„„,(M) without the
"ef" and without the "g&f&" terms To s.implify
(3.12) still f~rther, we use the results that

e-1&u pabR(o) bp x (~ Spa)

+!(O.r,s'") 6!,
R„'„-R u '2bu p (g„y"S u guy"S„,

+ 7/r
~ yS„,),

(3.14)

(3.15)

where S„„was defined in (2.4). The right-hand
side of these equations comes from the nonzero
torsion. This allows us to rewrite the R(M) terms
in the form "7jrS" a.s the explicit b„„ terms in
(3.13)-(3.15) cancel the explicit b» terms in (3.12).
We may also write the R(Q) terins in this form by
means of the identity

1 1 {X
2 +5 Yu gp 2 +5+ np8).&

1 (X~rr. r -- ggu. ),
ogpu"=- l(r, r"S„)

(3.17)

(3.18)

This reduces all terms in (3.12), except the R (A)
terms, to the generic form

y~o(gyS), reo(gr. rS), r, r~ o(4 rS)

y, y~, (gy, rs)

All four sets of terms vanish independently. Thus
6' p„ is given by (3.9).

Ru„(Q) = s(Su„-—,
' y, S pu+ou S„„—o„"Su„). (3.16)

Finally, the "TtIy" terms in (3.12) may be cast
into the "gS" form by using the formulas

1 1 (X.

oquP =
6 (y'qS„u yu S„-x + ~ y„Sxu + a y S„zg,u

1 {X j. j.
Pg~k ~5~X. ~P

8'$ = 8'cu, Se, R{M), R{D},

R{Q)

R{A}

R{o)) f$ f

R {Einstein) torsion R{Q} R{A)

cancels
b'av QS .

FIG. 1. Diagram of contributions to O'Q,
I

IV. FULL LOCAL SUPERSYMMETRY

AND OTHER INVARIANCES

The main result of this section is the proof that
our action (2.8) is locally Q supersymmetric.
Previously we established local S supersymme-
try as well as invariance under all other bosonic
local symmetries, but our investigation of Q
supersymmetry was incomplete. In order to es-
tablish Q invariance, we need the new constraint
(1.6). First we must show that this constraint
does not invalidate the previously established local
symmetries.

We begin by considering the action in (2.2) where
we can use the rotation of curvatures in (3.3). Un-
der local M, D, andA gauge transformations this
action is invariant, but under K and S gauge. trans-
formations one finds
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'x [ 4n-R'p', (M) R'„„(P)e„„
- J3R,.(q) y, y.R,.(Q)

2—yR, .(A)R„,.(P)]&"'".g, (4.1)

5qI = ed x{Rq,(M) e~ o,„y,R"'(Q)(4 n+p/2)

+R„„(q)y, e, R"'(D) (-p/2 +i y)

+R„,(A) [2f5R"'(q) y, ~,

+ (»P/4-y/2)R""(Q)~ ]

—PR""(S)y,y, e R'„„(P)) .
Local K invariance requires the constraints

R~ (P) =O=R~ (Q) +cR~ (Q)y

(4.2)

(4.3)

where c is an arbitrary constant. If c is not equal
to +~ then the duality constraint implies that R&„(q)
=0, which constitutes 24 equations for the 16 com-
ponents p„and is therefore too strong a constraint
If c =+—,

' there are only 12 equations; the remaining
four components of p& constitute the spin=,' field g
encountered in Sec. II. We choose c =+ —,

' which

amounts to a s'ign choice for y,.
Local S invariance now follows from these con-

straints if one puts p =5 =2iy = -Sn. We will as-
sume these values from now on.

In principle the transformations of the fields are
modified after solving the constraints and extra
terms proportional to 5'&o and 5'p would appear in

(4.1) and (4.2). However, as shown in Sec. 111, the
5' terms vanish for M, D, A. , K, and S transfor™
mations so that all these invariances remain after
solving (4.3). We now need to impose the con-
straint g"™R„,(q) =0. The same arguments show
that this constraint also respects the M, D, A. , K,
and S local symmetries.

