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A comprehensive treatment of the charmonium'model of the Q family is presented. The model's basic
assumption is a flavor-symmetric instantaneous effective interaction between quark color densities. This
interaction describes both quark-antiquark binding and pair creation, and thereby provides a unified
approach for energies below and above the threshold for charmed-meson production. If coupling to decay
channels is ignored, one obtains the "naive" model wherein the dynamics is completely, described by single
charmed-quark pair. A detailed description of this "naive" model is presented for the case where the
instantaneous potential is a superposition of a linear and Coulombic term. A far more realistic picture is
attained by incorporating those terms in the interaction that couple charmed quarks to light quarks. The
coupled-channel formalism needed for this purpose is fully described. Formulas are given for the inclusive
e +e cross section and for e +e annihilation into specific charmed-meson pairs. The influence of closed
decay channels on Q states below charm threshold is investigated, with particular attention to leptonic and
radiative widths.

I. INTRODUCTION

Since the discovery of the J'/P resonance' much
theoretical effort has been directed toward under-
standing the spectrum and decay properties of
the J/g family. "' The charmonium model' ' has
emerged as the most successful theory thus far.
It interpreted J'/g (which we abbreviate as P) and
g' as charmed-quark-antiquark (cc) bound states,
and predicted most of the phenomena that were
subsequently observed. The discovery' of charmed
mesons gives strong support to this interpretation.
Except for a small number of unresolved (and
possibly important) issues, the model also pro-
vides a semiquantitative description of the vast
body of new data accumulated in e'e colliding-
beam experiments in the 3-5-GeV energy range. "'
This is the first of two article's that provide a
detailed report of our investigation of the char-
monium model. (The principal results have been
briefly reported in a number of previous pub-
lications. """) It is devoted to an exposition
of the model and of the associated theoretical
framework. The second article will give a sys-
tematic comparison with the data.

Our work is based on two underlying assump-
tions: First, the basic interaction between quarks
is assumed to have a color-SU(3) gauge sym-
metry. In addition to being in the fundamental
representation with respect to color, the quarks
carry global quantum numbers such as isospin,
strangeness, and charm, generically called "fla-
vor". The global SU(4) symmetry of flavor is
broken only by quark masses. Thus the strong
interactions are flavor independent except for
dynamical effects induced by mass differences.
It has been widely conjectured" that an unbroken

I

color gauge interaction leads to forces that are
so strong at large distances that quarks are per-
manently confined in color-neutral bound states-
the mesons and baryons. %e also adopt this as-
sumption.

Secondly, the large masses of the P resonances
and charmed mesons lead to the assumption that
the charmed quarks are so heavy that they may
be treated nonrelativistically. 4 No one has yet
succeeded in calculating the effective form of the
interquark forces from quantum chromodynamics, "
even in the nonrelativistic limit. To fill this
gap we postulate that in this limit many of the
gross features of the potential between the charmed
quarks can be simulated by the potential

K
V(&) = ——+ —,.a'

This is chosen to give a simple interpolation be-
tween the known Coulomb-type force at short
distance arid a linear growth of the static potential
suggested by some models of quark confinement. "

The recent discovery' of the p, 'p. enhancement
T probably implies the existence of another QQ
family, "where Q is a quark carrying a new flavor
and having a mass of 4—5 QeV. The variation of
the spectrum with quark mass m is very sensitive
to the form of V(s'), and present indications are" "
that our ansatz (1.1) may not pass this test. Sev-
eral other potentials"" have now been proposed
that appear to account better for both the t/r and
Y families. On the other hand, these newer mod-
els lead to values of (v/c)' in the g family that
are uncomfortably large, and if one confines
one's attention to the P family, . as we do here,
there is little, if anything, to be gained by aban-
doning our ansatz (1.1); The detailed calculations
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that we shall report, and which were completed
before the discovery of Y, are therefore based
on the linear + Coulomb model of V(x).

In order to describe resonances above the
threshold for Zweig-allowed decay, and to give
an adequate description of e'e collision in the
charm threshold region, it is necessary to ex-
tend the simple potential model: 'The possibility
of creation of a light-quark pair must be incor-.
porated. We accomplish this by replacing (1.1),
or its operator extension,

Hi= dxdy ~ x, x Vx-y ~y, y

bylop 23

d3+ de p x 3 P x y p y ]

where

p,(x) = Q g'(x) —,'X, g(x)
flavors

is the quark contribution to the color-charge-
density operator, and g(x) is the quark field
operator. This interaction can create quark-
antiquark pairs, agd also contains the naive po-
tential terms. It has the advantage of being uni-
versal, and of allowing pair creation without
additional parameters (except for the light-quark
mass).

In Sec. II we review the naive charmonium mod-
el in which all degrees of freedom but that of the
cc pair are ignored. We discuss the qualitative
aspects of this system: mass spectrum, radiative
transition rates, and leptonic decay rates. De-
tailed information on the eigenvalues, eigen-
functions, and radiative matrix elements of the
naive model is given in Appendix A. In Appendix
B a sum rule is derived for the electric dipole
moments which applies only to purely linear po-
tentials.

Section III is devoted to a discussion of the ef-
fects of coupling of hadronic decay channels to
the cc bound states. The method of including these
contributions through the generalized interaction
Hamiltonian (1.3) is discussed in detail along with
the approximation scheme used in our calculations.
A qualitative discussion of the form of the decay
amplitudes and the structure of the cc Green's
functions is presented. Formulas for exclusive
channels in e'e a,nnihilation a,re derived, as well
as for the total cross section for e'e —hadrons.
The coupling of the discrete cc sector to the
charmed-meson continuum also leads to modifi-
cation of the P-family bound states, and thereby

to changes of their leptonic widths and E1 rates.
A series of appendices (C-F) give detailed

derivations and formulas for exclusive and in-
clusive cross sections, decay amplitudes, and
'E1 rates.

As previously mentioned, the comparison of
the model with the data will appear in the second
paper of this series.

II. THE cc SECTOR IN THE ABSENCE OF DECAY

This section is devoted to what we shall call the
naive charmonium model, ' in which all degrees
of freedom but that of the cc pair are ignored.
This simplification is suggested by the qualitative
success of the naive quark model in the old ha-
dronic spectroscopy. However, unlike the qq
system (henceforth we use q as a generic symbol
for the "old" quarks u, d, and s), the nonr elativistic
relation between constituent and composite masses
prevails for those cc states with which we are
concerned in this article. This gives a justification
for the nonrelativistic treatment of the c quarks
in the charmonium model. Another, and related,
contrast between the old and new spectroscopies
is that a number of low-lying radial excitations
are very apparent in the cc system, whereas such
excitations are almost submerged by the complex
continuum in the qq systems.

A. The effective Hamiltonian

Although the present knowledge of non-Abelian
gauge theory does not provide us with an explicit
cc interaction, two things appear to be clear:
The interaction must provide for confinement,
and at short cc separations it must conform with
the dicta, tes of asymptotic freedom.

These qualitative features of the interaction
already permit an educated guess as to the low-
lying level structure of charmonium (see Fig. 1).
On the other hand, an explicit form for the inter-
action allows one to compute many detailed prop-
erties of the system (e.g. , radiative and leptonic
widths) that can only be estimated from qualitative
considerations. We therefore translate the in-
tuitive picture into an explicit and simple local
potential V(r) that conta. ins the two ingredients
already mentioned, viz.

V(&) = ——+ —,.a'

The 1/r behavior of the first term is in ac-
cordance with asymptotic freedom. However,
the strength rc will be treated as a purely phe-
nomenological parameter" for reasons discussed
later in this subsection. The linear confinement
potential r/a' is inferred from lattice gauge the-
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FIG. 1. The qualitative features of the quark-anti-
quark excitation spectrum can be inferred by visual in-
terpolation, as shown in this figure. Imagine a continu-
ous deformation of an oscillator potential into a
Coulomb field, and the associated change of the bound
states. The potential of interest in mesonic spectros-
copy is between the two extremes, whence the spectrum
labeled "hadron". The parameters of the potentials are
chosen so that the 2S-1S difference is fixed. In the case
of the "hadron", not all levels are shown for the sake of
clarity. Note that we label states by (n —1), where+ is
the number of radial nodes.

behavior of the potential substantially. Another
modification of short-distance behavior arises
from the asymptotic freedom corrections which
produce a logarithmic variation with r of the
strength of the Coulomb potential i6

In order to partially accommodate these short-
distance effects within our model we have al-
lowed z to be a free parameter dissociated from
the effective coupling constant n, determined by
the hadronic width of g. Instead, the value of z
is determined from the observed data for spin-
triplet states, and therefore automatically in-
cludes some of the spin-spin contribution.

While our naive ansa, tz (2.1) for V(x) has the
virtue of being unambiguous, and of introducing
only a,minimum number of parameters, the above
discussion, and our earlier remarks about the
Y spectrum, should make its phenomenological
nature abundantly clear.

B. Qualitative aspects of the system

Before becoming enmeshed in details, we sketch
those qualitative properties that follow from the
assumed interaction.

Once the nonrelativistic nature of the system is
accepted, it follows that the leptonic width of
any cc S state with wave function P„( r) is given
by the Van Royen —eisskopf formula

ory" and its relation to the dual string model.
These considerations indicate that the energy
of a widely separated and stationary quark-anti-
quark pair is proportional to the separation,
and that the constant of proportionality I/a' does
not depend on the quark flavor.

Unfortunately these hints from "fundamental"
theory only tell us the behavior of V as r -0 andr- ~; virtually nothing ip known about the inter-
mediate distances. Furthermore, one must sup-
pose that V(x) is the nonrelativistic limit of a.

far more complex relativistic interaction. " 'This
"true" interaction is surely nonlocal on a length
scale of order I/m, which, as we shall see, is
small compared with the cc states themselves-.
It must also be spin-dependent, and this will gen-
erate something similar, to the Breit-Fermi Ham-
iltonian'"" in addition to V(r). We shall have
more to say on this score hen we compare to
the data in the second paper of this series.

