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By regarding the gauge fields which arise in theories based on nonlinear realizations of gauge symmetries
as dynamical variables, we show that gravity, with or without matter, supergravity, and extended
supergravity theories possess such symmetries. The model-independent transformation laws for such fields
remain unaltered when extended supergravity theories are considered. For groups such as OSp{N;5), the
supersymmetry part of the group must be realized nonlinearly. It is pointed out that in this scheme to realize
supersymmetry transformations linearly, one possibility is to consider the inhomogeneous extensions of the
supergroups OSp(N;2C), i.e., IOSp(N;2C). We also consider the consequences of this point of view in
regard to flat-space-time gauge theories and show that instead of the usual set of Yang-Mills equations
supplemented with gauge conditions which break the gauge covariance completely, it is possible to formulate
a system of equations which are equal in number to the above set but which maintain gauge covariance with
respect to the unbroken part of the gauge symmetry.

I. INTRODUCTION

Non-Abelian gauge fields play a central role in
any attempt at the unification of known interac-
tions in particle physics. Although the importance
of these fields was recognized immediately after
their introduction by Yang and Mills, ' it is rela-
tively recently that a number of nonperturbative
and novel features of gauge theories have been
demonstrated. " Perhaps the most direct con-
clusion which could be drawn from these results
is that deductions about the behavior of non-
Abelian gauge fj,elds based on extrapolations from
Abelian quantum electrodynamics and perturba-
tion theory are to be regarded with due caution.
The list of novel features such as the behavior of
the vacuum, the nature and the adequacy of gauge
conditions, etc. , is growing, and to them we may
even add the structure of the field equations them-
selves in the sense described below.

Further insight into the structure of non-Abelian
. gauge theories has also been gained by studying
the geometry of local gauge invariance. ' ' In
particular, it has been shown that it is possible to
construct gravitation theories based on a local
gauge principle, ' including Einstein's theory it-
self. ' This establishes the local gauge principle
as a basis for unifying gravitation with other inter-
actions. It also points out, however, that local
gauge invariance does not completely determine
the structure of equations of motions. This can be
seen by contrasting Einstein's equations with the
Yang-Mills equations. One is therefore led to
raise two questions: (i) As theories based on
local gauge principles, what distinguishes Ein-
stein's theory from Yang-Mills theory? (ii) Is it

possible to write down Einstein-type actions and
field equations for gauge fields of an internal-
symmetry group'? It is to these questions that we
address ourselves in this paper. As we shall see
these questions are related and the answer to
them also provides a way of looking at extended
supergravity theories.

To gain insight into the features which make a
gauge theory of gravity structurally different
from Yang-Mills theory, we review the pertinent
features in Sec. II. There we find that in gravity
the essential feature is that unlike in Yang-Mills
theory the gauge fields associated with a coset
G/H of the symmetry group G make explicit
appearance both in the action and in the equations
of motion. Becuase of this, the usual linear local
gauge inva. riance with respect to G cannot be
maintained. In fact, the only possible way out is
to require that some fields transform covariantly
with respect to' G. This means that such fields
must belong to a nonlinea, r realization of G. So
in Sec. III we review a number of known results
from the theory of nonlinear realizations, ' "and
point out that one can regard the nonlinear gauge
fields as the dynamical variables of the theory
without explicit reference to the so-called "pion"
fields (coset parameters) or the related Yang-
Mi.lls fields of the linear theory.

As a first application of these ideas, possible
forms of actions in flat space-time are con-
sidered in Sec. IV. In some cases one obtains
modified field equations even for gauge fields
a.ssociated with the linear subgroups of the in-
ternal-symmetry group.

In Sec. V we make a, number of general remarks
about the structure of gauge field equations that
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one should expect when part of the symmetry is
realized nonlinearly. Taking our clues from how

pure gravity theory may be viewed this way, we
point out that it is possible to formulate a system
of equations and constraints which are equal in
number to those of Yang-Mills theory supple-
mented with gauge conditions. Our system of
equations is noteworthy in that these equations
are gauge covariant with respect to the unbroken
part of the symmetry group. If they admit non-
trivial solutions, this amounts to R way of intro-
ducing a new set of dynamical variables which
play the role of the tetrad fields in gravity.

In Sec. VI, we turn to gravity and supergravity
theories and show that they are compatible with
the nonlinear realizations based on supergroups
OSp(N;4), N=O, 1, . . . . The nonlinear transforma-
tion laws are geometrical and model independent,
so that they do not change from one supergroup to
the next. In this sense they are more naturally
tailored to the structure of extended supergravity
actions.

