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Testing relativistic theories of gravity with spacecraft-Doppler gravity-wave detection
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The response of a spacecraft Doppler-tracking system to the passage of a weak plane gravity wave of the
most general polarization is calculated. Results show that the simultaneous tracking of several spacecraft
could provide an unambiguous determination of the gravity-wave polarization, a much needed result in the
continuing experimental testing of relativistic theories of gravity.

I. INTRODUCTION

In recent years, a number of authors' have
pointed out that the next important test of theories
of relativistic gravity should involve determining
the polarization of gravity waves which are seen
passing through the solar system. One of the main
reasons for this is the fact that most of the cur-
rently viable theories of gravity have either exactly
the same first-order post-Newtonian limit as gen-
eral relativity or can be made arbitrarily close to
general relativity by adjusting a dimensionless
parameter. Therefore additional first-order solar
system experiments can never hope to distinguish
between these theories. Many of these theories,
however, do differ from general relativity and
from each other in their predictions of the kinds
of polarization of gravitational radiation which
they will allow to propagate through space. Gen-
eral relativity is one of the most restrictive the-
ories, only allowing two out of a possible six dif-
ferent polarizations. Thus a determination that
al& observed gravity waves have only the two gen-
eral relativistic polarizations would be powerful
proof of the validity of Einstein's theory, while a
single clear detection of a more general mode
mould indicate that the theory is wrong.

Unfortunately, most of the gravitational wave
experiments which are currently operative or un-
der construction are not sensitive to wave polar-
ization. Eardley, Lee, and Lightman' have pointed
out that in order to determine all six polarizations
one must have a system with at least six degrees
of freedom and the capability of independently de-
termining the wave propagation direction. Paik'
has shown that a resonant disk or cylinder, the
most common type of detector to be implemented,
will only couple three of its vibrational modes to
a general gravity wave, thus providing only three
degrees of freedom and no information. about direc-
tion. Two perpendicular. disks~ or a resonant
sphere' could uniquely determine polarization and

'direction if the nonexperimental assumption is
made (as is often done) that only the three helicity-

preserving waves (g~, and C'» in the language of
Sec. II) occur in nature. Without this a,ssumption,
no number of resonant antennas in a localized lab-
oratory can unambiguous1. y determine polarization
because they all lack the time resolution necessary
to indicate the direction of propagation. ' Good
time resolution (i.e. , seeing the shape of the wave
clearly enough to know at what time it hit each de-
tector) is a characteristic of broad-band detectors
separated by several gravity-wave wavelengths.
Such a system, capable of unambiguously deter-
mining the admixture of polarizations and the dir-
ection of propagation of a gravity wave, is pro-
vided by the simultaneous Doppler tracking of six
or more spacecraft.

Doppler tracking of spacecraft as a method of
detecting gravity waves is a concept pioneered by
Anderson' and Davies, ' and developed by Esta-
brook and Wahlquist, ' who discovered the three-
pulse signature which a cohererit gravity wave
would impart to a tracking network (allowing the
wave to be picked out of noise by modern methods
of matched filtering). . Estabrook and Wahlquist's
work, however, focused only on general-relativity
polarizations of gravity waves. This paper will
extend their approach to a wave consisting of a lin-
ear combination of'all six polarizations, showing
how the polarization information may be extracted
from simultaneous data from several spacecraft.
Section II will introduce the polarization of weak
plane waves in the framework worked out by Eard-
ley, Lee, Lightman, Wagoner, and Will. " In Sec.
III, we will derive the response of a Doppler-
tracked spacecraft to a combination of all gravity-
wave polarizations, generalizing the approach of
Estabrook and Wahlquist. Finally, in Sec. IV, the
prospects for such an experiment will be discussed.

II. WEAK PLANE GRAVITY WAVES

We concentrate on the problem of detecting the
passage of gravity waves through a region of empty
space, far removed from the source of the waves.
The background metric in the absence of any wave
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is assumed to be constant and (with the proper
choice of coordinates) equal to the Minkowski metric

0 0 0

0 1 0 0
,~

0 0 -1 0

0 0 0 -1
0

0 -1+A., A0
(5)

From Eqs. (3) and (4), it may be seen that each
NP function mill produce a distinctive metric per-
turbation. A wave of general strength and general
perturbation will be a linear combination of all of
these pure modes; the metric is given by

1 0 0

The effect of the wave is to change the physical
metric from g, „to

+gV ~p, V PV where

0 A. 0

0 A,

-1+4 A2

—1+A3

Since we are far from the wave source, the waves
mill be weak, which is to say that they will always
satisfy il3„„i((1. Also, far from the source the
waves mill be plane waves, allowing h„„to be
written

h„„=h„„(kx only),

where k is a constant propagation four-vector.
Orienting the coordinate system so that the s axis
points along the direction of the wave propagation,

may be written

= (+,0, 0, &u).