In fact, there are experimental indications for
the existence of large spin-dependent forces. Foi
instance, if the state observed at 2.83 GeV is
in fact 1 'S„a very substantial hyperfine inter-
action must be present in the cc system; and it
must be repulsive for '$ states. Such a force
might be expected to modify the short-distance

I %0) I'
n

where e,= —,
' is the charge of c, and M„ the mass

of the state. Assigning J'/g(3095) =—
g and $(3684)—:

g' to 1'S and 2 'S, respectively, gives as the ob-
served value

(2.2)

- '=0.62 +0.16.
~ 4,(0) '
(, 0 (2.3)

I"(y„-had) = (v' —9)o.,', I g„(0) I
',160

(2.4)

I (g„-II) 6.93 x 10 '
I"(g„-had) o.,'
For P this yields

(2.6)

For a pure Coulomb potential r„=—,
' while for

apurelylinear potential'r» =—1 because all 8 states
have the same $„(0). The value (2.3) shows clearly
that the Coulombic potential must be of secondary
importance throughout most of the volume over
which these states extend.

The constant n, determines the hadronic cc
annihilation amplitude, and hence the Zweig-
forbidden decay rate of states below charm thresh-
old. For '5 states this width is
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n, (P) =0.19+0.03. (2.S)

hile n, is not directly related to the parameter
K in V, the smallness of n, is consistent with
our previous conclusion that the confining inter-
action is dominant.

If one takes advantage of this, and ignores the
Coulombic term altogether, one finds simple
scaling laws for all quantities of interest. These
serve as useful rules of thumb, and are actually
quite reliable for those features that do riot de-
pend critically on the wave function near x =0
(e.g. , y-decay matrix elements, states of non-
zero angular momentum). Quantities that are
sensitive to the x =0 region are, however, visibly
affected by the Coulombic interaction. The most
important examples of the latter type are the
leptonie width, and the spin-orbit and spin-spin
split tings.

When the Coulomb interaction is ignored, the
radial Schrddinger equation can be written as

d' l(l + 1) —p+g a=0.
dp p

(2.7)

The dimensionless length p and eigenvalue g are
related to x and the energy E as follows:

r=a(m, a) "'p, (2 8)

p ((O

u'(p) dp= 1;
dp

(2.10)

their relation to the conventional radial wave
function is

E=m, (m, a) "'g. (2.9)

Here (and throughout) the u's are normalized by

a =1.95 Ge~'

m, =1.85 Gey.
(2.15)

(v') =(am, ) "' (du/dp)'dp.
0

(2.16)

For p and p' this gives (v') =0.14 and 0.25, respec-
tively.

These calculations confirm that the gross struc-
ture of the system is determined by the confining
potential, and that the motion is nonrelativistic
to a decent approximation. The qualifications
in this last sentence should not be forgotten, how-
ever. In determining the parameters a and m,
we used the leptonic width of (, and as this quan-
tity depends on the ~ =0 regime, it is sensitive,
to short-distance departures from the linear po-
tential. The following analysis, which restores
the Coulombic potential, therefore leads to a
value of m, that differs noticeably from the one
in (2.15), and to a somewhat larger mean-square
velocity.

Accepting the hypothesis that a is a universal
constant, and ignoring all relativistic a.nd Coulom-
bic effects, we see from (2.9) that an increase
of quark mass m compresses the spectrum by
the factor m ' '. The size of the system, and
therefore all E1 matrix elements, also scale by
the factor m '~'.

The fact that 2m, =3.70 GeV is so close to the
charm threshold S",=3.73 GeV indicates that this
is indeed a norirelativi'stic system. An independent
check of this property is desirable, however, for
when lim„„V(x) «0, the absolute energy scale
need not have significance. A reliable character-
ization is provided by the meap-square velocity. ,

(I,)'~' M(p) (2.ii) C. Inclusion of the Coulombic interaction

u„(&(p

p .

arid from (2.2) we thus have

I'(g-ll ) = —", o. 'm, (a m~) '.

(2.13)

(2.14)

Comparison of Eqs. (2.12) and (2.14) with the data
yields

Vfhen referring to a particular state, we use the
subscript nl (e.g. , g„r), where (n —1) is the num-
ber of radial nodes.

The parameters a and m, can be determined
from the &jr' —g mass difference and the leptonic
width of P. According to (2.9)

(2.12)

where &20=4.088 and &„=2.338. For a linear
potential

The Coulombic intera, ction adds the term Xjp
to the Schrddinger equation (2.7), where

~ = rr(m, a)"'. (2.i7)

%e continue to denote eigenvalues and eigen-
functions by f„, and u„„but these are now func-
tions of X. The dependence of the spectrum on
X is shown in Fig. 2, and given in greater detail
in Appendix A. Note that the ordering of levels in
Fig. 2 agrees with the intuitive argument sum-
marized by Fig. 1. Graphical and numerical
information concerning the eigenfunctions and
eigenvalues can also be found in Appendix A.

Inclusion of the Coulombic term does not alter
the relation (2.12) between a, m„and the g —(I('

mass differen'ce, except for the implict depend-
ence of the eigenva, luce on X. The formula (2.14)
for I'((I(„:-Ll) does change, however, because
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' E ~ ~'(2J~+1)S;~,,~, k zf
1",= —,', ,' (. )„,

(2.21)

hoton m S. is a sta-hoton momentum,here k is the photon mw er
tistical factor, and

(2.22)u. (p)u~(p) pdpE.f = u,- d

As one would. ex-'
~
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. that for any S s atheorem. tha

29V
~4..(0) '= 4„' (2.18)

this reducess toIn our case

.0 -'=
2 (1+~(p '&.o) (2.19)

where

mb+ linearfor the Coulom
l f ltd

{2.17)];cf. Eq
ear. Observe that e eris purely linear.

with Fig. 1.

ent for the quark,me a Dirac momenwhere we assume a
dan

u- p)u~(p)j, [ka(m, a) '~'p 2 dp.M& —— u,-pu&pgu p (2.25)
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0 = p(GeV/c)

FIG. 3. P-wave decay amplitudes. for cc3S states. The quantity plotted is I I (P), defined in Kq, (3,37) wheren and
L are the principal quantum number and orbital angular momentum of the cV state, and l the orbital angular momentum
of the decay products whose relative momentum is p. The dashed line applies to the decays t."c ca+~ (or pp+pff ),
the solid lirie to cc cs+Vs, the former is therefore used for decays to nonstrange charmed mesons (e.g. , D*D*),
the llutter for decays involving E and/or +*. The quark masses are et„,z = 0.33 GeV, , = 0.50 GeV, and ~, =1.65
GeV, while a =2,07 GeV

tial w idthS that are much smaller than level spac-
ings, and can be incorporated as an afterthought,
i.e., in perturbation theory. Zweig-allowed de-
chy widths are too broad to be handled pertur-
batively. Amongst effects that fall outside the
scope of perturbation theory of particular im-
portance iri the charmoniurii system are strongly
momentum-dependent decay amplitudes that can
lead to rapid variations of branching fractions
and highly distorted resonances, additional res-
onance distortion due to the proximity of thresh-,
olds, and mixing between levels of the primordial
discrete spectrum due to their coupling to com-
mon decay channels.

Since hadrons are extended systems, one must
expect their decay amplitudes to have a momentum
dependence that is more intricate than that given
by the angular momentum barrier. whatever
may be the detailed dynamical mechanism res-
ponsible for decay, the amplitude for a two-body
decay involves an overlap integral between three

. extended wave functions. Beyond the angular
momentum factors these wave functions are usu-
ally approximated by a monotonically decreasing
form factor. This is adequate insofar as one
does not deal with radially excited states. Once
such excitations come into play, however, th@

overlap integrals must be expected to have nodes.

This is illustrated in Figs. 3 and 4 which show
the decay amplitudes for

n'S, ( cc)-C,C, and n'D, ( cc)- CC, , (3.1)

,where C is a charmed 0 or 1 meson. (We will
associate O'S and 4'5' states with the structures in
e'e - hadrons observed at 4.028 and 4.414- GeV. )
Clearly there is a strong correlation between the
number of radial nodes in the parent state and
the number of nodes in the decay amplitude. " The
precise position of these nodes depends on the
assumed decay mechanism. But the general fea-
tures shown in these figures are presumably
more than an artifact of our model.

There is another reason for uncommonly rapid
variations of decay amplitudes for the reactions
cc-cq+cq. A fermion-antifermion bound state
occupies a volume that is inversely proportional
to the reduced mass. Thus the cc system .is con-
siderably smaller than its decay products, in
contrast to the "old" spectroscopy where parents
and daughters are of the same size.

The', nodal structure of these. decay amplitudes
can yield a dramatic energy dependence of ex-
clusive cross sections; for example, c(e'e -DD)
goes thxough a zero in the neighborhood of 4
GeV, and therefore accounts at least qualitatively
for the astonishing branching fractions"
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FIG. 4. I'- and F-wave nonstrange decay amplitudes for c& &~ states. Parameters are as in Fig. 3.

DD/D*D* in thatregio. n. '"'"" We shall discuss
this matter in some detail in the second paper of this
series.» Eq. (3.l) and Figs. 3 and 4 demonstra, te,
a given decay channel C,C, can communicate
with both 'S, and 'Dy cc s'tates, and therefore
mixes them. It is this effective tensor force"'"
that, accounts for the leptonic width" of $(3772).

B. The decay mechanism

The decay mechanism mus't describe how the
spatial separation of the cc pair leads to the
creation of a light qq pair. Here again color
gauge theory provides only an intuitive frame-
work, not an explicit formula. Indeed, the cor-
rect form of the decay amplitude might be very
complicated —too complicated, in fact, for the
rather complex calculations that follow. ~once
more we must resort to improyization, and as
before, our guiding principle is simplicity. Spe-
cifically, we assume that the instantaneous inter-
action vthieh causes th'e binding of CC and qq states
is also responsible for the decay. That is, we

J
assume a four-fermion interaction"

8

a, = —Q:p, ( r) V,( r —r') p, ( r'): d'~ d'r',
a=1

(3.2)

where

p.(r) =q'(r)-,'X,y(r) (3.3)

is the octet of color densities of the quark field

The potential V of 3ec. II is related to that in
(3.2) by V=~~ V,. In order to simplify our cal-
culations, we ignore the Coulbmbic part of V,
(in both wave functions and interaction) in eval-
uating the decay amplitudes. This is certainly
justified because we already saw that the con-
fining potential dominates; furthermore, small
quark separations are not important in hadronic
decays. On the other hand, the major effects of
the Coulomb term are included by use of the full
potential V, in the calculation of masses and
leptonic widths for cc states. Due to the presence
of decay channels, however, the value of the
parameters a and m, will differ somewhat from
the one used in Sec. II (see Sec. III E).

