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Effects of classical fields in meson correlations
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The existence of a classical (coherent) component in the mesonic field as suggested by recent developments

in particle physics generates under certain conditions a statistical distribution corresponding to a mixture of
chaotic and coherent fields. .The methods of quantum optics are used to. investigate the effects of this mixture
in the correlations. The relevance. of this to the Hanbury Brown and Twiss eQect in particle physics is

discussed. Preliminary comparison with the data suggests that an appreciable coherent component might be

present.

I. INTRODUCTION

Several parallel developments in particle phys-
ics -have focused interest on the concept of coher-
ent states. These include the following:

(l) The discovery of stable, classical solutions
in certain field theories; a classical field corres-
ponds to a coherent state.

(2) Spontaneous breakdown of symmetries', the
vacuum associated with this phenomenon corres-
ponds to a condensate which is a coherent state.

(3) The phenomenological success of the hydro-
dynamical model'; in this model excited hadronic
matter acts coherently. Moreover it has been
shown by Cooper and Sharp' that ideal fluid hydro-
dynamics follows if the pions are produced in a
coherent state.

(4) The possibility that hadronic matter might
have superfluid properties has been discussed in
the literature for some time", this would obvious-
ly imply coherence.

Besides these specific high-energy physics phen-
omena, at least three other nuclear physics and
astrophysics effects have to be mentioned:

(5) The pion condensate' assumed to occur in nu-
clear and stellar matter at very high densities.

(6) Abnormal nuclear matter' as a consequence
of a scalar field with a nonvanishing vacuum ex-
pectation value which is a classical component of
the field. Moreover, in certain models like the
nonlinear O-model, this scalar field leads to a
pion condensate',

(7) Superconductivity of nuclear matter.
Although the importance of some of these devel-

opments can hardly be overestimated, as remarked
by Arnold and Barshay, "little attention has been
paid to the fact that so far there is no direct ex-
perimental proof for coherence in particle and
nuclear physics. However, it is clear that many
of the models mentioned above would have to un-

dergo a serious revision should coherence even-
tually fail to be discovered in experiments. - Not
only has this apparently not been realized so far,
but some independent models have been put for-
ward in which the implicit assumption is contained
that coherence is actually absent from strong in-
teractions. We have in mind the interpretation of
correlation effects in meson production in terms
of Bose- Einstein statistics. The considerations
developed in Refs. 11-17apply for chaotic fields,
i.e., fields which have no coherence. Therefore,
meaningful conclusions about the size and lifetime
of hadronic fireballs" " can only be drawn from
correlation experiments'~" after the question of
coherence versus chaoticity is settled.

The purpose of this paper is to develop a theo-
retical scheme through which effects of coherence
and classical fields (or sources) could be investi-
gated in particle physics. We shall proceed in
close analogy with quantum optics" and show how
a field which contains a classical and a quantum
component leads to a statistical distribution which
is a mixture of coherent and chaotic fieIds. Next
we shall consider the implications for particle
correlations of such a mixture.

It turns out that second-order correlations are
rather insensitive to even large admixtures of co-
herence and that the present experimental evidence,
which relies mainly on second-order correlations,
is consistent with such an admixture. The impli-
cations for the determination of the fireball size
are briefly discussed and an experimental program
involving measurements of higher correlations is
outlined, through which the existence and percent-
age of coherence in meson fields can be investi-
gated 2~

II. COHERENT VERSUS CHAOTIC STATES

In quantum optics where one deals both with sys-
tems containing small numbers of particles as well
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as with macroscopic systems, the use of the co-
herent-state representation has proved to be very
useful since coherent states are eigenstates, inn),
of the annihilation operator a~, and thus corres-
pond to an undefined number of particles. The
eigenvalues n, are the amplitudes of a field which
is called the coherent field. Classical fields are
a particular case of coherent fields, namely co-
herent c-number fields. "

In some sense, the opposites of coherent fields
are chaotic fields. To see this we introduce the
density operator in the coherent-state represen-
tation fn~j,

+ ~a ™a ~a d ~a~' (2.1)

where (P((ng is the distribution function of the
states treated as random variables. 6 is assumed
to be constrained to the range (0, 1). The differ-
ence between coherent and chaotic states can be
defined through the distribution (P((n~)).

