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A formalism is given which makes it possible for a modified form of local gauge invariance and minimal
coupling to be compatible with torsion; One consequence is a restriction on the possible form of torsion in
that it must be determined by the gradient of a scalar function. Furthermore, a dynamical theory is obtained
for this scalar and hence allows propagation of torsion in vacuum. The Lagrangian density for interacting
electromagnetic, gravitational, torsion, and complex scalar fields is presented, as well as the resulting field
equations. The formalism implies the existence of both electric and magnetic currents due to the interaction
of the electromagnetic and torsion fields.

I. INTRODUCTION

The usual definition of the electromagnetic field
tensor F„, in general relativity is

FPV Av P AP v~ (2)

where a semicolon signifies covariant differen-
tiation involving the connection coefficients I'"„„.
As Hehl et +~. have pointed out, this definition is
incompatible with the Einstein-Cartan theory if
we want the coupling of electromagnetism to
torsion to be invariant under the usual gauge
transformation A„-A& =A„+A „, where A is a
scalar function. The solution proposed by
Hehl t +&.' is todispense with minimal coupling
and to define F&„as

Pv Av P AP v Avly AP tv 0 (3)

Gauge invariance is one of the most basic prin-
ciples of field theory. Another principle that is
used extensively to construct theories of in-
teracting fields is that of minimal coupling. This
principle is applied in two different contexts:
In general relativity one constructs a minimally
coupled theory by letting the metric of special
relativity p„„go to a general metric g&, and by
replacing ordinary derivatives by covariant
derivatives. ' Minimal coupling of the electro-
magnetic and charged fields is achieved by adding
to partial derivatives in the usual Lagrangian
density of the charged fields a term linear in the
electromagnetic potential A

&
.'

Recently there has been considerable interest
in the Einstein-Cartan theory of gravity, which
allows nonsymmetric connection coefficients
I'&„. This theory hp, s a nonzero torsion tensor
T"„8 (Ref. 3):

TP —.PP I P

where the bar symbol denotes a covariant deriva-
tive using the Christoffel symbols of the metric
(ignoring torsion).

This type of definition means that photons are
decoupled from torsion. If, however, we accept
the general principle that spinning particles both
generate and react to torsion, ' it is reasonable to
expect that photons should also be coupled to
torsion. We should also point out that Hehl
et aL' use Eq. (2) to define the field tensor of
the massive vector (Proca) field. It is possible
to use this definition because there is no gauge
invariance for a massive vector field. We will
show in this paper that Eq. (2) may also be used
in the pure electromagnetic case in a theory
involving torsion.

In this article we keep the idea of minimal
coupling between electromagnetism and gravi-
tation when torsion is nonzero in the form of
Eq. (2) and also minimal coupling between electro
magnetic and charged fields. We also retain the
idea of gauge invariance, slightly modified in
order to be compatible with minimal coupling
when torsion is present. The principles of gauge
invariance and minimal coupling give a restriction
on the torsion. When torsion vanishes, the usual
form of gauge transformations is recovered.

The allowed torsion in this theory is completely
determined by the gradient of a scalar field Q.
This type of torsion may be used to construct a
theory of gravitation which includes a dynamical
theory of torsion, where torsion is allowed to
propagate and to be nonzero in the vacuum. Thus,
our theory constitutes a, major departure from the
Einstein-Cartan theory, where torsion appears
only algebraically in the field equations and can-
not propagate in the absence of matter.

In Sec. II of this paper we discuss the results
of requiring gauge invariance and minimal
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coupling between gravitation, electromagnetism,
and a complex scalar field in the presence of
torsion. In Sec. III w6 give a Lagrangian density
for the four fields: metric, torsion, electro-
magnetic, and complex scalar. In Sec. IV we
present the field equations and discuss some of
their properties. One interesting feature of
these equations is a magnetic current due to the
interaction of the torsion potential Q and the
electromagnetic field. Section V is a summary
and conclusion.