When ( is decomposed into destruction and
creation operators, (3.2) generates a large num-
ber of terms (see Fig. 5). There is an attractive
interaction —, Vo between cc pairs, and if every-
thing else were ignored, this would give the "na-
ive" eharmonium model of Sec. II. There is also
the qq attraction that produces the "old" mesons,
and a cq attraction responsible for charmed me-
sons. But there are also terms where, for ex-
ample, a cc pair creates or destroys a qq pair.
These are the terms that describe decay. By our
ansatz (3.2), we have decreed that such decay
amplitudes are simply related to the binding po-
tential V„and therefore contain no new para-
meters whatsoever.

It is abundantly clear' that our assumption of one
instantaneous interaction:responsible for both
binding arid decay is very simplistic. 'Nevertheless,
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(0)

q q c q q c
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'The decay amplitudes are then just matrix ele-
ments of H» between the parent cc state, and the
two-body final-state cq+ cq. Their structure can
be depicted graphically, as in Fig. 6, which shows
cc-EE. A more detailed discussion of these amp-
litudes appears in Sec. III F.

What then remains is to evaluate the consequenc-
es of the coupling between the discrete cc and the
continuous cq+cq sectors. In essence, this is a
generalization of the natural line-broadening prob-
lem, and the formalism described below" is just
an elaboration of the Weisskopf-Wigner solution
of that problem.

c c

(c)

C. The resolvents

It is convenient to decompose the Hilbert space
X into the cc sector K&, the decay sector Xc, and
a remainder X~, and introduce the corresponding
projection operators P~, Pc, and P~. The total
Hamiltonian, i.e. , the interaction H, of Eq. (3.;2)
plus the quark kinetic energy, can then be written
as

H=H +H +U+U'+H', (3.4)

(e)

FIG. 5. Teims in the model Hamiltonian, Eq. (3.2).
The wavy line is the instantaneous potential Vo. Here
(a) shows, interactions in the cc sector; (b) interactions,
that bind charmed mesons; (c) interactions that lead to
the Okubo-Zweig-lizuka —rule —allowed decays considered
here; {d) interactions that go outside the usual frame-
work of the naive quark model, and ignored by us; and
{e)terms that contribute to final-state interactions, and
ignored here.

as we shall see, this model has enough structure
to produce the rather complicated decay pheno-
mena with which we must deal. Given the complex-
ity of these phenomena and the attendant calcula-
tions it is actually an asset to have so tightly con-
strained a model. Otherwise one is in danger' of
disappearing in a fog of adjustable parameters.

ere

Hg=agH&g Hc =PcHPc (3.5)

and U is the operator whose matrix elements are
the decay amplitudes discussed previously:

U =PgH»Pc (3.6)

19!z)=Pq Pq. (3 7)

9 provides a complete description of the cc sector
in the presence of decay channels, whether open
or closed. We also need the resolvent in, the cq
+cq (or decay) sector

H~ contains those portions of H» that bind cc pairs
into the "naive" charmonium states. Hc contains
the cq and cq interactions that bind charmed mes-
ons, as well as matr~ elements of H, that describe
final-state interactions between cq and cq systems.

Most quantities of interest to us are conveniently
expressed in terms of the resolvent 9(z) in the cc
sector,

1
Q(z) =PcPc . . (3.8)

FIG. 6. This diagram depicts the decay of a cc state
g „ into I'I'. There are two terms, corresponding to
ss .creation by c or c. The formula corresponding to
this is Eq. (3.33).

By locating the poles of 9 on the real z axis, we
can determine the eigenvalues of cc bound states,
including their displacerpent due to the presence
of closed decay channels. I.et E„be the position
of such a pole. The residue of (r~9(z)Ir') at z
= E„ is proportional to 4„(r)%'„*(r'), where 0'„(r) can
be interpreted as the bound-state wave function in
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the cc sector including the effects of decay cou-
plings. (Here r is the separation of the cc pair.
All other variables are suppressed for now; they
will be made explicit in Sec. III F.) 4„(r) can be
expanded in terms of the orthonormal eigenfunc-
tions if~(r) of H& (which describes the uncoupled
system) as,

VlZ ~,

8 = G+ GP((H —Kq)(Pc+P„) P~,
1

where

G(a) =Pq P„
1

z

(3.13)

(3,14)

e„(r)= Q a "
y (r) .

The expansion coefficients satisfy

(3.9) is the resolvent of the "naive" model. The kernel
in (3.13) can be rewritten as

P~(H Hq)(—Pc+PR) = U+P+qPa,

(3.10)

because 4'„(r)4'„(r) is in general not the residue of
the full resolvent (r I/(s —H) Lr}. The amplitude
for finding the configuration cq+ cq in the bound
state n is obtained from the residue of I) at. the
same pole. A knowledge of 4„(r), and of the vir-
tual decay amplitude, is necessary for the calcula-
tion of the radiative decays discussed in Sec. IIIH.

9 and gj have branch cuts for Rez& 8'„where 5",
is the threshold for Zweig-allowed decay, W,
=2mD. (We ignore the very weak cutsdueto Zweig-
forbidden decays. ) The discontinuities across
these cuts are directly related to observable quan-
titites. For example Disc(r

~

8(W)
~

Qr is proportion-
al to the probability of finding a cc pair of total
energy S"at separation r. When evaluated at r
= 0, Disc9 is thus proportional to the cross section
for e'e -cc- hadrons. The complete expression
for the contribution of charm to the ratio B is found
to be

~(W)= — lim1m(r~8(W+i0)
~

r) .32m .
W

(3.11)

A detailed derivation of (3.11) is given in Appendix
C. In Sec. III 6 we shall also show how 4R(W) can
be split into contributions from various exclusive
channels.

D. The coupled-channel equations

We now set up approximate equations for 9 and 5).
The procedure we adopt is a time-honored one that
ultimately goes back to Weisskopf and Wigner, and
has been applied to such diverse phenomena as
nuclear reactions, K' decays, and collision broad-
ening. ""~

As was outlined in Sec. IIIC, we first divide the
Hilbert space K into the cc sector $C&, the decay
sector Rc, and a remainder K~, ,and decompose
the Hamiltonian H as in {3.4) with the help of the

P„, Pc, and P~. Then an equation for 9 follows
from the identity

1 1 1 1
+ (H Hq), -'(3.12)

where P+zPs contains transitions from the cc
sector to the (cc,cc) sector. Relying on the many
successes of the quark model, we only retain val-
ence quarks, and delete components of state with
extra pairs, thereby reducing (3.13) to

19= G+ GUP, z-H ~ (3.15)

An equation for the off-diagonal portion of the
resolvent follows from the identity

1 1 1 1
+ (H Hc)-z-H z-Hc z-Hc c z-e '

where

D(a) =P, 1
z —Hc

is the resolvent in the decay sector in the absence
of coupling to other sectors. In (3.16), PcHzPa
describes two types of processes: (i) decays that
are forbidden by Zweig's rule, such as cc-ss;
(ii) transitions between the two-pair and three-
pair sectors, e.g. , the Zweig-allowed processes
DD-DD*m and DD*-DER, or the Zweig-for/idden
FF-FF*p. Continuing with our semiempirical
approach, we drop all Zweig-forbidden amplitudes.
As for the two-to-three-pair amplitudes, we also
drop these because of the observed dominance of
quasi-two-body decays. (Note that this does not
mean that our final states are restricted to two-
hadron states; Xc contains states such as D*D*,
which are observed as the four-body-final state
DDwm. ) Having ignored PcHzPa altogether, we can
reduce (3.16) to

P, P, =DU~9.
1

z-H ~ (3.17)

This closes our system of equations,

9 = G+ GVDU~9.

Similarly, we find

(3.18)

l.e.
y

Pc P(=D(a)PcHq(P(+Ps) P(, (3.16)
1 1



CHARMOIVI'UM: THE MODEL 3O99

5)=D+ DU~GUS. (3.19)

Equations (3.18) and (3.19) are our basic equa-
tions. Virtually all the results reported in the re-
mainder of these papers devolve from them. .

E. Solving the coupled-channel equations for 8

One can transform (3.18) into a set of linear
algebraic equations. For this purpose, introduce
the eigenfunctions P„(r) and eigenvalues e„of the
"naive madel" —i.e. , of II&. 'Then

(r'I9(»)I+r= g P„(r')(nI9(») Qr. (3.20)
n

From (3.18)

( I9( )I '&=& IG( )I &

+ . QA„(»)(mI9(»)I ~&, (3.21)

where

n„.(»)=(nIVD(»)V Im&. (3.22)

n„.(») =g d'p, d'p,
T

(n I U I rp, p,) (m I U I 7 p,p,&
*

g E g

Strictly speaking, the states
I rp, p,& should include

final-state interactions, because P~HIP~ does con-
tain such terms. However, final-state interactions
of finite range do not have dramatic consequences.
All they ever do is to produce slow modulations of
various quantities. For example, they provide a
slowly varying phase shift in DD-DD elastic scat-
tering in addition to the rapid variation due to the
resonant process DD - cc-DD. As we are matnly
concerned with resonances, and rapid energy vari-
ations in general, we shall henceforth ignore final-
state interactions.

Returning to (3.21), we note that the free resol-
vent 6 is

( ) g In&(nl

and therefore

The matrix 0 is of central importance: it describ-
es the coupling between the primordial cc levels
due to the presence of open and closed decay chan-
nels.

As explained earlier, the states that diagonalize
D(») are the qc+ qc states, i.e. , states composed
of two mesons with charm 1 and -1. For now we
designate such a state by Irp,p,&, where r speci-
fies all discrete quantum numbers such as strange-
ness, helicity, etc. , while (p„E,) and (p„E,) are
the momenta and energies of the two mesons. Then

Hence

dA (W) = —~ lim Im g II „(0)(n
I
9(W+ i0)

I
Qr .

r~0 n

(3.25)

To illustrate the content of these equations, we
briefly consider the unjustified approximation
0„(»)= 5„„&o„(»). Solving (3.24) with this ansatz,
we immediately find

&-,
I
9(,) I

-,,
& g 4.(r)4.*(r')

n» —en —~n(»)
.(3.26)

In this simple example, the eigenfunctions are un-
affected by the coupling except for an overall fac-
tor to, account'for leakage to the, decay: sector. The
ratio M is thus

32n ~ I g„(0)l 'Im(o„(W+i0)
W' ~

I W —e„—co„(W+'i0)l' '

which is a variant of the generalized vector-mes-
on-dominance model. " Note that even in this
simple case, we are by no means restricted to an
energy independent width. Indeed, if there are
nearby thresholds, or rapidly varying decay amp-
litudes in e„, (3.27) can lead to shapes that are
very far from a superposition of simple Lorent-
zians.