Coherent states correspond to a well defined

(n„), i.e. , to maximum "noiselessness, "

(2.2)

while the maximum ".noise, "i.e. , chaotic states,
are described by a Gaussian distribution,

(2.3)

for a chaotic distribution this is not the case.
Moreover, for chaotic distributions, all higher-
order correlation functions can be expressed in
terms of the first-order correlation function G'

. n

(xi) ' ' 'xnlxinll ' ' ' &x2n) g II ( y&xp(tH y)) '

(2.4)

where (n~) is the mean occupation number in rdbde

k. A particular case of chaotic fields is fields
generated by thermal sources; for identical bosons
the Bose-Einstein distribution in a single mode is
an example of a chaotic distribution.

The difference between coherent and chaotic
states manUests itself quite strikingly in the field
and intensity correlations and in the associated
moments (cumulants p,). While a coherent state
leads to a Poisson distribution, i.e. , to

p, &„&=0 for n~ 2,

G'(x x ) =e !,"~ "" ((n) (2.5)

where g is the coherence length and G' and thus
G", depend only on two variables (n) and $.

In Sec. III we shall discuss a more general case,
i.e. , a mixture of coherent and chaotic distribu-
tions. In this case, 6' is the convolution product
of the two distributions,

= II exp —
~

n — „~'/( ), (2.6)

which is a Gaussian centered around the coherent-
field values.

III. MIXTURE OF COHERENT

AND CHAOTIC DISTRIBUTIONS

(n) = (n,) + (n,„) (3.1)

is the mean total number of produced particles.
Furthermore, the relations between cumulants of
different order which should be used to test the
model and to derive the ratio (ng/(n, „) are already
worked out and can be used in the comparison with
data.

Although the model of Botke, Scalapino, and
Sugar is, rather general, it does not contain this
special case of coherent-chaotic mixture. Indeed,
in this model the density operator is

The idea that coherent or chaotic states may play
some part in hadronic processes at high energies
is not a new one, especially as far as w mesons
are concerned. However, it seems, that with the
exception of Botke, Scalapino, and Sugar, "re-
searchers have contented themselves with the in-
vestigation of the consequences of the assumption
that mesonic fields and sources are totally coher-
ent" or totally incoherent, i.e. , chaotic. "'". Both
extremes are obviously idealizations and in real-
ity one should expect to find some superposition
of these two cases. The simplest superposition is
a mixture as defined above. This well known dis-
tribution in optics has the advantage that when
comparison with experimental data is made, the
result can be expressed in terms of the coherence
length of the chaotic component and the ratio (n,)/
(n,„), where (n,) and (n,g are the mean numbers of
particles 'in the coherent and chaotic components
respectively, and where

In optics of particular importance are stationary
distributions when G'(x„x,) depends only on x, —x, .
This dependence is usually parametrized by an ex-
ponential,

p=g ' ~~ m e-zigg
m

where

(3.2)
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(3.3)

and the integrals are functional integrals. The
functional E [w ] has the Landau-Ginsburg form,

ceeds as follows. We start from the well known
statistical operator" for a, Bose distribution in
terms of the creation and annihilation operators
gkt and gk, respectively,

Y

BENT

fu=v & I~b) I'+s I8)'+c IPI
0

p = exp — dka„gk Trp, (3.6)

(3.4)

A, B,C are constants; y is the rapidity variable,

where d» is related to (n»), the mean number of
particles in the mode k, by

E+p„y=zln
p

(3.6)
(3 'I)

where E the total energy of the emitted particle
and p is the corresponding longitudinal momentum;
F is twice the maximum rapidity compatible with
energy-momentum conservation; v(y) is the pion-
field amplitude expressed as a function of rapid-
ity y in the coherent- state representation; it is
treated as a random variable. For rea, sons of
simplicity we limit ourselves to pions only and ig-
nore the dependence of ii(y) on transverse momen-
tum. Furthermore, we ignore quantum number
effects. It is shown in Ref. 24 how these effects
can be taken care of. Appropriate choices of the
parameters A, 8, C in (3.4) lead to pure-chaotic
or pure-coherent distributions respectively. '4 How-

ever, a coherent-chaotic mixture is not contained
in (3.2), (3.4) because of the absence of a linear
term in ir in (3.4) [cf. Eqs. (2.1) and (2.6) ].

As a matter of fact, because of the pseudoscalar
nature of the field such a linear term could arise
only if the c-number coefficient of m were also to
be a pseudoscalar. The only way such a c-number
pseudoscalar can appear is through a classical
field and this suggests that a coherent-chaotic
mixture is due to a linear superposition of a clas-
sical and quantum field. That this is indeed the .

case will be shown below. On the other hand, it
should be stressed that a linear superposition of
classical and quantum fields is exactly what the
new developments in field theory, mentioned in
the introduction, ' suggest.

The derivation of the mixture distribution pro-

In the (P representation described earlier, this
corresponds to the chaotic case (2.3), and to em-
phasize this we write (n,„»).