The reader might object that there are also pos-
sible terms in the varied action proportional to
5'f,„since this gauge field has also been expressed
in terms of other fields by means of its field equa-
tion. However, any such variation is multiplied
by the f,„field equation in the varied action, which
vanishes by definition xx, 8

We now prove invariance of the action under q
supersymmetry. The variation of the action (2.2)
under Q-gauge transformations following from (2.9)
is given by

5&"""I=8n ed'x(R"'(Q) y, y, e'„, (K) 2+iR""(S)[y,R„„(A)+-.'R„,(A)] e,

--,' (e, y y)R„„(A)R~"(A) +2(e, y" g.)R„,(A)R" (A)) .

There are additional variations containing 5'p and 5'&u. These extra terms are

(4 4)

5oI=8n ed'x{25'&u'„'R""'(K) e„„,e~, +4R""(S)y„y,5'P, +4f $„[y,R""(A) +-,'R""(A)]5'P, ) ~ (4.5)

This result was obtained by using the following formula' for the variation of the action (1.3) for arbitrary
val iations Gap '.

5I =4 d'x [5a"aeR;. (f Dq"""-y 'q""')]

4x(RA RB 5QPvPg) 4 d4x [5@A(D R )BqgvPa +5I ARB s (QP&Pa)] (4.6)

The two terms in the last set of square brackets
in (4.6) only contribute if Q~g ' is not proportional
to &"'~ . This follows from the fact that g,&""~ =0
and the Bianchi identity e""~'(D,Rz )e =0. But we
use 5&~& =5'p~& and only 5'p& and 5'm&„are non-
zero. For these variations Q„"e ~ is proportional
to q""~ in these terms which therefore do not con-
tribute to (4.5). Note that whenA =(a, b), one con-
siders only a& Q. Since we sum always over un-
restricted indices, care is required to obtain the
correct factor 2 in (4.5).

(4. I)g"'R„,=0,

which we adopt from this point on. Anticipating

We now consider the cancellation of independent
terms in (4.4) and (4.5) separately. The R(q)R(K)
term in (4.4) cancels with the 5'~R (K) term in

(4. 5) provided 5'& is given by (3.6). If one would

only have the two constraints in (4.3), 5'ar would

be given by (3.5), and no cancellation would occur.
At this point we discovered the need for the last
constraint,
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this constraint we were able to derive in Sec. III
the simple form for 6'p of (3.9). Substituting (3.9)
into (4.5) one finds immediately cancellations of
the R(A)R(S) and the R(A)R(A, ) terms T. his com-
pletes the proof of Q invariance.

Finally, we demonstrate that the dilaton field 5&

drops from the action as mentioned previously.
The simplest proof of this fact is that, of the fields
e,p, gp, A„, and b„, only b„ transforms under K.
Its infinitesimal transformation is

Clearly, a finite K transformation can eliminate
On the other hand, the action is K invariant,

hence it is 5„ independent. This elegant argument
eras checked explicitly.

(1) Only for Q-supersymmetry transformations
are the O'IbAp nonzero, and only for lbAp =&op„, Pp,
and f p.

(2) 6'f, pnever contributes.
(3) 6'gp and 5'&up„contribute only to the com-

mutator of two local Q-supersymmetry transfor-
mations or to a [P, Q] commutator.

(4) However, as in Poincare supergravity, P is
not a symmetry of the action but one must consider
instead general coordinate transformations. One

may check that the commutator of a general co-
ordinate transformation and any of the local sym-
metries except P is again a local symmetry.