One drawback of working with nonlinear realiza-
tions is that one has more freedom than in un-
broken Yang-Mills theories. But in the cases
treated in Sec. VI, it is shown that this unique-
ness can be regained by a physical requirement
on the torsion tensor. If one regards gravity
theory as a spontaneously broken gauge theory,
then any supergravity theory such as those based
on OSp(N; 4); which contain the gauge group of
the gravity theory, will also be a. spontaneously
broken gauge theory. In all such theories, super-
symmetry will be realized nonlinearity. One can
then ask if within the scheme of nonlinear real-
izations one can construct theories in which super-
symmetry is realized linearly. In Sec. VII we
show that this can be done with gauge groups
IOSp(N; 2C), i.e., the inhomogeneous extensions

. of the supergroups OSp(N; 2C).

II. GAUGE FIELD GEOMETRIES

Conventional non-Abelian gauge theories can be
interpreted in terms of the geometry of a, prin-
cipal fiber bundle. ' They a.re connection co-
efficients on a cross section of a bundle with
space-time as its base and the symmetry group
G as its fiber. The field strength tensors are
then the components of the curvature tensor of
the bundle. They are related to the gauge fields
via the commutator

[D„,D.] =-S„",x„, (2.1)

where Du is the covariant derivative with respect
to the gauge group G, and X& are the group gen-

eratorss.

Let II be a subgroup of G and write the algebra
of G,

I.= T S, (2 2)

where T is the algebra of H and 8 contains the
generators of elements homeomorphie to the
quotierit space GjH. Let

(x„]=(7., s,],
where the index a runs over the elements of T
and the indes i runs over those of S. Then if the
splitting (2.2) between T and S corresponds to a
Cartan decomposition, one has also

[&., &~] =f:.&.,

[7'„s;]=f,',s, , (2.4)

[s,, s,]=f',,r. ,.

where f~c are the structure constants of G. In
A

this terminology, if D„ is the usual covariant de-
rivative with respect to G, then

A A
Du = Bu + hu. g~

= ~„+h'„T,+h„'8;,

where the h"„'s are the gauge fields of the theory:

+".=&",.—4",g+facKC (2.6)
I

One can also write down a covariant derivative
Du with respect to the subgroup 8:

1

(2.5)

Du —Bu +hu T,

so that

(2.7)

Du =Du +hqS;. (2 g)

The curvature tensor with respect to the subgroup
IJ is

Ii '„,= hq, —h',
q

+f~,h~h',

so that

(2.9)

I' „,+f, , h„'h,'. -
Under the subgroup II, the components I" u, of
Eu, are not mixed with the remaining F u, . From
(2.7) they are given by

(2.10)

~u =D hu-D h: (2.11)

In a conventional non-Abelian gauge theory with
a gauge group t", the gauge fields hu satisfy the
Yang-Mills equations

A A

Du&»-o (2.12)

These equations are manifestly covariant with
respect to the group G in the sense that the depen-
dence on the gauge fields enters only through
covariant objects. Let us contrast this with the
gauge theory of gravity' ' in which G =ISO(S, 1) and
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H=SO(3, 1). In that case h'„and h'„satisfy the
eguations of motion'4

e"'' e„f';,h,'R'p ~=0,
'

~"'~'~,f' ~'H', =0.
(2.13)

(2.14)

These equations are structurally different from
those of Yang and Mills and the gauge fields h'„

explicitly appear in the field equations. They
transform covariantly w/th respect to H but not G.

So, if all h„ transform according to the usual
linear gauge transformations of Yang-Mills type,
there would be no hope of having an action which
is gauge invariant with respect to G. The way
one normally gets around this problem. is to note
that the field components h„' form a square matrix
in which p and & are iridices of the same type and
which can be inverted. Then Eq. (2.14) can be
solved for h'„ in terms of h'„. Regarded as h non-'

linear function of h'„ the variation of h'„ is given
by

(2.15)
aa,

As a result not all the components of h„" transform
lineh;rly under G.

When G is an internal-symmetry group, the in-
dices p, and i differ both in range and in type, so
that the matrix h& is, iri general, not invertible.
Qne must therefore look for an alternative method
to make the analogs of (2.13) and (2.14) covariant.
The method we want to pursue is one in which the
h'„'s transform covariantly. Since such a trans-
formation law cannot be maintained if the h„"'s
form a linear realization of G, we turn to non-
linear realizations irrespective of whether the
symmetry group is of internal or of space-time
ol"lgin.

III. NONLINEAR GAUGE FIELDS
P

To implement the ideas discussed in the pre-
ceding section, we Must study the structure of
vector fields which transform according to a non-
linear realization of the symmetry group G. The
method of constructing these fields is known from
the study of phenomenological field theories.
In such theories scalar and spin-& fields are re-
quired to transform according to nonlinear real-
izations of some symmetry group G. To couple
such fields to Yang-Mills fields it was found con-
venient to construct first norilinear gauge fields
so that invariant interactions could be written
down by simple index saturation with respect to
the linear subgroup H. The nonlinear gauge fields
themselves were not given the status of indepen-
dent dyna-mical variables but were, instead, ex-
pressed in terms of the usual Yang-Mills fields
and complicated functions of the so-called pion

a
A 8u Ta~@

Also, let
(3.2)