II. MINIMAL COUPLING AND GAUGE INVARIANCE

In this section we start with the Lagrangian
density 2& for a complex massless scalar field
(g is the determinant of the spacetime metric):

4& .P

We consider, following Utiyama, 4 the group of
gauge transformations

where q is the electromagnetic coupling constant.
Here A is a constant, but we enlarge the group
to include all such transformations with A a
function of spacetime,

A =A(x).

+he Lagrangian density 2& is not invariant under
these transformations, but it may be made in-
variant by replacing the gradient operation by a
new operation. The new operation includes the
effect of a compensating field.

The compensating field is the electromagnetic
four-potential A„. (It is natural to have the field
P coupled to the electromagnetic field since a
complex scalar has an associated conserved cur-
rent. ) We interpret the principle of minimal
coupling as it applies to the coupling of electro-
magnetism and the charged scalar field to mean
that the new derivative operation should depend
linearly on A„but not on its derivatives. In the
presence of an electromagnetic field, therefore,
the Lagrangian density 2& becomes

where

g q
= P „-iqb„"A„P.

The function b& will in general be a function of
spacetime (but not of A„), and this is a genera-
lization of the usual procedure. This genera-
lization is required in order to have both gauge
invariance and minimal coupling in the presence

of torsion. When torsion vanishes, b„reduces
to the usual 5„.

Under the gauge transformation defined by A(x),
A„must also transform in order to leave 2&
invariant. Let the vector $& be defined by the A„
transf ormati on

A~ -Aq =A~ + $„.
g& will be invariant provided

(10)

Thus the effect of the gauge transformation on

A„ is that A„ is changed by a linear combination
of the derivatives of A.

At this point we turn to the coupling of-the
gravitational field (including torsion) to the
electromagnetic field. Minimal coupling in the
absence of torsion is taken to mean' that the
connection is the unique metric-compatible
symmetric connection defined by the spacetime
metric, which in turn is changed from the flat
metric g„, to the general metric g„, . We will
denote partial differentiation of a vector field
Vp by

The symmetric connection determined by g „has
coefficients i~&„), and we shall denote this type
of covariant derivative with a bar:

v. , „=v„„-vP„„),
1

IIV~ 2g (GATV ~ V gVV»V gl4VT)»'

In the presence of torsion, the coefficients of
covariant differentiation will be denoted by I' ~„,
and the derivative will be expressed with a
semicolon:

(12)

The torsion tensor T'„ is defined in Eci. (1).
This connection is metric compatible, as is

g";y=o=g"tr ~

When torsion is present we have at least two
possibilities for the expression of the minimal-
coupling principle. As a matter of fact some
authors use both of the above prescriptions for
covariant differentiation concomitantly. They
do so in order to retain gauge invariance of the
electromagnetic field in its usual form. We take
as the principle of minimal coupling the re-
placement of partial differentiation by covariant
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differentiation using the I'~~„connection for all
fiel.ds. We are able also to keep gauge invariance
in the general form as given above.

Thus the electromagnetic field tensor E„„is
given by

invariance and minimal coupling are possible only
when torsion is. zero. )

Therefore we see that minimal coupling and

gauge invariance are consistent with nonvanishing
torsion of a pa, rticular type. Using the above
results, we have for the gauge transformations
of the scalar and electromagnetic fields

(14)

We have seen that under a gauge transformat'ion,
A, transforms as

A„-A„=A. +c„A

A„A =A.„+ett'Jl „,
and the minimal electromagnetic coupling is
defined by the prescription

4,„-4..=4,.-ice 'A. 4.

(22)

where c, is a set of functions of spacetime.
Parenthetically, we should add that a natural
extension of the usual gauge transformation law
would demand that A, depend linearly on the
derivatives of the function A. Gauge invariance
for a complex scalar field restricts the de-
pendence to the first derivatives of A. .

The electromagnetic field is gauge invariant
provided that

The tlaplon field P serves as a potential for
torsion, and we will thus be able to define a theory
with propagating torsion in contrast to the Einstein-
Car tan theory.