(5) 5'pp contributes only to [bo, bo]Ap and 6'&up, b

only to [bo, b@]gp.
Using the previously obtained results for 5'~

and 6' p in (3.6) and (3.9) one obtains the result

V. CLOSURE OF THE GAUGE ALGEBRA OFF SHELL

In Poincare supergravity the gauge algebra does
not close off shell, ,i.e., the commutator of two
local symmetry operations is only then again a
local symmetry if one uses the equation of motion
of some of the gauge fields. Recently it was shown
that this lack of closure leads to modified Feynman
rules for the quantized theory. ' In particular a
four-ghost coupling was needed to restore uni-
tarity. lt is therefore of importance for the quan-
tization of conformal supergravity to investigate
its gauge algebra. Surprisingly, the gauge algebra
on the physical fieMs e'„, (p, and A„does close
without the need to use their field equations. This
reinforces a previous conjecture"' that in Poin-
care supergravity the gauge algebra might close
(and a simpler structure arise) with the addition
of at least one auxiliary axial-vector field.

The nonphysical fields pp, ~p„, and f,„were
eliminated by constraints and nonpropagating field
equations. Hence b„will be the only nonphysical field
contained in the gauge transformations of physical
fields. In the action b„was absent, hence putting
5& equal to zero is a consistent truncation. In the
gauge algebra, however, it makes a difference
whether one carries b„and its variations along or
whether one puts it equal to zero right from the
beginning. We will consider both cases separately
and start with the b&-dependent gauge transforma-
tions.

The general commutator is given by

~ 1(p=~ 4p+ '(& y-& )Rpg(Q)

[6'„6;]A„=6',A„+-,'(r, y'~, )R„,(A),

[62 ~ 61] sap bbeap &

(5.2)

(5.3)

(5.4)

where 5, is a p-gauge transformation with param-
eter —,'(e,y, ep). However, a general coordinate
transformation with parameter p~ can be written
as

bA —(D ~)A + ERA (5.5)

6o(dpbb(b = 0) = bo(dp b(b 40) —8bp(bgbb)

+e,p(6obb),

6,'y„(b =0) =6'y„(t ~0) --,'( b6.) y'q„,

(5.6)

(5.7)

where (Dp @)" is a gauge transformation with pa-
rameters e". Clearly, (5.2)-(5.4) are a sum of a
general coordinate transformation plus local gauge
transformations other than P. This establishes
the closure of the gauge algebra even off shell in
the presence of the nonphysical field b„.

The more realistic case in which one puts 5&

equal to zero in the transformation laws right
from the beginning now follows easily. We return
to (5.1) and derive expressions for O'Qp and 5'&up„
valid when b„and its variations are absent. These
are obtained froin the explicit b dependence of pp
and gabe

[6, , 6 ]hp =6 hp + [f "O' Ibpe —(1 2)], (5.1)

where A. is restricted to the physical group indices
belonging to e,p, P„, and A„, and where 6, is again
a gauge transformation with parameter e", =f~c"c,&, .
We note the following points:

where 6@bp =—,'eogp. Inserting these modified ex-
pressions into the [bo, 6@] commutator leads to an
extra S-gauge supersymmetry transformation with
field-dependent parameter. - The final result is
given by
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[5q r 5q]Flu (b = 0) = 5 g [s ( &t ye&2)] +5 toc. Loreotz [ ~2( ~17 ~2) tdy tt]

+5chiret [ 2~(&xy +s)Ay] +5Osy'm [ 2(&zy &s) Pg]

+5 s-& [ s-(&iy &s) py]+5s-, [e (tttu &x) &sy".- (1-2)1 (5.8)

where the last term is not present in (5.2) and
(5.4). Again, the algebra closes off shell.