In our actual calculations we truncate the set
of linear equations (3.24) by replacing X„by a fin-
ite-dimensional vector space spanned by the low-
est N states (In&j having a definite angular momen-
tum and parity. This approximation maQes sense.
for low-lying states because the decay amplitudes
(tt Iff Irpip. & fall off very»pidiy as E + Ea-

As a consequence the coupling matrix 0„
decreases rapidly as one moves off the diagonal,
and the accuracy of the calculation can be control-
led by increasing ¹ For exp,mple, we find that
%=6 is adequate for low '8, and 'D, states.

Once the matrix 0 is known, tQe ei.genvalues of
the coupled system are found from

(3.28)

For. Res& W„where W, =2m~ is the charm thres-
hold, these zeros lie on the real axis and locate

(n
I
9(»)

I
V& = P„*(r)+Q Q„„(»)(m

I
9(»)

I
Fp

~ -&n- m

(3.24)

This is the promised set of l.inear equations.
Once (3.24) is solved, the complete resolvent

can be constructed from (3.20). In particular, the
inclusive ratio AR(W), as given by (3.11), is
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the bound-state energies. The parameters of the
model are determined, as before, from m&, —m&
and the leptonic width of g. Because of the level
shifts and modifications of wave functions, these
"renormalized" parameters differ somewhat from
those of the "naive" model of Sec. II. The details
of this procedure-will be discussed in the second
paper of this series.

F. The decay amplitudes and the matrix Q„~

In order to compute the decay amplitude
(n~U ~vp, p,) we must first construct the state vec-
tors for the decay products. In constructing these
states, and also in evaluating the decay amplitude
itself, we shall make an important approximation:
All. expressions will be reduced to their nonrela-
tivistic limits. As we have seen, this approxima-
tion is reasonable in the cc sector, but it is not
really applicable to the decay sector which con-
tains light quarks. The only justification is sim-
plicity; a relativistic treatment is necessarily
much more complex, and there is actually no es-
,
'tablished relativistic treatment of bound states for
a confining interaction. Furthermore, there is no
reason to believe that a relativistic theory would
introduce new qualitative features that are not al-
ready present in our nonrelcativistic treatment.

Let C be a charmed meson of type a, momen-
tum P, and helicity ~. Then, its wave function

is defined by

x p (PX;p,s,p,s,)bt, (p,s,)

x d~„(p,s,) 0), (3.29)

(
2 3——tu Qu~(ps&s2) s d p s e

(2'lT )

x V,(r)g ~(p's, s,),
(3.30)

where p is the relative momentum and p, the re-
duced mass of the cq system. In the nonrelativis-
tic limit Q does not depend on P, as indicated in
(3.30). Our normalization is

I

Expressions similar to (3.29) and (3.30) define
the cc, states; their wave functions are P„(ks,s,),
where n is shorthand for the quantum numbers
(nJLM).

The decay amplitudes are found by taking ap-
propriate matrix elements of Hz..

(C,(PP, )C,(P,A.,) H,
~
P„), (3.31)

where g„ is understood to be at rest In evalu. ating
(3.31), the field operators in the expression (3.2)
for Hz are reduced to their nonrelativistic limits.
After a rather lengthy calculation one finds

where b~, creates a charmed quark of color a and
the indicated momentum and spin projection, while
d„creates q. This is to be an eigenfunction of Hc,

[H —(P'+M ')"']~C (PX)) =0.
The nonrelativistic eigenvalue & is defined by

(P'+M ')' '-M+ (P'/2M)+ s

where M=m, +m, . The Schrodinger equation for p
is

(C,(PX,)C,(P'X2) ~Hz
~
P„)= —i(2m) '~'6'(p+ p')3 '~'A„(PX X,;n),

where

(3.32)

A»(PX, X2;n) = Z d'xd'y[x"(s2)o 'PX(-s,'}] p,*(xs,s,')p,*(x—y, s,s,') $„(ys,s2)e '"c~'",
12 1 2 calx!

(3.33)

where p,,=m, /(m, +m, ), y~, y are two-component
spinors, and Q, (xss'), P„(yss') are the coordinate-
space counterparts of the previously defined wave
functions. The expression (X~a ~ 2y) describes the
spin structure of the. p.roduced qq pair; it is a
pseudoscalar. because in our model the pair is
created at zero separation. The factor (m, ) '
arises from the nonrelativistic reduction, and pro-
duces an explicit suppression of decays involving
the production of heavy quarks. .Whether this m,
dependence is realistic for the light (u, d, s) quarks

is, of course, open to doubt.
Here we confine ourselves to S-wave charmed

mesons (i.e. , D,D*,F,F*). The P-wave case is
rather more complex, and is discussed in Appen-
dix D. For S-wave states, the $,. are then
simply products of a spherically symmetric func-
tion &P, (~x ), and a two-body spin function. The
same is true for S-wave cc states. For P- and
D-wave ec states, however, one must first con-
struct states of good J from orbital and'spin func-
tions. This. being done, one carries out the spin
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sum in (3.33) and finds

A.~a= g d +d g ZJM Jx~&J2~a ~ y

(3.34)

where I.JM are the usual angular momentum quan-
tum numbers of g„, R~ its radial wave function,
and J, and J, the spins of C, and C,. We have sup-
pressed the total spin S of the cc system, for it
is determined by the parity; we shall do this
henceforth. As was mentioned in Sec. IIIB, we
have for simplicity ignored in (3.34) all effects
of the Coulomgic term of the potential both in Hl
and in the wave functions.

Ql~„ is a homogeneous polynomial of the I th de
gree in y, and of the first degree ink. It is there-
fore only necessary to evaluate (3.34)'with Q =2;
integrals with more complicated Q 's can then be
found by differentiating with respect to P. As we
are only concerned with ground-state charmed
mesons here, it is both an excellent and conven-
ient approximation to replace Q, in (3.34):by Gaus-
sians. Thus we must evaluate integrals of the
foim

K=— d'xd'yPe ~» e~'» ~' R~ y e '&cp'&,

x A „(PA. ,X,; mL 'ZM) . (3.39)

By virtue of (3.34)—('3.38), this can be reduced
to a quadratic form in the I„'~( )P. The complete
equation for 0„ is then

(P)

values.
The most striking features of these integrals are

the rapid dropoff for large momentum I' and the
existence of nodes as discussed in Sec. IIIA. They
are therefore sizeable only for the low-energy
region (P'/2M & 0.5 GeV), and have significant
oscillations in this range. These feature's are
crucial in understanding the behavior of AR, as
well as the exclusive charmed-meson channels
discussed in the second paper of thi. s series.

The integrals I„'~ depend on m„m„a, and P
through the combinations P and ii, PP 'I' in a
complicated manner. Comparison of the am-
plitudes for EF and DD production in Fig. 3 give
some measure of dependence on the light quark
mass for fixed a and rn, .

We now turn to the coupling matrix 0„. Com-
paring (3.23) and (3.32), we see that the absorptive
part of 0„ is proportional to

I d() A „(Pk,l„nL JM).
+ NA lX2

where

For this purpose let us define

(3.35)
I

(3.36)

with

H„'~ „~.(P) =f ' Q C ( JLL '; I )I„'~(P) I' ~, (P),

(3.40)

(3.41)

(3.37)
where i labels the decay channel (e.g., DD, FF*).
The constant f ' is defined by

where j, and erf are spherical Bessel and error
functions. Then (3.35) becomes

9
K=it(, 'P ' ' I' (P).c gp nZ (3.38)

All terms in (3.34) can be similarly reduced to
A

the I~, polynomials in I', and polarization tensors
for g„, C„and C,. Further details are given in
Appendix D.

We have evaluated I„'~ numerically. Figure 3
shows the function I„', for the decay of n'S, sta, tes
of charmonium into a DD pair' or an FE pair as
a function of the momentum of the decay product.
The P- and F-wave integrals, I„2 and I», for
cha, rmonium D states are shown in Fig. 4. for an
outgoing DD pair and n = 1', 2. The parameters
used in these calculations are the "renormalized"

q=u, d, or s, (3.42)

and the C's are combinations of 3-j and 6-j sym-
bols. The dependence of E, ,(P) and f ' on the
channel index i is suppressed for simplicity. For
more details see Appendix I3.

The matrix Q„L,mL, only connects cc states
having the same J . Note also thatinsdfar as we
stick to the basic interaction (3.2) for all flavors
of quarks, its spin-independent nature implies
that the matrix O„~ ~, is diagonal in I, when all
final spin states within the same cq (and cq)
multiplet are included. This is obvious from
(D26). It is instructive, however, to examine
some simple cases. Consider, for example,
final states containing DD, DD*, D*D, and D~D*
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pairs. Then we have

(-
H„' (P) 2/2/3 I„' (P) I' (P)

(-~i )"

0.3

0.2

O. I

1: DD

for i = 2: DD~+D*D

3 o D+Dg

(3.43) g -O2
K

-0.3

In fact, with m(D) = m(D*) as required by a, spin-
independent V„EI(P), and E,'(P) are independent
of i, and the terms in the sum

H„*„.,(P)
W Ej'(P—) —E~~(P)

cancel each other leading to a vanishing Q„, ,(W).
This picture is obviously too crude to describe

the charm threshold region where, in particular,
the mass difference between D and D* cannot be
ignored. Since the calculation of charmed-meson
masses is, outside the domain of validity of (3.2),
we treat these masses as external parameters.
Thus we describe the charmonium system making
use of the observed or estimated masses of

Q. l

-Ol-

-02-

-0.5
3.6 3.7 3.9 4.0

W(GeV)

4.I

FIG. 8. Dispersive part of the effective cc interaction
0; the latter is defined by Eqs. (3.22) and (3.23). Decay
products included are all allowed two-body combina-
tions of D, D*, E, and E*. These curves are obtained
from those in Fig. 7 by the dispersion relation (3.40).

charmed mesons.
An important consequence of this procedure

is that the cancellation mechanism illustrated
by (3.43) no longer works and A„~ „~, is generally
nonvanishing for L cL'. In particular, this mech-
anism induces a strong S-D mixing between 2'$,
and 1'D, charmonium states, ""as we shall
discuss in greater detail in Part II.