III. LAGRANGIAN DENSITIES

Making use of Eqs. (22) and (23), we can now

write the gauge-invariant Lagrangian density
Z~ for the complex scalar field g as

for all JI. Consequently, it follows that

c( ~ »-c ( ~»=O
p g g v

c„~—c~ „—c~ T ~„=0.
The first of the above equations requires that
e, ' be proportional to 5, ', and me write

(16)

(1V)

= ——(g*„+ice ~A, g+)(P " —iqA'P) v'-g .

(24)

The Lagrangian density Z,~ for the gravitational
field with torsion is'

c =e~6 '
prof 6 (xy 6 op

(20)

The special case P= constant corresponds to the
case of zero torsion. (The usual forms of gauge

Equation (1V) gives

fT „„—-5„f —6„ f „.
If f=0 at a point, its derivatives are zero at that
point, and c, =0. We discard this singular case
and treat the case where f is of one sign every-
where. In order to agree with Eq. (10) and the
limiting case b 5 "when torsion vanishes,
we choose a positive sign and write f=e~. The
scalar field p may also be defined from a
spinorial point of view. Its study, particularly
in the presence of other general forms of matter,
will be the subject of other papers. ' The ten-
tative name "tlaplon" (derived from a, Nahuatl
root) has been given to the field.

We thus have

4,~= 4,+ ~+ total divergence,

where

(26)

(2V)

Vfe eliminate the total divergence term in going
from 4'

~ to 4 +k~.
We now tur'n to the Lagrangian density for the

electromagnetic field. No further interaction
Lagrangian densities are allowed among the four
fields we are considering (g, P,g„,A„) according
to the principle of minimal coupling. The usual
electromagnetic Lagrangian density is'

where R is the scalar curvature derived from
the connection F~~„which includes torsion. If
we denote by R the scalar curvature derived from
the symmetric connection 9&„), we have
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(29)

We retain this form since it is the embodiment
of the minimal coupling between gravitation plus
torsion and electromagnetism.

The scalar field "feels" torsion only in the
presence of the electromagnetic field: If A„=O,
there is no torsion term in 4~. If A,. 0, it is
tempting to define B„by

B„=e ~A„,

so that

(3o)

~, =-4 (0,*.+iq&.4*)(4'" -iq&"0)&-g (»)

This field B„obeys the gauge- transformation law

B~-B~=B~+~ ~ (32)

The gauge-invariant field which is derived from
B~ 1s

come

Olg e 8 & ng (39)
V, q= V q- V,I" q= V (q+ VqQ -g qV,Q".

The field equations are obtained from indepen-
dent variation of g„„,A„P, g, and P* in Z.
They are (G"" is the Einstein tensor)

G'" 6(-% "0 " .g-"-"A,.A")

2(ElsofEv gPvEol ES)
4g, ~. &gq. v) Lg~vqg. ny ) p (4p)

6A„: E"',„+E'"P„—iqe ~(P* "(—('g*)=0, (41)

3y~~ + (E'"A„)~„+iqe 'A, (p'g* —|j*'$)=0,

(42)

(*"I„+iqe~A„(*"=0, 43( )

6(*, g'~, —iqe ~A„g'" =0. (44)

Hgv=Bv, g
—Bg, v ~ (33) Equation (42) simplifies when the field Eq. (41)

is used:
It is readily verified that

I'„„=e~JI„„. (34)

IV. FIELD EQUATIONS
I

The total Lagrangian density is

(R —6P P'n -E Q~v-4)* P'") (35)
v'-g

For a Lagrangian density we have iwo choices,
proportional to E,Q'"v'-g or to H„+""v'-g.
These two choices are physically different. The
second choice, with H„„, involves the usual form
of gauge invariance but does not obey the gravi-
tational minimal-coupling principle that de-
rivatives should involve the connection I' z„. This
choice has been taken by Hehl et al.' We have
chosen the Lagrangian density involving E,„be-
cause we can then retain both gauge invariance
and minimal coupling (in a modified sense), and
in this case the electromagnetic field and torsion
interact.