Note that we have required k to be null. This re-
striction may be relaxed at the cost of further com-
plicating the algebra.

It is mell known that field equations for h, „will
typically determine A,,„- only up to a fourfold gauge
freedom. Failure to specify the gauge (equivalent
to a further choice of coordinates) will allow non-
physical coordinate waves to confuse the deriv-
ation, so we will choose to satisfy what we will
call a "spati. al gauge" conditi;on on h~„:

h 0=0.

In this gauge the tidal components of the Riemann
tensor obey the simple relationship

1 9
0&0) 2 ~P ~&g.

Equation (3) enables us to directly relate the com-
ponents of the metric waves to the Nemman-Pen-
rose" functions which are the basis of the gravi-
tational wave classification scheme worked out by
Eardley et e/. ' In their method, the six compo-
nents of the Riemann tensor are written in terms
of four Newman-Penrose functi. ons, two of which
are complex:

1+2= 6 +0303~

, [4„+Re(e,)],1

A = 3 [433 —Re(44)],
1

, [lm(e, )],
1

, [Re(e,)],

, [lm(e, )],
1

1, (e3).
(d

Equation (5) is the physical metric of spacetime in
the presence of a gravity wave moving at the speed
of light in the z direction. It is a function of z —t
only.

III. DOPPLER TRACKING

A standard technique for tracki'ng distant space-
craft is the precise monitoring of the Doppler shift
of a sinusoidal electromagnetic signal, continuously.
transmitted to the spacecraft and coherently trans-
ponded back to earth. In the analysis to follow,
me will ignore the normal orbital Doppler signal,
assuming the spacecraft is stationary, and concen-
trate on the anomalous signal produced by the pas-
sage of a weak plane gravity wave of general polar-
ization. It will be necessary to consider the theory
of the propagation of an electromagnetic mave
through a spacetime whose metric is given by Eq.
(5). The method we will use was originated by
Burke' and applied by Estabrook and Wahlquist. '

An electromagnetic wave with frequency v may
be described by a propagation four-vector 0, which
is null to first order in the geometry of Eq. (5):

+3 2 ( 0103 + 0203)t

+0101 +0202+ 2i+0102 &

22 0101 . 0202'

(4)
o3 = ~[pa(l + 3A g+ 3 c3A, + 3 pkA, ],
o3= v[pg(1+ 3A )+ 3nA3+ 3 pqA, ],
o'=~[o(&+ 3A3)+ 3p(n—Ai+«3)]~
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ferent (primed) values. Given the gravity-wave
parameters at both locations and times (A, and A', )
and given the original frequency and direction of
the signal, the problem, is to determine the angles '

and, especially, the frequency at the time of re-
ception. The connection between the original val-
ues and the final values is made by the require-
ment that the original null propagation vector must
be parallel transported along itself to produce the
final vector.

To say that o~ is parallel transported along it-
self is to require

cr .„0"=0,

where the semicolon denotes covariant differen-
tiation. Equation (6) could be used directly to dis-
cover the change in o produced by the parallel
transport, but Burke has discovered a simpler al-
gebraic method based on the Killing vectors of the
spacetime metric. Suppose that v~ is a Killing
vector and consider the inner product of v and g~.
The change in this scalar along the null direction
is given by

FIG. 1. Geometry of spacecraft position.

with n'+ g' = 1 and fj'+ g' = 1. Defining the space-
craft orientation with the angles shown in Fig. 1, a
consideration of the values of 0" in the absence of
the gravity wave produces the identifications

o. = cos8, g = sin8, -

q = cosQ, g = sing.

All the parameters —v, a, P, q, g, g„g, g„
A„A„and'A. 3—are functions of space and time.
At. earth at transmission time they will take on
some original (unprimed) values. At the space-
craft at the time of reception they may have dif-

(a'v~), o"=(v v„).„v'=v„.,o"v'+o"o'v .„. (7)

The last term in Eq. (7) vanishes due to the antisy-
mmetry of v .„and the first term vanishes in the

t
case of parallel transport. Thus the requirement
of parallel transport, Eq. (6), is exactly equivalent
to a requirement that

g "v„=constant along the null geodesic, (6)

where v, is a Killing vector. The Killing vectors
of the metric in Eq. (5) are

„v' = (0, 1,0, 0, ): x-translation invarjance,

P~ = (0, 0, 1,0): y-translation invariance, (9)

„v' = (1,0, 0, 1): null-translation invariance.
I

The requirement o~v"g „=g"v"g,'„ for each of
the Killing vect'ors in Eq. (9) produces the following
three equations:

(0, 1, 0, 0): ~IP'0(1 —'ZA, ) —2 HKAo 2nA~] = v [8 6 (1 —2A+) 2'3 g'A2 —2n'A,'],

(0, 0, 1 0): v[9&(1 —2A ) 2 nA, —29qA, ]=v'[g'&'(1 —2A') —2 n'A2 —ZH t'A, ],

(10)

(1,0, 0, 1): v[1 —n+ 2nA, + 2/@A, +2p&A2] =&'[1 —n'+ 2n'A2+ 29'q'A,'+ 2P't'A2] (12)

Now we write n' = n + &n, 0' = P + &P, q' = g + &g,
and g' = g+ 4g and use the definitions ~'+ 9' = 1 and
g'+ g' = 1 to eliminate &9 and &&. The resulting
expansions are

& =a+&u,



TESTING RELATIVISTIC THEORIES OF GRA VITY WITH. . .

Dividing Egs. (10) and (11) by Eq. (12), using Eq.
(13), and dropping terms which are second or high-
er order in the &'s and the A' s, the following two
equations result:

Combining Eq. (1V) and (19) gives the overall shift
in frequency observed, at earth,

If

= (1 —o,')A" + 2oA' —(1+c.)A . (20)

-(1 —c)«+P(1 ~)&n

= ~ P(1 —ot)q4A, + g g(1 —n)KAA,

+ g (n+rPp' n')&—A,

(14)

= 2 g(1 —a)$44 + 2 p(1 —a)@be

(15)

where nA, =A', —A, . Equation (10) alone may be
expanded to first order to produce

v +q o. - 1—=1 ——+ ~ &o. + —4A. ,v g 8 2

(16)

Solving (14) and (15) simultaneously for &q and &o,
and substituting the results into Eg. (16) produces
the desired expression for p',

This equation gives the predicted shift for a sin-
gle photon and depends on the values of A which the
photon encountered at the events of its emission,
its transponse, and its reception. To see how this
result gives rise to a three-pulse signature it is
necessary to consider a continual string of photons
emitted, transponded, and received. If the gravity
wave consists of a single pulse of height h, as
shown in Fig. 2(a), then that photon which is re-
ceived at the instant the wave hits the earth will
be shifted by an amount &v/v=(1 n)k. The pho-
ton which happened to be transponded when the
wave hit the spacecraft at a later time will be seen
to be shifted by &v/v = 2nk when it eventually is re-
ceived at earth. Finally, the photon which was
emitted when the wave struck the earth will carry
that information up to the spacecraft and back,
producing a shift &v/v=-(1+ @)h when it is re-
ceived after its round trip. The signal d v/v as a
function of time is shown in Fig. 2(b) for assumed
values of 8=60' and one-way light time T =4 min.
It should be noted that this three-pulse signature
is only apparent when the pulse width is smaller
than the light time to the spac.ecraft.

Figure 2 is a particlar example of how o. affects
pf

= 1+ (1+o.)(A'-A), (1V)

where A is a function of space and time formed
from the A, :

A = 2 q'A, + 2 r„'A + qrA, + —(qA, + fA, )

1 0,"
+——A

2 I3
(16)

The signal, received at frequency v', will be
transponded at that same frequency and finally re-
ceived back on earth at frequency v". The prop-
agation vector during the return trip is

0 =V,

o' = —v fpl(1+ ~sA, ) + ~a gkA + s «,],
o'= —v[gf(1+ 2A )+ kg@A, + ~ nA, ],
o' = —v[n(1+ ~A, )+ & p(qA, + gA, )],

a result which may be obtained from the uplink
propagation vector by substituting n - n, p -P. —
The downlink solution may then be obtained simply
by making this substitution in Eg. (1V):

b,v/v{t}

,

0

{a} GRAVITY WAVE

NAVE HITS
RECEIVER

I

4

WAVE HITS
SPACECRAFT

SIGNAL TRANSMITTE
AT t = 0 RETURNS

{b} THE DOPPLER SIGNAL

SIGNAL FROM S/C
AT TIME OF HIT
RETURNS TO EARTH ~

—,= 1+ (1 —o.)(A" -A'). (19)

FIG. 2. (a) A typical gravity-wave pulse. (b) 7he
Doppler signal produced by the gravity wave. 8 =60',
/ =4 light minutes.
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both the pulse height in &v/v and the time depend-
ence of the signal. The general time dependence
may be derived by writing (tz, 0) as the coordinates
of the emission event, (tr, gr) as the coordinates S/C
of the transponse event, and (tR, O) for the recep-
tion event. Then consideration of the geometry of
Fig. 1 gives tz ——tR —2l, t~ —tR I, and gz =Q'E.