Some of the matrix elements of 0 evaluated
numerically for the energy range 3.6-4.3 GeV
are shown in Figs. 7 and 8. A strong and com-
plicated energy dependence of 0 is evident, as
well as the $-D mixing just referred to.

-0.3-
C9

-0.4-
C

-0.5-

Do-Q6-

07 I/

3.7
I

38
1f

3.9 4.0
W(GeV)

4.1

I

4.2 43

FIG. 7. Absorptive part of the effective cc interac-
tion Q. The thresholds for decay into nonstrange
charmed mesons are shown. The 2S-1D element is res-
ponsible for the coupling between P (3772) and the e e
channel. In this figure the light-quark masses are the
same as in Figs. 3 and. 4, but m~= 1.45 GeV and a
=1.99 GeV ~. This change of parameters is brought
about by the "renormalization" that must be done so
that the g'-g mass difference agrees with the ob-
served value afte~ coupling to closed decay channels is
incorporated. Meson masses are 1.863, 1.868, 2.006,
2.008, 1.995, and 2.185.GeV for D, D, D *, D
and E*, respectively.

G. Exclusive channels

In order to understand the structure of AR, it
is useful to express it as a sum of exclusive
channel contributions. For this purpose let us
rewrite (3.11) as

g g'=g'(n n')g. —

On the other hand we have

(3.45)

—.(0 —Q~) = —n' Q H'(P) —E,E,

from (3.40). Returning to (3.44), we thus see

(3.48)

m(w) =,—g q„,(0)y„,(0)
nm

x Im(no lg(W+io) l~» (3 44)

where
l
@no) is a cc 1 state with L = 0 and prin-

cipal quantum number m; S =J= 1 throughout,
and therefore is suppressed.

Since 8 is symmetric and G = G, we obtain from
(3.18) and (3.22),
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that the contribution of channel i is

R, (W) =, P,. E,E,Q g„(0)(nOI9 H'9 Im0&iII„,(0) .
(3.47)

A more explicit form for the exclusive channel
ratio R, can be obtained by substituting (3.41) into
(3.47). For instance, for the three channels cited
in (3.43), we have

R = P&E,E f g P g (0) 9+ „—I„' (P,.) I!, (P, )9„. ..

t'- '"1
+8+, „, 2M2/3 ~I„',(P, ) I„'„(P))9„„„+c.c.'

(-~-~ )

+9*„,,„, —', I„',(P,) I', (P;) + 0 I„',(P,&I~, (P,.) 9, y, (0)

(3.48)

where the summation is over the radial quantum
numbers of the 1 charmonium states.

Two important features of R, are clear from
this formula. First, the n'D] cc states do con-
tribute to (3.47) and (3.44) as intermediate states;
and second, the influence On R, of channels other
than the ith channel is fu. lly incorporated into
(3.47) through 9.

H. Leptonic widths and radiative decays

The influence on bound states of couplings to
closed decay channels may pow be studied. Let

I
o. ZM& be a bound eigenstate; in the resolvent

(z —H) ' it will appear as an isolated pole at z =

E ~. ithin our approximation scheme we have

JM& =g a's'. I y~ "LJM&
nL

+ Q Q jl d'P bq~~~~ (p) Ic;ipkP, JM&.
XgXg

(3.49)

Here Ig; ) and IC; ' ') are, respectively,
states in the cc and decay sectors in the absence
of decay couplings (i.e., eigenstates of H„and Hc).
As before, i labels the decay channel (e.g. , FF*),
X„X,are helicities of thy charmed mesons, and

p is their relative momentum.
In the notation of (3.44), the cc amplitudes in

(3.49) are found from the residue of 8~(z) at E„~,

a s awe' = lim (z E z)(nL 18'(~}
gm g

(3.50)

where 9 is the part of 9 corresponding to fixed
J (and S). To obtain the b amplitudes, we must
consider matrix elements of (z -H) ' the, t connect
the cc and decay sectors. Using (3.17) we have

g(& —E ) '(C;ipse, X,JMIn JM&(n JMIg;nLZM}

=[s E,(f ) -E.(~-)] '

I'(P -lP = ' ga"'P (0) ' (3.52)

xg (C~i pXP2Z
NL'

Everything on the right-hand side of this formula
is known. Hence

y~,~, (p)a~~~= lim (z -E,~)
g~ g

(C;i pic, JIHz8(P;n'L J&
—E,(f ) --E.(f»

(3.5.1)

This completes our determinat'ion of the state
vector (3.49).

The leptonic width of any 1 state is then the
obvious generalization of (2.2),
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Since this is a coherent superposition of "naive"
states, it is difficult to gain an intuitive under-
standing of the modifications of the leptonic widths
produced by coupling to decay channels.
. To evaluate radiative rates we need

where j is the quark electromagnetic current. . For
brevity we shall write (3.53) as j,. Since the
states in (3.53) have the structure of (3.49), j
is the sum of three terms: (i) a matrix element

, in the cc sector; (ii) a matrix element j
in the decay sector; and (iii) a cross term jx„,.
The first two terms have an obvious physical
significance. The third arises because j itself .

can create or destroy a qq pair, and thereby cause
transitions between the two sectors.

At first sight one might think that: these pair
terms. in j are manifestly negligible in a non-
relativistic model Such as ours, and that j~,
cari. be discarded without further thought. This
is not so. The pair terms occur in the same (first)
order as the conventional terms j~, and j~ „and
thus carry no suppressing energy denominators.
It turns out, however, that j, provides only
minor contributions to transition rates. A sum-
mary of the rather involved calculation of jx,
:can be. found in Appendix F.

The evaluation of the j~, is a straightforward
generalization of what was reported in Sec. IID:

j', , =pa„',' ~„, ', (y;nLZMij ig;n'L'Z'M').
nn'
LL'

(3.54)

The El matrix elements appearing in this sum
are to be found in, Appendix A.

. For E1 transitions in the long-wavelength limit,
the decay-sector element j, &s, in principle,
very simple. The state iC; ) in (3.49) can be
treated as if it, contained two structureless par-
ticles (mesons) that are either singly charged,
or neutral. All effects arising from the meson
magnetic moments or transition moments such
as D ~ -By do not contribute to these E1 trans i-
tions. Thus the basic matrix element is

(C (PX) ij iC (p'A, ')) =5 5', , (3.55)

in the notation of ('3.29). The two-body state in

(3.49) is rela. ted to those appearing in (3.55) by
the well-known formula of Jacob and Wick,

~c;p~p, zM) =
' "fdjD'„, , (j)

x iC, (p X,)C,(-pX,)) .

As we have already shown how to determine the
coefficients 5 in (3.49), all the ingredients for
the evaluation of j, are now at hand. Neverthe-
less, the final formulas are complex and their
derivation involves a good deal of angular mo-
mentum manipulation. These details are sum-
marized in Appendix E.

I. Meson-meson scattering

Scattering amplitudes such as BD*-FFare
not about to be measured. Nevertheless, we wish
to point out that our techniques automatically
provide an S matrix for such processes that is
guaranteed to be unitary, and which incorporates
those s-channel singularities that one would ex-
pect to dominate in the low-energy regime. As
we hope that these calculations will stimulate
similar work in the "old" spectroscopy, where
scattering amplitudes are measured, we briefly
indicate how to extract such amplitudes.

As explained in Sec. IIID, we ignore "final-
state" interactions between charmed mesons,
or t-channel exchanges. These are expected to
produce slow modulations of the rapidly varying
amplitudes arising from the s-channel cc res-
onances that we do retain. The scattering am-
plitude is then

&p, p, lT(a) lp'p.') =g &p, p, lVlnLS&M)

x &nI.
i

9"(.) in I. &

x (n'L'SJM
I

Vt
I
p', p

(3.56)

where, for simplicity, we are considering spin-
less mesons (i.e., DD or I I' scattering). B~~isthe
part of 8 corresponding to fixed 8 and J. Consider
first S-wave scattering. The intermediate ct."
states then have L =S=1, J=o (i.e., 'P, ), a.nd the
matrix elements of U are of the form

( p p, i
VinS =I. = 1J = 0) = 0'( p, + p,)—

(@ @ )j/2

(3.SV)

where W =E~+E„and the on-shell. amplitude is

(P P iT iP P )=5 (P +P —P —P )
W

xg D„(W)9„~" (W)D~ (W) .
nn'

(3.58)

Obviously the width matrix 1"„„,, defined as

—iI'„(W) =Disc 0„„,(W),

is also bilinear in the D„(W). Its detailed form
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3.775,

gm S

3.765

3.750

While the formalism derived in Sec. III is based
.on a sequence of very plausible concepts and ap-
proximations, the solution of the equations in prac-
tical calculations requires further approximations
that are not so well founded. In particular, we
are, at this time, unable to handle a large enough
set of decay channels to allow us to extend the cal-
culations far above charm' threshold. These more
mundane matters will be discussed in detail in the
second paper of this series.

4.15

4.2

3.875
I

FIG. 9. Argand plot of the DD S matrix in the 1
state. The rather narrow elastic D& resonance g (3772)
is clearly in evidence, as is an inelastic resonance at
-4.15 GeV due to the 3 3S cc state. The parameters are
the same as in Figs. 7 and 8.
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APPENDIX A, EIGENFUNCTIONS. EIGENVALUES,
AND RADIATIVE MATRIX ELEMENTS

IN THE cc SECTOR

In this appendix" we collect detailed information
about the solutions of the Schrodinger equation

is found by substituting (3.58) into (3.23):

d' l(l+ 1) —p+ —+(- 2l= 0
--dp . p, " . p- (A1)

It now only remains to extract the partial-wave
amplitude from (3.58). The final result for the
phase shift is

[see (2.8), (2.9), and (2.17) for notation]. u is nor-
malized as in (2, 10)", and our phase convention is
that u„,-c„,p"' as p-0, with c„,&0. We also de-
fine

e'"=1 —Tr rg . (3.59)

This expression also applies to other partial
waves. Figure 9 shows e'" for DD scatteringin
the 1 partial wave from. threshold to 4.3 Gep;
the 'D, [$(3772)] and 3 'S resonances are clearly
visible.