(3.3)

be the connection in a principal fiber bundle, so
that

P k=(v, & ) (3.4)

are thewsual Yang-Mills fields. Under the trans-
formati:on by an element g, we have

A~ =gkpg +g~~g (3.5)

Then based on these we define a connection in the
associated bundle and the nonlinear fields H' and

E,' according to"

fields (coset parameters) and their derivatives.
In specifying the transformation properties of

the nonlinear gauge fields, we follow the method
of Ref. 10 and relate them to the linear (Yang-
Mills) gauge fields of the group. The point of view
we adopt, however, is to give the new fields the
status of indeperident dynamical variables and to
write dowri actions and equations of motion for
them. This is consistent with the usual axioms
of field theory according to which one may replace
some or all of a set of fields by appropriate
functionals of these fields. One can of course at-
tempt to relate the fields to the linear fields of
unbroken theory at a later stage.

From a geometrical point of view, the construc-
tion of matter fields, linear or nonlinear, amounts
to the construction of what is known as an as-
sociated fiber bundle. " The gauge fields them-
selves belong to the principal fiber bundle, where
the fiber is the group space and the generators are
differential operators acting on this space. In
associated fiber bundles the fiber of the principal
bundle, i.e., the group space, is replaced by a
representation of the group which may be linear
or nonliiiear. A connection in the principal bundle
means the- specification of a. covariant derivative.
Then this connection "induces" corinections in the

, bundles "associated" with a given principal bundle,
i,e., it fixes their covariant derivatives. For as-
sociated bundles in which the fiber is a linear
representation, this amounts to replacing the
generators in the expression for the covariant
derivative of the principal bundle by their ap-
propriate matrix representations. For the as-
sociated bundle in which the fiber is the eoset
space G/H the connection is induced as follows. "

In the notation of Sec. II let JJbe a subgroup of
G and K be the c'oset space G/H. Then every
element gc: G can be written as

g=kh, (3.1)
where
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G„—=H„+K„=H'„7.', +K '„S;

=k '(&q + V'„'r, +ASS,)k.
Then one can verify that under g, H„and K„
transform as

K =O'K h'

(3.6)

(3.7)

(3.8)

where A' i.s given by the action of g on a standard
4~K:

gk =O'A'. (3 9)

where
E„„-a„,—a„„+fb,a,a (3.12)

since the fields K'„do not appear in (3.10) and
(3.12). It is also useful to construct, whenever
possible, tensor. fields which involve X'„and
which are structurally similar to (2.10) and (2.11).
We therefore define

&pv =Eqv+ C';,.(K~Ku.—KvKp)
a a+pp+K /vs. (3.13)

Notice that K'„ transform covariantly under g Bnd
are not mixed with H'„.

Once the fields H& and K„' as well as their trans-
formation properties are specified, they can be
regarded as fundmental dynamical variables with-
out reference to the initial gauge fields. We make
use of them to define covariant derivatives with
respect to the group 6:

D~ =&~ +H~ = ~ +H~ Ta. (3.10)

The corresponding components. of curvature two-
form are

[D„D,]= F'„,T„-

(3.7)-(3.9). The nonlinearity of the transforma-
tion with respect to the elements of K means that
the labels associated with the part of the algebra
of G which generate K are no longer available as
symmetry indices. In-other words, the symmetry
has been spontaneously broken from G to H. An
irreducible representation of G will, in general,
have several irreducible pieces with respect to H.
Since in constructing invariant actions one only
needs index saturation with respect to the subgrou~
H, as far as the invariance is concerned it is
possible to select a subset of nonlinear fields with
respect to G, which form irreducible multiplets
with respect to H.

IV. POSSIBLE CLASSES OF ACTIONS IN FLAT SPACE

We now turn to the specific form of actions
which could be constructed in Slat space. The in-
variant actions for curved space will be dealt
with in the next section. In the usual Yang-Mills
theory, the requirement of local gauge invariance
leads uniquely to invariants which are functions of
the square of the curvature tensor only. . This is
the important advantage of Yang-Mills theory. For
the nonlinear gauge fields there are more pos-
sibilities because there are more covariant ob-
jects available. We list below three principal
classes of such actions. There will be obvious
variations within .each class. As far as the in-
variance alone is concerned, any linear combina-
tion of the actions from each class is also a pos-
sibility. Here we do not enter the discussion of
whether or not any of these are physically rele-
vant.

(i) Einstein-tyPe actions; Consider the action

where &';, is an appropriate Clebsch-Qordan co-
efficient. We also set

I, =
)~

d xg q q,bK~pF, ~,pv pg a (4.1)

A ~ ~ ~

F~, =D„K~ —D~K, . (3.14)

By making use of these fields it is possible to
construct invariants which more closely follow
the structure of the geometrical objects familiar
from the principal bundle. based on the structural
group G. In analogy. with the theory of gravity we
refer to J' '„, as the torsion tensor.