Ag t) wiII then take on the particular values at
these events given by

A"=A(t, ),

A
' =A(t~ —f(n+1)),

A A(t„—2l),

and Eq. (20) will become

S/C

EARTH

S/C

. —= (1 —n)A(t~)+ 2+A(t„—l(o, + 1))

—(1+n)A(t~ 2l). —
FIG. 4. An optimum orientation of six spacecraft

for extracting gravity-wave polarization information.

IV. EXPERMENTAL PROSPECTS

S CNo. 1 S/C No. 2

S/C No. 1

oo 2

. There is much information which can be read
out of a single record such as Fig. 2(b) for a grav-
ity wave with ~&I. The relative spacing of the pul-
ses gives the round-trip light time to the space-.
craft as well as the angle between the gravity-wave
propagation vector and the earth-to-spacecraft
line-of-sight (8 = cos 'o.). The height of the pulses
gives the inherent strength h as well as an inde-
pendent determination of n. If a single gravity
wave excites two spacecraft simultaneously then
the angles read out of their Doppler signals must
be correlated so as to produce, at worst, a single
ambiguity in the direction as shown in. Fig. 3(a) and

perhaps a, unique direction as shown in Fig. 3(b).
If there are more than two spacecraft, then all
must have signal forms which correlate to give
the same direction to the gravity wave, if it was
indeed a single gravity-wave pulse responsible for
the response.

+ eot8 cos1t1 Re(+,)+ eot8 sing lm(+, )

+ —,'.cot28+, J, (21)

A is seen to be manifestly angle dependent for
general polarizations of gravity waves. The rela-
tive amplitudes in the signal strengths will there-
fore allow for some indication as to the polariza-
tions.

The most complete determination would come
from the simultaneous tracking of six or more
spacecraft, all at different angles as seen from
earth (Fig. 4). Calling the inherent strengths ob-
served at the ith spacecraft t1, , Eq. (21) produces
a linear set of simultaneous equations,

t1; = cos2$ -a4s+ sln2$;a4g+ a»

Further comparing the records from two space-
craft, the inherent gravity-wave strength (after
correcting for factors of o.) will be the same for
both spacecraft if the function A. is independent
of the spacecraft's orientation to the gravity wave,
but it will not be the same for both if A is direc-
tion dependent. Using the definition of n, P, q,
and ( to write Eq. (18) as

A = —,[4»+ cos2$ Re(+,)+ sin2$ Im(4, )
1

+ cot8, cosP,a».

+ eot8,.sin1t1;a„

+ 2 cot. 6},a» (22)

FIG. 3. Determination of gravity-@rave direction via
simultaneous data from two spacecraft. Two possibil-
ities.

where a,~ = (I/(o') max[Re(4', )], a, = (I/(g')
xmax[Re(C, ), ], etc. Equations (22) may be
solved simultaneously to uniquely determine the
strengths of each mode of gravity-wave polariza-



TESTING- RELATIVISTIC THEORIES OF GRAVITY %ITH. . .

tion. A similar determination would be available
in the case of four spacecraft (one of which could
be the earth) all simultaneously Doppler tracking
each other. In both of these cases, a lot of re-
dundant information exists in the signal spacing,
exploitation of which could allow data filtering,
techniques to increase the sensitivity of the sys-
tem in the same way as currently done for two
Weber antennas.

Finally, it might be pointed out that important
results might come by chance even in the case of
two spacecr'aft if the gravity wave turned out to
have a particularly fortuitous direction. If both
spacecraft were at an angle 8= v/2 then Eq. (22)
would reduce to

Ag = QgR+ 022

h, = cos2g, a4z+ sin2p, a4r+ ~22 ~

where coordinates have been rotated so that P, = 0.
Further luck (or design) which provided Q, = z/2
would produce

~1 a4R +22

k2 = -Q p+ (722,

a result which could be solved for (a,z, a»). Since
general relativity insists on a» = 0, such an event
could be the method of proving general relativity
wrong. Another piece of luck might be a case
where both of the spacecraft and the gravity-wave
propagation vector lie in a plane. A rotation
would then allow us to set P,.= 0 in both equations,
reducing Eq. (22) to

1
~X ~4R+ + COt8gQ3 R+ Cot 8g+ )

2
A2 +4~+ 22+ Cot82 3g+ g Cot 8 g2 ~

A result with k, &k, would then definitely lead
away from general relativity without being able to
actually determine the a,- uniquely.

V. CONCLUSIONS

Doppler tracking of spacecraft is seen to be not
only one of the most promising schemes for de-
tecting gravitational radiation in the first place"
and for employing the shape of the pulse to infer
things about the source in the last place, "but it
also is seen to be an important tool in the ongoing
process of experimental tests of gravity theories.
For multiple spacecraft it will be only slightly less
sensitive to det'ermining the polarization of gravity
waves than it is to their outright detection (where
an assumption of the truth of general relativity has
to be made in order for equal pulse height to be
used as an additional discriminati. on againstnoise).

I
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