IV. CONCLUSION

We have shown that one can generalizt: the "na-
ive" quark model, with its purely discrete spec-
trum, to a more realistic model that incorporates
the important hadronic decay phenomenon. Though
this generalized model still rests on a variety of
drastic simplifications and approximations, it can
be used to analyze a number of phenomena that
are completely beyond the scope of the "naive" mo-
del.

Our formulation of the coupled- channel model.
has been tailor-made for the "new spectroscopy", .
and therefore relied rather heavily on the nonrela-
tivistic approximation. A generalization of the mo-
del fr ee of this re str iction would be highly des ir-
able as it would open up the vast store of data of
"old hadronic" spectroscopy to a similar. analysis.

(v') = [du/d p]'d p.
0

(A3)

TABLE I. Dependence of the eigenvalue ~ go

&p & and &v & for the 18 state on the Coulombic
parameter A, .

0.0
0.2
0,4
0.6
0.8
1.0
12
1.4
1.6
1.8

2.338 107
2.167 316,
1.988 504
1.801074
1.604 410
1.397 877
1.180 836
0.952 644
0,712 662
0.460 266--

1.1218
1.2494
1.3942
1.5583
1.7435
1.9519
2.1856
2.4466
2.7366
3.0898

0.7794
0.8389
0.9069
0.9842
1.0721
1.1716
1.2836
1.4095
1.5500
1.7063

As is seen from Fig. 2, only the 1S state is
strongly affected by the Coulombic interaction for
the range of X of interest. We therefore provide
a separate tabulation, Table I, for the 1S state
which shows the'X dependence of the eigenvalue

(p '), and (v'). Figure 10 shows u„(p) for
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TA . ' ' i i nvalues f and expectation values, p
':2~ and (g 2)TABLE II. A, dependehc'e of eigi' nva ues a

2P

g (o)
r8 f-

+o2
A
A~~

Pp
Vg
V

4,0879
-0.5826
0.0302
0.8207
0.2872
0.0309
1.3626
0,1951
0.0293

5.M06
-0.4734
-0.0142

0.6953
0.1954
0.0085
1.8402
0.1593
0.0127

6.7867
-0.4081
-Q.0084
0.6215
0.1508
0.0030
2.2622
0.1373
0.0072

3.36:13
-0.5106
-0.0252

0.3141
0.0582
0.0093
0.4921
0.0516
0.0087

4.8845
-0.4107
-0.0119

0.2565
0.0357
0.0031
1,1151
0.0651
0.0062

4.''2482

-0,3872
-0.0104

0.1679
0,0176
0.0015
O.4089
0.0231
0.0020

5.'6297
-0.3305
-0.0062

0.1445
0.0121
0.0007
1.0097
0,0372
0.0023

e '
h weaker X depen-

ues of X.

Teoh thei States have a much wea er
dence. For eth in the following interpolat'
ulas hold in the interval 0 ~~ ~1.5:

(A4)g(z) = g(0)+ z, Z+ z, x.',
"k -k k 2 (A5)(p ")=jt,'+R ~+~, ~,

(A6)(v )= Vo+ V, X+ V~X .
(A4)-(A6) are listed in TableThe coefficients in

(A4} isr accurate to one part in

A5) and (A6) to one part in 10',. Figure
th wave functions themselves when X= 0.

Table III gives the first'nonvani '
g

ients a(n, t, Xr o e ' '
or& snf th wave functions at the origin

me P arid D state. These values are useful
stimating hadronic decay wi s o

The g1 transitions involve the in egra

ur(p)u, (p)j,(Kp)d p.M„.(z) =
4p

12 for the case X = 0.These are shown in Fig.

APPENDIX B. SUMM RULES SPECIFIC TO LINEAR
POTENTIALS

(A9)

For purely linear potentials,or p
' ' the E1 transition

matrix elements &„~ „,~,, defined by

spur(p)(&pj's(&p) j(A-p)]u&(p)E
y

—— pQf p

(A7)
where

ka
(A8)

2(m a)"' '

hese a,re tabulated i.n Table IV for the ca.se K=O.
The K 40 correction for the 2S-

d function of X in Table V.
For hinrdere d M1 transitions one needs t e '—

teg rais

0.8

0.7

0.6

G.5

~ r. n r. = pdpunr. (p)un r. (p)

satisfy a peculiar sum rule,
r

&nL„n p==0.
n'= p

A similar sum rule holds for the integral

(B1)

(B2),

0.2-

O. l

TABLE III. ~ deyendence of thethe first nonvanishing
a n i, A)( of the wave t'unotioiis at the ori-

gin defined by-|I)„j{r) p':(&, &, ~ &
&

or

la(n, l, X))

2P

0
r:

2
P

FIG. 10. The 18 wave function g&p(p) for various
values -of the. Couiombic parameter A, .

5 0 0
0,6
]..2
1.:8

0.517
0.657
0.830
1.042

0.6 74
0.825
1.001
1.209-

0.194
0.238
0.291
0.354

0.302
0.361
0.431
0.513
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0.8

0.6 0.6

0.4 0.4

0.2

0

-0.2 -0.2

-0.4
-0.6

-0.8
0

-0.8

0.8,

0.6

0.4 "'

0.2—

0.8

0.6

0.4

,0.2

-0.2

-04

-0.6

-0.2

-0' 4

-0.6
-0.8-0.8'

0 l 4
P

FIG. 11. (a) Wave functions for ].ow-lying S states for the case X= 0. (4) Wave functions for low-luring P and D states

for the case X=O.

TABLE IV. E1 matrix elements ~~ ~.

0 0.5 1.0

which appears in the decay amplitude. In this
case we have

1.5

g I „',(P)= 0. (83)
n= 0

These sum rules provide a powerful check on. the
consistency of numerical work. It is seen from
numerical results that nP - ri'S amplitudes are Ih, rge
only for n' nand n'=n—+1. The sum rule (B2)
tells us that these two amplitudes are of the sa'inc

1S
2S 1P
3S ]P'
1S 2P
2S 2P
3S 2P
1D ]P
1D 2P

1.705
-1.646
-0.04343

0.097 5
2.488.

-2.488
2.368. '

-1.758, ,

1.559
—1.6 70
-0.020 37

0.147 1
2~333

-2.534
2.280 .

—1,767

1.412
-1.686

0.004 59
0.190 2
2.177

-2.573
2.192

-1.774,

1.268
—1.691

0.030 52
0.224 4
2.020

-2.601
2.10/

—1.7,79

0
0.7
1.4

-3.734
—3.297
—"2.-'8:7'1

-1.646.
—1.6 77
-'1.691

TABLE V. E ~0 correction for the 2S 1P transition.
as a function of A, , where 8 Q. +) =&f Q ) + +2( ).
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dg u. .(p) = - ——5(p) .c dp

Thus we obtain
1

dQ &nr„n o= —— p&pu, z(p) —&(p)
n'=1 c 0 dp

1—u„i(0+ )

(BV)

=0 (B8)

for L = 0, 1, 2, . . . , which proves (B2).
The sum rule (83) can be derived by a similar

argument. We have only to note that

u.,(p) = PR.,(p)

and

e(t) —-', t'

for t-0.

APPENDIX C. DERIVATION OF FORMULA (3.1&)

In this appendix we derive the charm contribu-
tion, to the ratio R in e'e annihilation. The ratio

, ~ due to charm is given. by

67T
~R(W) = —p, (W), (Cl)

K

FIG. 12. Matrix elements for some hindered Ml trans-
itions as functions of E= (ka/2)(m, a) ~~ for the case X=0.

where q' = R" and

-(a ~'- e,e.)p. (iv)

d4xe"" 0 j x j„0 0
charm '

(C2)

order of magnitude and of opposite sign (see Ta-
ble IV).

Proof of (B2): Consider the completeness re-
lation for L'=0:

8 0 P 0 ~0 P 6 P P
n'=1

(B4)

Differentiating this with respect to p', we obtain

'M g0 P ZE„,0 P = — Q P —P

= ——&(p- p')
dp

Now, for linear potentials only, we get

(B5)

d
u„.,(p') = c = const. independent of n'.

dp pi 0

(B6)

From (B5) and (B6) we find

Thus our task is to calculate p, (W).
Since quarks are confined in our model, e'e an-

nihilation into hadrons proceeds through the pro-
duction of spin-1 cc bound states. Let us first
evaluate the. matrix elements of the electromag-
netic current j, between the vacuum and these
bound states. Expanding the bound states as in
(3.29), and expressing j, in terms of the quark
creation and destruction operators, we find that

. 6 i/2
g, x ~j,(0) ~0)=

( ), e,e„(X)|tj„(0),

where ~n, X) is the nth cc bound state at'rest with
polarization X, &, (X) is the polarization vector,
and $„(0) is the spatial wave function at the origin.
Since $„(0) vanishes for nonzero-orbital-angular-
momentum states, only S states contribute to the
matrix element (C3).

Next, let us introduce a phenomenologica1. field,
Q„„(x), associated with each bound state n'S, .
Then, using the matrix elements (C3) as coeffic-
ients, w'e can express the electromagnetic current,
j, as a linear combination of these fields:
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(c4)

[P,.(x), Qt,.(x')]= 5 „5„.5'(x —x').

Finally we define the retarded Green's function

()„.(l „(q')-- —J d'xe" * ~'e(x')

j (x) = e ~6 g 0 (o)[4 (x) + 4.' „(x)].

The field operators P„,(x) satisfy the equal-time
commutation r elations

and spin-angular wave functions,

4„(x,s,s,) =p„(lxl)xmas( x 2~") ~

They satisfy the normalization conditions

dry'Iy. (r) I'=1,
0

/

dnlx „(s,s„t)I'=1.
S~ S2

'(D2)

(D3)

(D4)

~ «le. , ( )e„',(0) Io).

Then from Eqs. (C2), (C4), and (C6) we readily
obtain

(c6)
I

p, (W) =-12e,'lm gg g.(0)8„„(W)q„(0)
nt n

(CV)

Together with (Cl) this is equivalent to (3.11) if
e,'= —, is substituted. It is easy to verify that g „
defined here is the submatrix of the resolvent in-
troduced in Sec. III restricted to the S states.