yl. --'E""E =Oe 6 (45)

5A„d g=O.5S
(46)

When &A„ is of the form e~~ „, the resulting
equation is an identity. When 5A, = e A „ is in-
serted and an integration by parts is made, we
have

The above equations are gauge invariant. This
invariance is obvious for Eqs. (40) and (41). In
Eq. (42), a gauge transformation adds a term
which vanishes because of Eq. (41). A gauge
transformation of Eq. (43) or (44) produces an
additional term which vanishes because of (43)
or (44) itself. Also note that Eq. (44) is of course
the complex'conjugate of Eq. (43).

The field equations (40) through (45) a,re not
independent, but are related by the five ident-
ities which arise from gauge invariance of the
electromagnetic' and gravitational fields. ' In
the electromagnetic case, the field equation (41)
is obtained by variation of the action S= JZd'x:

Using the previously derived form for the torsion,
we list the definitions

59 e~ Ad'@=0
5A„

(47)

|ji „=g „—iqe 'A, g,

The connection is

(3 6)

(37)
for all A. The equation which results is

et+ e4 0 (48)

(38)r.,„={,„k-6.„y,+g,„y",
where f. &k is the symmetric connection gen-
erated by the metric g„„. With the above form of
the connection, the definitions (11) and (12) be-

The second term vanishes by Eq. (41), and the
remaining equation,

(49)
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is the identity corresponding to the ordinary
electric-current-conservation law in a vacuum.
We will return to this law below.

In the gravitational case, an infinitesimal gauge
transformation is the same as an infinitesimal
coordinate transformation. Such a transformation
is genera, ted by a vector field P„and results in
a variati. 'on of g „of the form

(50)

When this form is inserted into the variational
principle, we find

f 6$
f„)„d4x=0,

~ gV

since the 6$/6g, „.term picks out the symmetric
part of L ~„. Since 6S/6g „ is a tensor density,
we may integrate by parts and obtain the usual
identities

(52)

j3~)„=0 if (=0. (56)

If $ does not vanish, it is the total electric cur-
rent which is conserved, as usual, because of
the identity (49).

The magnetic 'current associated with &f& is

m '=*F""y,VP (57)

where *E""is the dual of E,„. This current is
conserved:

observer would use E""„and Efgv y] to define
the electric and magnetic currents iri this coor-
dinate patch. In other coordinates, therefore,
E'"l„a E,„„~„,define these currents.

Explicitly, we see that the torsion in com-
bination with E,„generates both electric and
magnetic currents and therefore acts as part of
the source for electromagnetism. This electric
current is

(55)

This current is conserved provided g vanishes:

The above conservation laws can be derived
directly from the field equations. In doing so,
the followihg equations are used:

FL'svl r3 Ff v&4'i xl ' (54)

rn~"
(

=0. (58)

The total magnetic charge associated with m~~
vanishes, however. To prove this fact we define
the magnetic charge M in terms of a spacelike
hypersurface Z, with the associated volume
element d'x, :

These equations follow from the definitions of
and F„„.The conservation laws are useful

in the development of a full theory of gravity in-
cluding general sources, and they will be dis-
cussed further in a forthcoming paper. '

Although we will not exhibit exact solutions
here, it is important to note some of the effects
due to torsion. Equation (45) shows that the elec-
tromagnetic field serves as a source for torsion
and that torsion obeys a wave equation. Thus
torsion need not vanish in a vacuum, and torsion
and electromagnetism interact. These are some
of the differences between our theory and the
usual Einstein-tartan theory. The electro-
magnetic source term for torsion includes terms
quadratic in g. This nonlinearity leads one to
expect a rich structure of solutions.