We have used the same symbols such as D»
F„„etc., as those used in the preceding section
to show the similarity in the structures of prin-
cipal and associated fiber bundles and the nature
of their associations. It is to be noted, however,
that there are essential differences between the
gauge fields H'„, K „and the Yang-Mills fields
h„. This is clearly indicated by comparing the
transformation law (3.5) with those given by

(4.2)

The "similarity" of these equations to Einstein's
equations becomes apparent if we note that with
G =ISO(3, 1) or SO(3, 2) and H=SO(3, 1) the gauge
fields K „ form a square 4 &4 matrix which is in-
vertible and can be identified with the tetrad
"fields:

(4 4)

Then, in (4.1), making the replacements q ~'K~
-q'K~ and d'x-Kd'x, K=det(K'„), we get the
Einstein action

where K„„ is given by (3.13). Variation of this
action with respect to independent -dynamical
variables H'„and K'„gives

I

q
p D)K~, =O,

(4.3)
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A

I, = d4Xg "'g' g„F'„,I'",~. (4.6)

Variation of this action with respect to H'„and K
gives the Euler-Lagrange equations

q' D, I' pa =0, (4.7)

r
I~= K d XK,"K~F~'v . (4.5)

Since in the present formalism the K'„'s transform
covariantly, then by (4.4) so do K,". and det(K'„).
Therefore, the action (4.5) is manifestly invariant
under nonlinear gauge transformations of the group
SO(3, 2) or ISO(3, 1) as given, by Eqs. (3.7)-(3.9),
and one can regard Einstein's theory, or the
theory presented in Ref. 6, as a gauge theory based
on a nonlinear realization of ISO(3, 1). It has also
been pointed out ' that these theories can be re-
garded as linear gauge theories with constraints.
We note that as far as local .invariance with re-
spect to the SQ(3, 1) part of the group is concerned
the two interpretations are identical. This is
fortunate because only the linearity of the SO(3, 1)
part of the gauge group is related to the possibility
of the setting up of local light cones and is there-
fore of direct physical significance. As pointed
out elsewhere, ' the enlargement to ISO(3, 1) or
SQ(3, 2) is necessitated mainly to provide suitable
independent dynamical variables. Therefore, one
may wish for practical reasons to put aside the
significance of the exact symmetry limit and to
take advantage of the present interpretation which
is more useful when matter couplings to gravity
are considered.

Returning now to the flat-space action (4.1) and
the field equations (4.2) and (4.3), we note that
unlike in Yang-Mills theory these are coupled
first-order differential equations for the poten-
tials H'„and K'„. If, as in the case of. gravity
theory, it were possible to explicitly invert E'„,
one could solve (4.2) for ff'„and substitute the
result in (4.3) to obtain a second-order equation
for the independent fields K„'. However, an ex-
plicit inversion of this kind is not always pos-
sible. Note that one can add to the action (4.1) an
exP/icit mass term for the K„' fields without
altering its invariance.

(ii) Second class of actions. Consider next the
class of actions

gravity' with a piece of the form given by-(4. 1) and
another which is quadratic in the curvature tensor
F„', of the SO(3, 1) group .Another variation of
this' is to take G =SO(3, 2) and V =SO(3, 1) to ob-
tain the Einstein action with a cosmological term:

A, A

IE + ~ ~i goal+ pv+pA ~

4
(4.9)

Under variation one obtains Eqs. (2.13) and (2.14).
The point of bringing up at this stage these analogs
from the curved space-time, especially the last
one, is to point out that, e.g. , in (4.9) general co-
ordinate invariance can be maintained without ex-
plicit use of Kp or det(K'„). This is no longer
true when oqe considers Yang-Mills theory in
curved space-time and is the source of compli-
cated transformations which one finds in the usual
treatments of extended supergravity theories and
which change from Lagrangian to Lagrangian. In
contrast our present transformations are geo-
metrical and model independent.

(iii) Yang-Mills tyPe actions. In this class of
actions one makes use of all the available com-
ponents of the curvature tensors. One possibility
is to take

.r
d'&n" 'n' (7.aF'p. F'p~+7l;F'p. F'p~) .

~J'

(4.11)

To each'of these one can of course add mass terms
for the covariant fields K &.

The point we want to emphasize here is that by
having vector fields which transform covariantly
with respect ot the symmetry group G, one can
alter not only the field equations satisfied by these'
vector fields but also those satisfied by the gauge
fields of the linear subgroup 3.s well. It is in-
teresting to speculate on the possible usefulness
of such modifications; The only evidence we have
at present is that gravitation theories must have
such modifications from standard Yang-Mills
theory to be experimentally viable. " Whether this
is a desirable feature of any spontaneously broken
gauge theory remains to be seen.

A A A

I, = d'x g "P7' "(q„F'„,F'p), + 7;,F 'p, F ~p g) .
(4.10)

Alternatively, one can take

g~~C; Evt" pg =O. (4.8) V. GENERAL REMARKS

Again, both equations are manifestly covariant
with respect to the transformations (3.7) and (3.8).
In this case one of the equations is Einstein type
and the other Yang-Mills type.