Let us consider now a quantum field v(y) which
we expand into a complete set; of functions e'k'. In
applications, the variable y can be thought of as
representing rapidity, e.g. ,

ii(y) =,(, Q a»e'»', I'=2y
k

(3.8)

and

k = 2n7i/I', n = 0, 1,2, . . . .

where

~( )
— g d ei»v1

y k (3.10)

The superposition of a Fourier-analyzed quantum
field and a classical field of (c-number) intensity
P is then given by

n'(y) =,), Qa„e'»'+, ), QP»e'»',
k k

so that

(3.11)

In terms of the field m, the density operator (3.6)
reads

Y

p= exp — m nt ' D —y' dy dy' Trp,
0 (3.9)

p~ exp, dk gk gk dk k gk dk pk gk dk pk Trp~ (3.12)

In the ip representation this yields immediately (2.6).
/'

IV. CONSEQUENCES FOR CORRELATIONS OF
A COHERENT-CHAOTIC MIXTURE

The phenomenological implications of formula
(2.6) may now be evaluated by taking over the re-

suits already obtained in the case of quantum op-
tics. We leave until Sec. V a discussion of the ex-
perimental conditions which must be met for this
to be permissible.

Besides the ratio (n,)/(n, „)we also need the field-



EFFECTS OF CLASSICAL FIELDS IN MESON CORRELATIONS 3121

correlation length in rapidity space for the chaotic
case. This is readily obtained from (2.5) and (2.6)
with y~

= 0. Thus,

tions we have

p&» = (I —1)!(n,'„)B,+l!(n'„'&(n,&(B,), (4 6)

&&(y )&b )&=G'b y.)=&n..&e '"""
(n ) e ik(vl w2)=1

Chp Q

(n,„q&
= 1/(a+ bk'),

(4.1)

(4.2)

where (n,) and (n, „& were defined in Sec. III and

B.= &Bi& =1*

B,= (e '~ + 2 p —1)/2p',

B,= -.' [e "(p+1)+p-1]/p',
B,= —', [e '8+4e '~(4p'+10p+7]

+20P 29 )/P', (4.6)

and converting the sum into an integral, we have

g = (b/a) '~ ', (n,„)= 1/2~ah . (4.3)

Strictly speaking, the replacement of a summa-
tion by an integration is not valid here since F is
finite. However, in the case of a sufficiently short
correlation length compared with P our results
should be qualitatively correct. The correct pro-
cedure, as used in quantum optics, is to expand
the field in an orthogonal set on the interval 7
chosen so as to reproduce the observed field-cor-
relation function. In our case this would need to
be done by fitting the intensity-correlation func-
tion; although for the chaotic source, which is our
sole concern here, the two are closely related.
In fact we shall refer to the optics results for an
exponential correlation function and since these are
exact we are not restricted to a short correlation
length in rapidity.

In order to simplify the comparison with the op-
tical results, we choose the single rapidity mode
E of the coherent part to be the same as the central
mode of the Lorentzian distribution given by (4.2)
that is E=O. This done, the results given by Jais-
wal and Mehta" may be taken over to our case by
introducing the parameter p = 1'/g.

B, = 2(e ~ + p —1)/p',

B,= [-e "+2e '(p+4)+4p-7]/p',

B,= [e '~+e '8(4p+10)+e ~(2p'+18p+47)

+ 16P —38 ]/2P'.

Apart from p, &» these a,re not the same as the re-
sults found from a Bose- Einstein distribution over
s cells when each cell is occupied on the average
by (n&/g particles. In fact the assumption (n;)
=(n&/s, where (n,&

is the average occupation of
the ith cell, corresponds to a rectangular distribu-
tion in rapidity space compared with the Lorentzian
distribution we have used. The differences between
the two distributions are discussed by Mandel",
who shows that the quantity P may be identified with
the number of occupied cells.

B. Intensity correlations

For the chaotic-coherent mixture the results
may be extracted from the calculations of Lachs
and Voltmer. " These authors calculate a quantity

(4.7)

with

A. Factorial cumulants
R(y) =', I{0)I(y)e ~'"&/(I& (4.8)

These are the mast satisfactory measure of the
correlation and are defined by

(4.9)

p, &»
= (n(n —1))—(n)',

(4.4)

where

(4.10)
p&»

= (n(n —1)(n —2)) —3(n(n —1))(n) + 2(n)',

p, (,)
= (n(n —1)(n —2)(n —3)) —4(n(n —1)(n —2))(n)

+ 12(n(n —1))(n)2

- 3(n(n —1))'- 6(n&'.