VI. FLAT-SPACE LOCAL SUPERSYMMETRY

Conformal supergravity differs from Poincare
supergravity in that it has two rather than one
local supersymmetry, denoted by Q and S; Be-
cause in the graded Poincare group(Q„, Qs)
=(yuC)„sPu, it was suspected in the procees of
constructing supergravity that local supersymme-
try is a deeper symmetry, underlying and neces-
sarily implying gravity. Although this ar'gument
is correct for Poincare supergravity, it does not
apply to S supersymmetry in.conformal super-.
gr avity. From the anticommutator

(S.,S,] =-,'(y"C).sK„,

one might expect at first that an S-supersymme-
tric theory necessarily. leads to f-curved space-
time, since in the algebra (P, Q) and (K, S) appear
symmetrically up to signs. However, the con-
straints destroy this symmetry since they involve
only the P and Q curvatures, and, as we have seen,
one ean eliminate the gauge field f,u but not e,„.
Since under S supersymmetry

5se.u
= o 5sgu =

yu es 5sA„=i(es y Pu)

one c'an consistently put e& =5& in our action. This
reduction of the U(1) eonformal supergravity action
is thus a flat-space locally supersymmetric field
theory containing one spin- —,

' and one spin-1 field
(or three spin- —,

' particles and one spin-1 particle).
Thus this model demonstrates that local super-

symmetry can exist in flat spacetime, and that
Fermi-Bose symmetry and spacetime symmetries
are independent concepts.

One should investigate whether this model is
also free from the higher-spin inconsistencies.

VII. CONCLUSIONS

We have shown that the previously constructed
theory of conformal supergravity with U(l) in-.
ternal symmetry' is invariant under both local
supersymmetries, Q and S, as well as under all
other bosonic symmetries. The action contains
the spin-2 vierbein field, a spin- —,

' fieLd, and an

axial-vector field, and is a supersymmetric ex-
tension of Weyl's R»' —38' theory of conformal-
invariant gravity.

We have developed techniques for handling gauge
theories with constraints on the group curvatures.
The requirements of. invariance of the action under
K (or S) and Q local symmetry led directly to the
three constraints

R'„„(P)=0, R„,(Q)+-,'A„,(Q)y, =o,
(7.1)

R„„(Q)eu'=0.

In hindsight one can understand these constraints
geometrically. In the absence of constraints, the

(Q, Q] =P relation tells us that the commutator of
two Q-gauge transformations is a P gauge t-rans-
formation. However, the action is invariant by
construction under general coordinate and riot un-
der P-gauge transformations. The relation be-
tween the two is given in (5.5). Hence, not all
fields can transform according to the gauge pre-
scription under Q transformations. Therefore
there must be modified transformation laws de-
noted in (3.1) by 5 „t„„jgu = (Du e)" +5'gu. The re-
lations 5@eu =—,

' ey'pu and 5@pu=Due@ lead to the
same commutators as in Poincare supergravity.
Hence the same relation aalu' =v'u'(e, g) as there is
needed in order to lead to a general coordinate
transformation. This is equivalent to requiring
Ru~(P) =0,.

The same argument for the commutator of two
Q-supersymmetry transformations on A 'yields

[5' 5']Au=-ir'"y 5""y -(I-Z)
which shows that 5&yu must be nonzero. The, con-
straints on the Q curvatures lead indeed to tbe ex-
pression for 5'p„ in (3.9), which leads to the de-
sired result in (5.3). Thus the role of the con-
straints is to convert the P-gauge transformations
of the group to the general coordinate transforma-
tions of the spacetime manifold.

It would be interesting to see whether a super-
space approach to conformal supergravity'4' would
lead to the same constraints. In that case another
geometrical interpretation might be possible.

We have shown that the gauge algebra of con-
formal supergravity closes without the need to use
field equations. Thus the four-ghost coupling need-
ed for unitarity in Poincare supergravity' is ab-
sent in conformal supergravity. It is instructive
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to understand in this language why the Poincare
algebra does not close on („[itdoes on e'„since
R'„„(P)=0]. The reason is that the cyclic con-
straint e""~'y„A~,(Q) = 0 is not available to cast
6'&u„„ into the simple form of (3.6). In fact, this
relation is in Poincare supergravity just the spin- —,

field equation.
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