With 6 =ISO(3, 1) and II=SO(3, 1), the direct ana-
log of (4.6) in curved space-time is a theory of

It is of interest to see if there are conditions
under which Einstein's or Einstein-type equa-
tions could be related to Yang-Mills equations.
Suppose, for definiteness, we require that the
spin-1 fields in the theory satisfy the constraint

(5 1)
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nontrivially. For gravity this would be the condi-
tion of no torsion. This condition is satisfied if
we take

D~E~ = N~„
where N'„is a symmetric tensor:

N,'„=O.

(5.2)

(5.3)

=Dp&~v- Dx&~v- (5.4)
I

As it stands, the set (5.4) gives too many equa-
tions. One way to reduce them is to contract two
of the indices with the metric tensor of the cor-
responding space-time:

g f a~I' p gKu =g (DpN '~-DgN'~~). (5.5)

Clearly (5.1) or (5.2) are covariant conditions
under G only if K'„ transform covariantly. Thus
from the sta, rt one is dealing with broken sym
metry and nonlinear realizations. To simplify
the notation we choose the subgroup H such that
the Cartan decomposition (2.4) is satisfied. Then

tD„, D,jK",=f,',Z:„K,'.

Then g„, = q„„, and we have instead of (5.8) and

(5.9)
A

I'q, =0, (5.10)

(5.11)

(5.13)

where nH is the dimension of H and n„ the di-
mension of K. %e note that the number of equa-
tions (5.10) and (5.11) in 4-space-time are

6n~+4n~ = 10'

It is easy to see how these equations are related
to those of Yang and Mills. Applying the operator
q ~D~ to (5.11) and using (5.10) we get

(5.12)

If K~ ~0, this is, at least for Euclidean space-
time, equivalent to Yang-Mills equations for H'„.
Thus in the presence of vector fields K'„, a solu-
tion of the system of Eqs. (5.10) and (5.11) is also
a solution of Yang-Mills equations.

Let G be an n-parameter group, and set

For gravity

g"' =X~@,'q",

K 11K g

so with

DI &~v -DP'~. =o

we get Einstein's equations

(5.6)

(5.I)

and, in general this is not equal to 4(n„+nr). At
first sight this may be regarded as a shortcoming.
%e note, however, that the Yang-Mills equations
are subject to gauge conditions which are n„+n~
in number.

One is therefore dealing with 5(n„+nr) equa-
tions. Let us see under what conditions we have

1«r = 5(&H+&z).

Clearly this is satisfied only if

(5.8) n+ ng (5.14)

Eq, =0. (5.9)

It is remarkable that Einstein's equations can be
obtained in this way from the condition of no tor-
sion. An important feature of Eq. (5.9) is that
they are equal in number to the gauge fields H'„
of subgroup Band can be used to eliminate them.
One can ask for what gauge groups G and their
'subgroups H this equality can be maintained in
four-dimensional space-time. Among the unitary
and orthogonal groups, aside from signature,
homomorphisms, and contraction limits, this is
possible only if G=SO(5), H=SO(4), or G=SU(4)
and H=SU(3) xU(1). Ruling out the second pos-
sibility on physical grounds, oqe is led to SO(3, 2)
or ISO(3, 1) a.s minimal gauge groups for viewing
pure gravity as a nonlinear realization. This does
not imply, however, that to satisfy other require-
ments, one cannot embed SO(3, 2) in a larger
group.

Next, suppose the indices a, j refer to internal
symmetry and take the space-time to be flat.

An important class of groups satisfying thQ re-
quirement is chiral groups SU(n) 3SU(n).

When the system of equations (5.10) and (5.11)
admits nontrivial solutions, it has a definite
advantage over the system "Yang-Mills equa-
tions plus a gauge condition. " Gauge conditions
of the usual variety, such as Coulomb or axial
gauges, completely destroy the gauge covariance
of the solutions. But Eqs. (5.10) and (5.11) are
gauge covariant with respect to the unbroken sub-
group H and will not lead to gauge-dependent con-
clusions. VFe hope to return to a further discus-
sion of this eisewhere.

VI. GRAVITY ANI3 SUPERGRAVITY THEORIES

The method of nonlinear realizations discussed
in Sec. III are also applicable to cases in which
the symmetry group is a super Lie group': In
the expressions such as those given by (3.6)-(3.9)
one need only keep in mind that the group para-
meters are no longer all & numbers. " In this sec-
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u~=Tu~. (6.1)

tion we discuss the extent to which nonlinear gauge
fields shed light on the structure of the known
model's gravity and supergravity. The construc-
tion of new models will be discussed in the next
section.