Other effects of torsion can be observed in the
equations for the scalar and electromagnetic fields.
The effect of torsion on'P hinges on a nonzero
value of A.„. To show the effects of torsion on
the electromagnetic field, Eqs. (41) and (54) have
been written in the form most useful for ob-
servational purposes. In fact, since, uncharged
spinless particles follow paths which are ex-
tremals based on the metric, ' a freely falling
observer would use a reference frame in which
f 3„)vanishes along his timelike line. Such an

v'-gm, 'd'x„.
E

(59)

If Z is taken as normal to the vector (1, 0, 0, 0),
then d'x = ~ 'd x, and M becomes

M q g3FO

~OP%SF y d 3 (60)

where c'" ~ is the numerical completely anti-
symmetric symbol defined by a '"=1. With the
definition of E ~, M may be written as

M = — a'"'3A P d'x
8~ al

(e'""2 p) „d3x with r, s, t, =1, 2, 3.

(61)

Since M is the integral of a pure divergence, it
may be expressed as an integral over an in-
finitely large two-surface. With an assumption
of asymptotic zero values for the fields, and in
a sirriply connected space, the total value for
M becomes zero.

We should mention that when /=0, the trans-
formation p -p' =

&f& + c with c = const, preserves
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Z. The current BZ/SP „ is then a conserved
current. In general, if $40, the transformation
g-P'=P+c, with c=const, along with A„-A',

Z' = e~'Z. This transformation also preserves the
field equations.

V. ' SUMMARY AND CONCLUSION

The basic results of this paper are the de-
velopment of a formalism making torsion com-
patible with the principles of gauge invariance
and minimal coupling and a dynamical theory of
torsion which allows its propagation in a vacuum.

In order to have both minimal coupling and
gauge invariance along with torsion, the form of
gauge transformations must be modified accor-
ding to Eq. (22). This modification, however,
still preserves the essential character of the
electromagnetic gauge-transformation group, and
our modified form reduces to the usual gauge
transformations when torsion vanishes. %e have
found that torsion must have a restricted form,
given by Eq. (21). Torsion is generated by a
scalar function &f&

The existence of the function p, the potential
function for torsion, has allowed us to for-
mulate a dynamical theory of torsion. Our
starting point is the usual Lagrangian densities
of gravitation, electromagnetism, and a charged
scalar field. The total Lagrangian is constructed
in accord with the principles of minimal
coupling of the electromagnetic field and of the
gravitation field to other fields. The specific
forms of minimal coupling are expressed in
Eqs. (8) and (13).

The field equation for P is a wave equation
whose source is a nonlinear combination of the
electromagnetic potential A, and &f&, which
vanishes when A„=O. The source term is gauge
invariant; indeed, the Lagrangian density itself
was chosen to be explicitly gauge invariant. The
field equation is for the potential of torsion and
not torsion itself. It involves derivatives of the
spin angular momentum tensor and thus clears

up a troublesome point in the usual Einstein-
Cartan theory: In that theory, electromagnetism

-' must be treated as exempt from minimal
coupling. '

Some of the novel features of our theory include
the way torsion affects other fields and itself.
The charged scalar field g, for example, is
affected by torsion only in the presence of an
electromagnetic field, as shown in Eqs. (43) and
(44). In the case of the electromagnebc field,
there are electric and magnetic current terms,
j~~ and m~", respectively, involving the product
of the electromagnetic field and torsion. The
total electric current, including contributions
from charged fields, is conserved. The torsion-
induced magnetic current is conserved by itself,
but it gives rise only to a total magnetic charge
of zero (in a simply connected space where the
fields fall off to zero sufficiently fast at spatial
infinity).

At this stage we can only speculate as to the
physical meaning of the current terms j~" and
m~', which are defined in Eqs. (55) and (57).
The magnetic currents~" may prove to be un-
observable because of the zero value of the total
magnetic charge. In a localized area of torsion,
perhaps associated with a particle-like ("tlaplon")
state of the P field, the magnetic charge
vanishes. It may be, however, that magnetic
charge effects can be observed in a large region
of nonzero torsion.

In future 'papers we will be developing this
theory into a true gravitational theory involving
general sources. %e will also be investigating
the properties of specific solutions. The nonlinear
character of our field equations means that these
solutions may be expected to have a rich structure.
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