The function y«„describes a state of total angu-
lar momentum J and its z-component M construc-
ted by the standard procedure from the spherical
harmonics Y,„(R) and the spin eigenfunctions

1
X.i(sis2) = X'(si) F,X(-S2) ~

vY
The matrix I'„ for a state of spin 0 is

(D6)

while that for a state of spin 1 and polarization A.

is

Q~~(x, s~s~) =, ,2,3(~ e Q~)((pq 1 2) q

t2w)

which can be written as a product of radial

(Dl)

APPENDIX D. DECAY AMPLITUDES AND RELATED
QUANTITIES

We supply here some details of our treatment of
decay amplitudes and related quantities.

We begin with the Fourier transform of the wave
function P„~(p, s,s,) defined in (3.29):

I s)t=+ (D7)

where E, is the polarization vector.
i,et us first consider the amplitude (3.33) for the

decay of a charmonium state i.nto a pair of S-wave
charmed mesons (D, D*, F, and F*). Following
the discussion of Sec. IIIB, we shall ignore all ef-
fects of the Coulombic term both in the potential
V and in the wave functions. Thus, in particular,
we replace dV/dx by a a '. Then (3.33) can be re-
written as

~„(px,x„.n) = — ~ (JM ILm, sx)s(d, x„d,x„sx, ~)
. 1 1.

2'PÃ 0

dxd yx Y, y ~ x 2 x —y Fil~ y e'~c'", (D8)

where B„~ is the radial part of the charmonium wave function g, (y) [see'(E3)] and

The vector X', has the components

1
S,=+--- (X, ~fr,), t, =x,.

2

The same applies to o,. Approximating the wave functions (((), and Q, by the Gaussian trial functions

2P 3/4
p, (x) = p, (x) = s e ~s

'IT

where )6s is determined by a variational calculation and is given by (3.36), we obtain

(D9)

(D10)

(Dl1)

with

d', , —y = ., — 4 Py,
~sy m

(D12)
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c (t) = te ' + (t' —l)e ' I2 — erf
W2

Carrying out the angular integration over y we arrive at

A„(12',X„n)= Q BL,~(sJ,X„J,X„lm)(-1)'I„'L(P)7, (P),

(D13)

where

16& & l'& 2L+ 1
BLI~(sJIX~, J2X2, lm) =

2 2 g (LsM'X l JM)(L1001lp)
m,.a' P' g'm'X

x(LlM'm' ~lm)S(J, X„J2A.„sX,m'), (D15)

Substituting (D14) into Eq. (3.23), we obtain

Jg Jqs(p
P2dP nI.. mI '

W- E,(P) —E2(P) +i 0 '

where

(D17)

II„L 1LP'(P) = f
' Q C(JJ J,s, LL', l)I „'L(P)I '

L,(P),
1

(D18)

The coefficients C are determined by

3(211)'f'C(JJIJ2s, I L', l) = Q Q BmLI~(sJ, X J2X lm)BL, I~(sJ,XIJ2X lm)

1
LI'N( 1~1J2~2™)L'I M( 1 1 2~22J+1

where the last line is a consequence of the inde-
pendence of C on the magnetic quantum number M;
we have also defined

2

f'= 2(m a'p 't'm) '= — m ' ' . (D20)
m 'm +rn

C g

(2) s= 1:
(i) J,= J', = 0,

[(2L+ 1)(2L'+ 1)]'i2
Jt 2J+ 1

x (L100 l Jp) (L'100
I Jp) ~ (D23)

The summation over various magnetic quantum
numbers in Eq. (D19) can be carried out by a
standard exercise in combining several angular
momenta. The results involve 6-j symbols and
are given below.

(1) s=p:

x ~iJ., L L J
(D24)

(ii) J,=l, J,=p or J, =p,

C = [(2L+ 1)(2L'+ 1)]' (Llpp lip)(L'100 (lp)

C = ALL. OIL I (L100 ~lp) I'B(J,J2),

B(J,J,) =0 if J,= J,=0,

B(J,J,) =1 if J,=1, J, =p

or J,=O, J,=1,

B(J1J2)= 2 if J1= J2 = l.

(D21)

(D22)

(iii) J, = J,= 1,

C = [(2L+ 1)(2L '+ 1)]'"(I 100 i l 0)(L 10P it 0)

X
251~, L i J

L' 1
2L+ 1 2J+ 1

(D25)

Note that for s= 1 the following relation holds,

Q C(JJ,J,s, LL', l) = 4i) ~ I (L100 Ilp) I2. (D2&)
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Final state Threshold behavior Statistical factor

DDp

DDp (q~=j2-)

D*D
0

(il. = 2)

DDp

DD, (j,=, )

D 2t:D
2

Forbidden

S-wave

S-wave

S-wave

D-wave

D-wave

D-wave

D-wave

'2
3

3

3

3'

3

3

3

This means that if one ignores the mass difference
of the s-wave charmed mesons of different spins,
then there is no mixing among states of different
orbital angular momenta.

%'e have also considered the quasi-two-body
decay of (&c) bound states with the next lowest
thresholds, decay into a ground-state charmed

TABLE VI. Systematics for decays containing charmed
P states. Here jl. is the total angular momentum of the
light-quark constituent of Dp as seen in the rest frame
of c.

meson (& or L)*) and a P-state charmed meson"
(D~, D~, D~, , or &~).

A good approximation for the radial wave func-
tion of the P-state charmed mesons is given by

(t))s(x) = NJ, xe (D2't)

where N~ is the normalization constant and P ~ is
obtained from a variational calculation. The ex-
plicit form of P~ is

16pa '/'
()1 =reduced mass) .

(D28)

Proceeding as before, we can calculate the vari-
ous invariant decay amplitudes and finally the con-
tribution to A(W) of each of these final states. The
calculations are quite tedious; we record here on-
ly the results for the contribution to Q.

Consider the decay (cc) n""L J into (c7() 1'.""SJ,
and '(cq) 1'"'PJ,; then the contribution of this fi-
nal state to 0 is given by

H(J, s) J1(J2,ss)(P)
fl(J, s)J1(J'2,22) (gr) dPP2 1™l2""™" ., W-Z, (P) —F.,(P) '

(D29)
where

J

&"i"'s'"""'(&)=(f')' Q Q Q [(2f, +1)(2l,'+1)(2J2+1)(25+1)]'~'(1100(l,'0) Q,f,'00(L'0) $'1~'(P)
I= P,l,2 L '= 0,2 ll

E' s J l' s J3(1 +s )(J'1+s2)/2( 1)s 1 2 1 2 1

s2 1 1 L L' ll

with

Q [(2E 2 + 1)(2l2'+1)(282 + l)(2L + 1)]'~2 (1100(l2' 0) (L2l,'00(L'0) ()( ',, (P)
'2

E' s'Z
)( Q 3(] +s/)(J1+s2)l2( ])s 2 2 2

Aats'= p, l s2 1 1 L L'
E2 l J s

(Dso)

3 /4 4 8p5 l/4

(Ds1)

s."'(&) f4~'s =(~b (v.»)& (v).
0

(Ds2)

Pep~"'"=
4(P, P.)' '"'

Ps P~'X' ~ (Ps+Pa)' '
„2 Ps

(s, ().) ' * '"'
((). ().)' ) ' (Ds3)
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"'"= 4(P. P.) '"
x —1+ 3 ~$+ a — $&

(Ps+PI )'/' (Ps+ PJ)' '
Ps f Psy

4 P 3/2@3 Ps/ (p +p )&/&
(p +p )1/2

3 3 y erf
(P +P )" (P +P )"

$3 $+ p p

(D34)

In general, both S-wave and D-wave decays are possible. For the decays of a '8, (cc) state into D
(or D*) and a D~ the threshold behavior is shown in Table VI.

APPENDIX E. I ~, AND g „,CONTRIBUTIONS TO ELECTRIC DIPOLE MATRIX ELEMENTS

The purpose of this and the following appendix is to derive explicit expressions for the various pieces
of an E1 transition matrix element introduced in Sec. IIIH. In this appendix we will present results for
j ~ and j ~: the matrix element of the electric dipole operator in the && sector and the charmed-me-
son sector, respectively. In the cc sector, the constituents are quarks whose wave function is an eigenfunc-
tion of a nonrelativistic Schrodinger equation. (As in Appendix D, we ignore all effects of the Coulombic
term both in the potential V and in the wave functions. ) In the charmed-meson sector, on the other hand,
the mesons are the constituents and the wave functions are given essentially by the decay amplitudes
computed in Appendix D. Thus we find it convenient to work in coordinate space when computing j ~ but
in momentum space when computing j«..

As is seen from (3.54), j „~ is given by

j„'., = g g a„",'*a„",",',

(y; nLJMg~y; n'L'J'M'),
nn' LL'

where the coefficients a„"r, are given by (3.50). In the electric dipole approximation we have

(y; nL JM
~ j ~y; n'I. 'J'M') =-i, e. g d'x g„*«„(x,s,s,)xg„.l, .~.„.(x, s p, ) .