(i) I'ure gravity. We have already seen in the
preceding section how Einstein's theory may be
constructed from the fields belonging to a non-
linear realization of SO(3, 2) or its contracted
version, in which the linear subgroup H is SO(3, 1).
From the physical point of view, any theory of
gravity must allow for the possibility of erecting
local light cones at every point of the space-time
manifold. To ensure this, the gauge group of
gravity must contain SO(3, 1). It has been pointed
out elsewhere' that the gauge fields H'„of SO(3, 1)
are not convenient dynamical variables for the
description of a massless spin-2 object. To in-
troduce suitable dynamical variables, one can en-
large SO(3, 1) to ISO(3, 1) or SO(3, 2) [or SU(2, 2)
for that matter j and then eliminate unwanted fields
via a covariant constraint such as the torsion tensor

formations given by (3.7) as well as nonlinear
transformations (3.8). Had we required that K'u

transform as gauge fields, there would have been
no way of making (6.5) invariant under the entire
group SO(3, 2) SG;. Encouraged by the fact that
the geometrical transformations (3.'l) and (3.8)
retain their validity in the presence of matter
couplings, we now turn to the supersymmetric
gauge groups.

(iii) Simple supergravity. For reasons which
are by now mell known, "let us consider the
supergroup G=OSp(1;4) or its contracted version
as the relevant gauge group for simple super-
gravity theory. ' Regarding supersymmetry as
a broken symmetry, the linear subgroup is II
=SO(3, 1), just as in pure gravity. But now the
fields associated with the coset space E
=OSp(1; 4)jSO(3, 1) are the sets g'u) and
where n is the spinor index specifying the super-
symmetry generators. These two sets transform
covariantly under G according to (3.8) and do not
mix with each other. Corresponding to (3.10) the
relevant covariant derivative is

For pure gravity, if we require that (a) it be tor-
sion-free, and (b) the condition R u, =0 be obtained
from the variation of action, then the action given
by (4.5), i.e.,

Du =~u +HuT, .
Then

[Du, D,] =-R u, T,

(6.6)

(6 7)

d4x~u'p'~ . Z'Z'~"'
1 i~Ill u Lj p~~ (6.2)

is unique up to a cosmological constant. In the
language of Dirac, " requirement (b) means that
the condition 8 '„,=0 is a fir'st-class constraint.
If one alters the requirement (a) or relaxes the
requirement (b), then it is possible to add to I,
the action

d xKg" g RuR pygmy,

where g"' is given by

(6.3)

gu'=aux', q". (6.4)

I3 = d xKg" g F u~Fpgq, ~. (6.5)

This action is invariant under the gauge trans-

The sum of the actions I, +I, is just the action
given in Ref. 6.

(ii) Gravity coupLed to the Yang Mills field. -
In the absence of supersymmetry, the space-time
and internal symmetries are quite distinct, so
that the gauge group of interest to us is of the
form SO(3, 2)SG,. or its contracted version. The
subgroup H is SO(3, 1)SG, , and the fields K'„cor-
responding to the coset SO(3, 2) SG,./SO(3, 1}SG,.
transform covariantly. So the Yang-Mills action
which must be added to I, or Iy+I2 above is

gives
I

R uv Hu, u Hv, u +f bcHuHu
I

just as in pure gravity. If we were dealing with a
linear realization, the components of curvature
tensor would involve not just H'„'s but also K u's
and gu's. So as in (3.13) we also write down
covariant structures w'hich in the linear limit
would coincide mith the components of curvature
tensor of the full group. For the present case the
corresponding curvature components have been
given in Ref. 17. The nonlinear covariants we
seek are thus

(6.8)

A ~

Ru„=D,K u DuK~+ C~8

(6.9)

(6.10)

=R „", + C 8;(K„'g, -K', g„) . (6.11)

The point to keep in mind in connection with these
tensors is that the only way to justify their rele-
vance is to regard (Hu, K'u, Pu") together a,s a
nonlinear realization of 6 and to make use of
those tensors w'hich are suggested by a linear
realization of G. Had we regarded Hu, Ku, and

g u as separate representations of H and un-
related via a representation of G, then the variety
of covariant objects would have been overwhel-
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mingly more than what we have.
In parallel with pure gravity, if we require that

(a) the generalized torsion ':ensor (6.10) vanish
and (b} the condition R'„,=0 be a first-class con-
straint, then one is led uniquely to the simple
supergravity action

d'x e"' "[e„«4"„KvR«p',

with the unbroken gauge group is essential in
writing down these covariants. In other words,
the relevent covariants of the broken symmetry
somehow "remember" their origin. Requiring
as in the previous cases that (a) the torsion condi-
tion R „',= 0 be satisfied and (b) this condition be a
first-class constraint, one obtains in the notation
of Ref. 8

(6.12)

As emphasized before, ' the constraint equation
(6.1) plays an essential role in determining the
form of the action. " If the condition (b) is re-
laxed, then it is possible to add other, in parti-
cular, quadratic terms to the action I4, thus
modifying both the gravity and the spin- & equa-
tions of motion. The action (6.12) is manifestly
invariant with respect to the model-independent
transformations (3.V) and (3.8).