For the mixture of coherent and chaotic distribu-

For I-O, g(y) becomes the intensity correlation
function,

C(y) = (I(0)I(y)&/(I)', (4.11)

which is independent of the normalization of I.
The result for g(y) for small I is given in Fig. 1
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FIG. 1. Plot of the function g(j) defined in Eq. (4.11);
V= (Ng/(Ã~) and y in units of g.

and this can be used for C with negligible error.
Note that even a 50% coherence has a rather mod-
est effect (10%) on the value of C(0).

Higher-order correlations can be worked out
along the same lines.

C. Hanbury Brown and Twiss effects

It may be seen from Fig. 1 that coherence effects
increase significantly the effective coherence
length and thus decrease associated size (lifetime)
of the source. This implies that what one actually
measures through Hanbury Brown and Twiss effects
is an underestimate of the dimension of the chaotic
source.

D. Rapidity-gap distributions

The rapidity-gap distribution itself is not direct-
ly accessible from Ref. 28; rather it is divided by

Q(y), the probability that with an arbitrarily chos-
en origin in rapidity the first following r meson
will have a rapidity y measured from the arbitrar-
ily chosen origin. However, the effects of a finite
classical part can be clearly seen.

V. EXPERIMENTAL IMPLICATIONS

The essence of our strategy is tp look for devia-
tions from Bose-Einstein statistics attributable
to coherence effects. Bose-Einstein statistics
applies to identical bosons and requi. res the follow-
ing:

(i) Stationary distributions in the relevant vari-
able. Since the experimental distributions of »'(y)
are flatter in pseudorapidity q =lntan~6 than in

rapidity, the first one might be a better variable.
Stability of the result for the coherent part with
respect to different cutoffs in Y could serve as a
criterion for the fulfillment, of this condition.

(ii) Center-of-mass energies high enough so
that energy- momentum- conservation constraints
should not be significant. For second-order corre-
lations, E,~&200 GeV is sufficient. '

(iii) Equal transverse momenta p, . We apply
Bose-Einstein statistics to rapidity only, and
therefore the other variables, p,"', p", . , must be
the same.

(iv) Elimination of strong-interaction effects
which could mask coherence effects. This can be
achieved by using small-mass pairs (below the

p resonance) and then subtracting the residual
strong interactions in the manner of Biswas et al."
Since our approach requires a distribution p(n) )0,
i.e. , C(y) &1, a necessary condition for the effect-
iveness of the implementation of the constraints
(i), (ii), (iii), and (iv) is a positive Hanbury Brown
and Twiss effect or, positive cumulants.

If all these conditions are met, we expect from
Fig. 1 that C(0) —1 should be a measure of the
amount of coherence. However, it must be pointed
out that given the finite resolution of rapidity and

p J measurements, extrapo lation of expe rim enta':.
intensity correlations C(y) to y = 0 and p,"& =P", &

might be difficult. In these circumstances consid-
eration must be given to other effects which in-
fluence the source such as the motion of the emit-
ting objects (see, e.g. , Refs. 14 and 15). Higher-
order correlations will be more sensitive to co-
herence effects.

So far there appear to be no experimental data
which fulfill completely our requirements. Ex-
periments of Refs. 11, 18, and 20 are at too low
energies and the data quoted by Knox do not satis-
fy condition (iv); closest to our criteria are the
data of Biswas et a/. " In this experiment, r m'

correlations C for» p interactions at 200 GeV/,
are measured. The strong-interaction ("dynami-
cal") contribution is estimated by subtracting C.
from C with the assumption that Bose-Einstein
and strong-interaction correlations are indepen-
dent. The result for C (0) —1 is 0.8+0.1. Accord-
ing to Fig. 1 this is consistent with 50% coherence.
lt should be stressed that in the limit t»-= (P, —P,)'-0, which is considered in this experiment, the
dipion mass s» = (p, +p, )' is also negligible, so
that this subtraction procedure" eliminates (in a
first approximation) the contribution of resonances
to the + —correlations. "

She investigation of these effects in different re-
actions and at different energies is highly desir-
able since the parameters (n,)/(n, „)and g are ex-



EFFECTS OF CLASSICAL FIELDS IN MESON CORRELATIONS

pected to depend on the initial conditions. "
Note added. After the completion of this work

we received a report by Giovannini and Veneziano"
in which the predictions of the topological expansion
model for particle correlations including the Bose-
Einstein effect are discussed. Their paper exemp-
lifies the importance of coherence for particular
dynamical models. One of us (R.W. ) acknowledges
a useful discussion with Professor G. Veneziano
along these lines.
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