S~S2

The wave function tj can be written as

g„l.»(x, s,s,) =R„z,(r)xz„z(x, s,s,),
with

y»z(x, s~s2) = g &I,, s = I, mg I JM& ~ X (s~)as'(-s, ) Fz~(x),
?Pl/I

(El)

(E2)

(E3)

(E4)

where we have restricted ourselves to triplet spin states. Substituting (E2)-(E4) in (E1) and carrying out
spin sums and angular integrations, we find

J'I
j s, =(-ik)

/
— ', ~ (-1)"[(2J+1)(2J'+1)j' ' Q $„~

O' J 1
x g g a„"~ a„"z~ (10(L'L00) [(2L+1)(2L'+l)j'/'

nn' LL' L I' 1

where E„~„.~ is the dimensionless dipole matrix element defined by (2.22). We have also introduced
the vectors

(1, +i, 0) g, = (0, 0, 1) .
2 (E6)

We now turn to the calculation of j~„. In the notation of Sec. IIIH we write

I, )nJM& =g
XgX

(E'I)
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where Po is the projection operator into the decay sector, iu JM& is an eigenstate of the full Hamiltonian
at rest, and p is the relative momentum between the two charmed mesons C, and C2. The coefficient
/t,"t,,q, (p) is given by (3.51). To compute j„we need the basic matrix element of the current between
charmed mesons,

«.(P) I j I&a(P'~')& =5.85» (E8)

where e and m are the charge and mass of the charmed meson n. In the dipole approximation we find

/&. , =&JM„(P„P,iJ m ~ &

(t )
Z Z ' f n 2 o; i,i,(n —b; i,i,(2 ),

where p, ; is the reduced mass of the two charmed mesons and e; the charge of the charmed meson
(D, D*, For E*). With the aid of the equation of motion

—= —.[x I/]p 1

Wf

we obtain

):„,= 2, g g rfn )(iP(,.;,'()t)v, (,;i"i (3),
i 1 2

where we have used

(E9)

(Elo)

(E11)

1-
x = ——. Vp. (E12)

Equation (E11) is the momentum-space analog of (E2).
To proceed further, we must find an explicit expression for the coefficient /),"-q,),,(p). This is obtained

from Eqs. (3.32), (3.50), (3.51), and (D14):

/);;...(p) =
i Q Q I/„tt(sJ, Z,J,Z„,/m)(-i)'"'I„'L(p) 1',„(p)

[3(2tt) ] / nL im

The gradient operator in Eq. (El 1) can be eliminated using

g+y j/2
$ g

&, (f(t)&.(t)l=-(I(„, t'(t) t(P) T, „,.(t)-+—2( —,
— t'(t)+

where Tti (ttt) are the vector spherical harmonics defined by
r

Tt~ (P) = Q (/1m'p. i jm& Yt .(P)(„.

gaJ
nL

~ Z
- Et(p) —&2(p)

'

p
f(P) Tr, i,. (P),

(E13)

(E 14)

(E15)

The P-angular integration is now elementary. The result can be expressed in terms of the integrals
00

~
)

J'n, 'Jn', t (1) dpp24 t nJi (p)n C,
t', a' J'i

(p) C, t', nJ'
(tp)

0
00 ]

Za J, a'J', i (2) dpp24, laJ't(p)n: , @
t', a' J'((p) +

+
4)

t', a'Z'i(p)
0

where

i, cJ& I„'L (p)
&. -&,(p) -&.(p)

(E16)

(E17)

After the summation over the magnetic quantum numbers is carried out, the final result involves 6-j and
9-j symbols:

nC] (2 tt)3 3 +2 m 2tt 4P3 (- ) ~ $
~

„L &„"L [etD '
(JnL/, J'n'L '/', i)K Lt "„;Lrt, (1)2n' 3g mq a P (-M' M m

+et D"'(JnI/ Jrn'L'/', i)@a~a,',",(2)]

(E18)
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We list the coefficients & ' and D ' for various intermediate states:
(1) The intermediate state i consists of two spin-0 charmed mesons:

(,) . . . , .
) ~, ( L+1)(2L'+1) ' ' J'+1

2J'+1 2J'+3

x (I, 100~J 0& &L100~ JO& ~„,„~,,~. . .

(„, , )
x (L '100( J'0& (L100

~
JO& 5 ~ ~„,,5, ~6, ,~, .

(2) The intermediate state i consists of a spin-0 and a spin-1 charmed meson:

D~')(JnLl, J'n'L'l', i) =(-1) [(2J+1)(2J'+1)(2L+1)(2L'+1)l]' '
1~

1LL'
x (I.'100 Il'0& (L100ll0& f),

, , +, — 1 I.'
L'1 1 Jt

Di')(jnLl, J'n'L'l', i) =(-1)' [(2J+1)(2J'+1)(2L+1)(2L'+1)l']' '

1

x(L'100ll'0&(Llooll0& f)&)' q ,-—1 I, ' l'
L L' 1 1 l' I

(E20)

(E21)

(E22)

(3). The intermediate state i consists of two spin-1 charmed mesons:

1 2Lt 1 1/2 Jf 1 1/2
D'"(JnLi, J'n'L'I', a) =(-1)' ' )( ',' (L'100,l

j'0& &L100 I J0& ~,,...~, ,& p, ,2J'+1 2S'+3

+(-1) 2[(2J +1)(2j'+1)(2L+1)(2L'+1)l]'l'

L 1 l

x (L'100il'0&(L100jl0& 5, ,„+1 L' l'
1 1 l' l

(E23)

&2L+ 1M2Lf + 1~ / Jf
D~'~(jnLl, J'n'L'l', i) = (—l)~ ' " ' (L'1001j'0& (L1001J0)&

~, J,J '-l~l, g ~~ 'g '

+ (-1)'24(2J+1)(2J'+1)(2L+1){2L'+1)l'

L 1 l

x (L'1001 l 0& &L100110&f), , , + 1 L' p . (E24)
L L' 1 1 /' l

APPENDIX F. CROSS TERM j
The cross-term contribution to the E1 matrix

element defined by

j ~ =(o.'JM)PgjPc)n' '
JM& (n+jM)PcjP~~o'J'M'&,

in (3.49), or equivalently,

P, ~o JM&=g, a„,'~q;nLJM&, (F2)

P ~»»ZM)=g g Jd '))«, (»»))C», C» ,«;i«»«, «-ZM),
Xgk2

is not gauge invariant. This raises a tricky prob-
lem whose satisfactory solution cannot be found

within the patchwork approach of this article. To
see this let us expand the state vectors in (Fl) as

and consider the matrix element

g~ = (|t);n LJM ~)j „~CiC, ; z pX~)).2 JM &,

(F3)
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g„can be expressed in terms of the wave functions
for the cc bound states and charmed mesons. A
straightforward calculation gives

tion

p =i[a, x]
m

(F9)

(2 )
g' /8 Q f 8'xd'3e'" ('„g„(Vs,s, )

fs)

+ 4i(xi spD42(x —y~ s2s2)

X -sg Xs2
(F5)

e,
(2~)/: xd 1e 4 LJ N( ys, s2)

4i(x& ~lsl)4'2(x y~ s2s2)

cr ~ k
X -S1 2 B/E X82 (F6)

Gauge invariance requires that

k "0 =0

f-0, as k"-0. (F6)

As is readily seen, however, (F5) and (F6) satisfy
neither of these relations. (But note that $,-0
for k~-0.)

How should we understand this failure of gauge
invariance? In a eovariant Feynman-diagram
approach, the contributions j ~o~', j „„,and j ~~i
must be computed as a whole to ensure gauge in-
varianee. In our noneovariant formulation the
contributions j ~ ~, and j ~, are separately gauge
invariant which follows from the equation of mo-

in the respective channel. However, the justifica-
tion of this equation requires the assumptions that
the charmed mesons are pointlike and that the
potential is momentum independent. Presumably
the failure of Q~ to satisfy gauge invariance by
itself is a manifestation that these assumptions
are not justified and j ~«i, j ~ are only super-
ficially gauge invariant.

Before we proceed, we must find a gauge-in-
variant form of g which somehow takes care of
these problems. To do this correctly would re-
quire a complete revamping of our nonrelativistie
and phenomenological approach, so we shall adopt
here a plausible but totally ad fzog assumption that
the "charge density" 8, is correctly given by (F6)
but the "current density" f of (F5) must be modi-
fied. As is readily seen, gauge invariance ean
then be restored if we multiply the expression
(F5) by k/2m, . We shall choose this as the
definition of g.

The cross term j ~~i thus redefined turns out
to be reasonably small for the range of para-
meters we are interested in. Note also that it
gives vanishing contribution to the E1 moment
in the SU(3) symmetric limit.

Substituting Eq. (E3) for g„~~„ in (F5) and re-
stricting ourselves to S-state charmed mesons,
we find

(F10)

where s, and s, are the spins of the two charmed mesons and s is the spin of the cc system forming the

g state.
The x integration can be carried out as before using the Gaussian approximation for P, and P, :

d3x 1 x 2 x-y ~e-8y/2 (F11)

After the angular integration in y we obtain

1 3/
4vg' g Tr[1't~l', ~ oI', ~ ](ISm&lZM)Z„(P)Y*„(P)'

3(2g) / 2/Pg P
. 2~2 1 1 2 2

where

(F12)

(F13)

Again, we shall restrict ourselves to the radiative transitions among spin-triplet states, i.e. , s =1. The
spire sy and s, are also the total angular momenta J, and J, of the two charmed mesons. If we substitute
Eq. (E13) for bP& z, and the above equation for g we find



8116 EICHTEN, GOTTFRIED, KINOSHITA, LANE, AND YAN

1
&~JMI&~,ijP, ~l~'j'M')=

8 2',). g g g 'p3/2 ~ I ~ L III g Af (SJQ~QJ2~2L~)
nr. ,n'I, ' m 2 2

where

x Tr[l",~I'~ ~ aF~ „,](LSrgAl JM)K~~~ „~.„,~ )', (F14)

K nL, n'L ' OL' J 'i P P nL P @n'L ' ~ ~

0
(F15)

The other term (ojMlPcIP& l
n'J'M') is obtained from the above by complex conjugation and the inter-

change of initial and final states.
After we carry out the summations over magnetic quantum numbers we find

. rXJz J2 K(» + ~ JyJ2
QnL n L 2 2g3 [~JQ J L KnL n L i+a J j +XJL Jt L~Fi. ntL nI OJ~

nLn 'L '

The coefficients X and X are listed below for various intermediate states.
(1) The intermediate state i consists oi two spin-0 charmed mesons (J, =J, =0):

(2J + 1)(2L'+ 1) (L'100lJ'0), (F17)

(2J' + 1)(2L+ 1)
X ~ ~i~i —5~i~ —1 (L100lJO) . (F18)

(2) The intermediate state i consists of a spin-0 and a spin-1 charmed meson (J, =O, J, = 1 or vice
versa):

J/
X ~~ ~,~ = [(2J+1)(2J'+ 1)(2L'+ I)]'~'(L'100lLO) (-1) + (—1)~5~~

L' L 1

(F19)

'I

I

J/
X~~~ ~ ~i =[(2J+1)(2J'+l)(2L+ 1)1'~'(LIOOIL'0) (-l)~ +, (-1)~ 5~i~

L L' 1

(F20)

(3) The intermediate state i consists of two spin-1 charmed mesons (J, =j', =1):

I +1

+2[(2J+1)(2J'+1)(2L'+1)]''(L'1001LO) (—1)~ — ( 1) 5
J J' 1 1

L' L 1
2J+1 (F21)'

z,z, ~' (2j'+1)(2L+1)
51 ~J(-1)'

1 &I.IOoI JO)

J' J 1 1
'+ 2[(2J+ 1)(2J'+ 1)(2L+1)]ii'(L100IL'0) (-1) —, (-1) 5~'i

L' 1
(F22)
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