(iv) SO(2)-extended supergravity. The geo-
metrical formulation of the SO(2)-extended super-
gravity theory" has been discussed elsewhere. "'
Here we want to point out. how it can be arrived
at as a nonlinear realization of OSp(2; 4) with
respect to the coset space OSp(2; 4)/SO(3, 1)
ISO(2). Inthis case of the fields (H'„, A„', K'„, gp '].
the sets t(K'„] and Q„'*], @=1,2, transform
covariantly according to (3.8), whereas (H'„}
and (8„'}transform with an inhomogeneous term
as expected from gauge fields. The dot on A„'

indicates that it is a gauge field but that for the
SO(2) group it runs over a single element. Since
the linear subgroup H is now SO(3, 1) SSO(2), the
relevant covariant derivative is

so

D~ =8~ +H~T,-+A.
~ T. ,

A A a
[Dp) Dv] =-R pv Ts —Fpv T

(6.13)

(6.14}

where R'„„is given by (6.8), and

(6.15)

As in the case of simple supergravity, we can also
construct covariant structures similar in form to
the curvature components of the principal bundle
with structure group OSp(2; 4). The expressions
for R „„and B„„are the same as those given by
(6.9) and (6.10). In addition, we have

R ~ = D g
~ —D $ ' + C " (K '

((
s' —K' g 8')

(6.16)
~ ~ az ez'Fpv=F pv+~(as)(ss )0p 0v ~ (6.17)

Notice again that the knowledge of the form of
the components of the curvature tensor associated

I, = l d'Xe"" [e(,„R 'pRvp«+X(cr') ()Rp,'Rp)',

+ —,
' ep')'F'„', F;g]. . (6.18)

I

If condition (b) is relaxed, one can write down

additional invariants. The invariance of this ac-
tion with respect to the transformations (3.7) and
(3.8) is again manifest, and we do not have to
invent transformation laws different from those
applicable to simple supergravity which leave this
action invariant. It remains to be seen whether

' our transformation laws are in some way related
to those given, e.g., in Ref. 22. This question
will be dealt with elsewhere.

(v) Generalizations. The formalism we have
set up is completely general and is applicable to
any Lie of super Lie group. It applies, in parti-
cular, to the nonlinear realizations of groups
OSp(N;4) and SU(N; 4)." Inthefirst case the linear
subgroup of interest is H =SO(3, 1) SSO(N}. In the
second case, one can. directly take the linear group
to be H= SO(3, 1) @SU(N) or go through a, hierarchy
of symmetry breakdowns such as SU(N; 4)
-SU(2, 2) 8ISU(N) -SO(3, 1) 8ISU(N). We also note
that for, e.g. , OSp(N; 4) groups with N~ 3, there
will also be invariants of the form QPQ where Q"
is a Majorana spinor. The question of which in-
variants should or should not be included in the
action cannot be answered by invariance argu-
ments alone. This ambiguity is, however, no
worse than what one encounters in any Lagrangian
field theory. For example, in quantum chromo-
dynamics, local gauge invariance does not exclude
the generalized Born-Infeld' terms of the type
(1+bF'„,F,"')' ' or any functional of F p, F,"'. It
is only when one imposes other physical criteria
such as perturbative renormalizability, posi-
tivity, etc. , that one arrives at the usual action
of quantum chromodynamics. As we have seen,
one of the criteria which is crucial in determining
the form of the action is the torsion condition
(6.1) proposed in Ref. 8.

VII. NET LOCALLY SUPERSYMMETRIC MODELS

In the models discussed in Sec. VI, supersym-
metry transformations are not part of the linear
subgroup H and are therefore realized nonlinearly.
Since this includes OSp(N; 4) and SU(N; 4), which
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are the only allowed global supersymmetries of
the S matrix under a broad set of conditions, "
one may wonder if it is possible to realize super-
symmetry such that local transformations are
linear and given in a geometrical model indepen-
dent way. That this can be done rests on the facts
that (a) we are here dealing with the symmetries
not of the S matrix but of the equations of motion
and actions, and (b) in a nonlinear realization
on1y the unbroken subgroup JI of G can at most be
a, symmetry of the S matrix. Therefore, to be
consistent with the conclusions-of Ref. 24, it is
only necessary that the subgroup JI be one of the
above groups.

With these points in mind, let us consider a
gauge theory based on the nonlinear realization
of the group G =IOSp(N; 2C), i.e., the inhomo-
geneous extension of OSp(N; 2C) which we take
as the linear subgroup H." The algebra, of H has
the generators {J';j, S „LA), where J;,. are
generators of SO(3, 1), S, are generators of
supersymmetry transformations, and L& are
generators of SO(N). Their commutators are

[Ji j~ Jkl] f i jkl Jmn~ [LAt LB]~f 2B LCy

{S„., S„)=f".'„,J„+f.'„,L;, (7.1)

[J;,S..]=f ',.S ., [L-,S ]=f;'.S.'
To construct the algebra of IOSp(N; 2C}, we must
add to the above generators the sets {T;]and

{8A}. The generators T, , i =0, 1, 2, 3, transform
as vectors under SO(3, 1) transformations and as
scalars under SO(N). The generators 8„ trans-
form as vectors under SO(N) and as scalars under
SO(3, 1). The additional commutators are

R pv Hu. u Hu. u
+f ijBHujH

Qne can also write down tensors

v DvK p DpKv y

(7 8)

(7.7)

(7.8)& jv=Dv Op —Dg Ov

Under local infinitesimal gauge transformations
of the subgroup II we have

5Rpv= fkimn -& Rpv-f ai)~ Rpv p

~ ~

&Ru =u-f p;(je "R uBu- f Bn;je BR'„'„.

(V.9)

(7.10)

We can now write down an action which is mani-
festly invariant under local transformations of the
group G as well as general coordinate transforma-
tions. Assuming that K = det(KP') &0, we define
the inverse tetrads K,". Sich that

K~@' =&'.
i p i ' (7.11)

Then the simplest invariant action has the form

4 I gp vX i j Al n IIIIe +~gg g [)I(ij)(kl)RuuR p~+)IaaR puRp«]
n

(7.12)

Next consider the case N=2. The subgroup II
being OSp(2; 2C), we have the nonlinear gauge
fields {H'„',H„"',K„', 8„,Au). The covariant
derivative is

(7.13)

where

Rpu=Hp, v —Hvjp+f «l Hu Hp +f ~BHvHPB

(V.5)

[T,, T,]=[e„,e, ] =[T., , e„]=0,

[Tie Jjkl =f i j«Tl y [8A& LB]~f AB ec«

[T,, L2] =[8„,J,,]={T,, S„.)={eA,S„bI=0.
(V.2)

i J'

[Du~ Dv] = Rup Ji j R uuSna Fuu L (7.14)

where L. is the generator of SO(2) transforma-
tions. Then

The vanishing of the last two commutators is
peculiar to the singular limit of the superalgebra
we consider (see Ref. 25). Note that IOSp(N; 2C)
has a Poincare subalgebra.

To illustrate the method, we shall first confine
ourselves to the case N=1. The nonlinear gauge
fields of G which transform linearly under II are
the set {H„'j,HP, K'„, ep). Of these K'„and 8„
transform covariantly under G according to (3.8),
whereas H'„' and Hun transform according to (3;7)
with an inhomogeneous piece. The covariant
derivative is given in the usual way by

Fpp Ap, v Au p +f naB«Hv Hp ~

The transformations of these curvature campo-. ..

nents are similar to those given by (7.9) and
(7.10). We thus have the invariant action

(7.17)

where
~ ~

R pv Hpv Hv p +f «lmnHv Hp +f nash v Hll

(7.15)

Rna Hna Hna +f na iHjSHbf +Haa«A
pv pv vp i J'Bb v p b

(7.18}

so that

[Du, Dv] = - 1 'u'v Jj, -R u u Sn ~ (V.4)

~ ~

I7 = d &Wg g' g [Q(i j)(kt)R pvR pX

n(I Bb ~
+ l)a B)labR p pR py +F p.p Fp«]

(7 ~ 18)
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As mentioned above, the actions I, and I, are the
simplest possibilities. In particular, these ac-
tions do not involve the covariant fields O'„. This
is understandable since a representation of the
group G is in general reducible with respect to
the linear subgroup H. Insofar as the invariants
with respect to 6 can be constructed by index
saturation with respect to H, it is not necessary
that they involve all the available field. The
selection of a set of fields, en, ch irreducible with
respect to H, is dictated by the specific physical
application.

From the structure of non-Abelian gauge theories
one expects that the dependence on gauge fields
associated with the unbroken parts of the group
enters the action only through the quadratic terms
in the components of the curvature tensor. The
actions ('7.13) and (7.18) are consistent with this
expectation. In these actions the fields H„' enter
as bona fide gauge. fields with model-independent
transformation laws which retain their form when
they are part of an extended supergravity theory.
%e note, however, that the equations of motion
for these fields are different from Barita-Sch-
winger equations and may require additional con-
ditions to describe a pure spin- & field. Whether

such models turn out to be of physical interest
remains to be seen. What has been demonstrated
here is that it is indeed possible to construct
locally supersymmetric models in which (a) the
spin--, fields H„"' enter as gauge fields, (b) the
model-independent transformation laws of H „'
are given once and for all by (3.V), and (c) the
invariance of actions can be checked by direct
inspection.

Note added in Proof. After submission of this
manuscript for publication, we received a Texas
report [No. ORO-3992-333 (u'npublished) j by
Y. Ne'eman and T. Regge, in which a closely re-
lated point of view is developed.
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