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Unitary analytic isobar model for the reaction nucleon-meson to nucleon-meson-meson
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The isobar model for a production amplitude is developed in a construction which incorporates unitarity and

analyticity in each of the two-body isobar subenergy. channels. The process K1V ~Km% is considered in

order to illustrate and deal with the complications due to spin and unequal masses. The basic aspects of the
description are presented in a truncation of the problem to the production of s-wave isobars. The two-body
discontinuities in each isobar channel have been derived previously, and are employed here in dispersion

relations for the isobar factor amplitudes. A prominent complicating feature is that due to half-angle

kinematics; this is investigated without approximation, and factors associated with kinematical singularities
are identified and extracted. A coupled system of single-variable integral equations for the isobar factors is
obtained by means of a procedure due to Pasquier and Pasquier. The kernels of the integral equations are
evaluated explicitly. These contain the two-body elastic amplitudes in each isobar channel, the
parametrization of which propagates into the solution for the isobar production amplitudes. The formal
solution of the linear system of equations for the isobar factors is indicated. The final result is unitary and

analytic in each subenergy and satisfies two-body unitarity in the total energy as well.

I. INTRODUCTION

A problem of early concern in high-energy
physics has been that of constructing the amplitude
for the two-body-to-three-body production pro-
cess. In the past the methods of S-matrix theory
have been applied to some extent by several
authors. ' Another early approach employed the
isobar decomposition of the final state. ' The
latter scheme with its subsequent refinements'
has been used extensively in phenomenology. '
Recent progress in the development of this subject
has stemmed from a marriage of these approaches,
that is of unitary methods with isobar methods.
Figure 1 illustrates the line of reasoning: In Fig.
1(a) the production amplitude in its isobar ex-
pansion is shown. Each isobar amplitude may
then be expressed in product form as in Fig. 1(b),
in which the elastic two-body amplitude occurs
multiplied by an isobar factor. In simple isobar
models, this isobar factor is taken to be inde-
pendent of the subenergy variabl. e. However, Fig.
1(c) illustrates the result of imposing unitarity
on the full amplitude; the isobar factor has a non-
zero discontinuity in the subenergy variable, and
models in which this factor is subenergy-inde-
pendent therefore violate unitarity. The impor-
tance ot examining the results of subenergy uni-
tarity in this way has been especially emphasized
by Aaron. and Amado. ' The subenergy discontinuity
of an isobar factor in a given channel is deter-
mined by the isobar factors in the other two chan-
nels, and a coupled system of constraints results.

To implement these constraints properly, the
discontinuities must be inserted into dispersion
relations for the isobar factors; otherwise,
spurious singularities in the isobar amplitudes
may appear. ' The combination of unitarity and

analyticity then results in a "minimal" dynamical
formalism for the three-hadron system. "

This approach has been full. y implemented rela-
tivistically in a recent investigation of the 3m

(b)

FIG. 1. (a) Expansion of the production amplitude into
isobar amplitudes. (b) Isobar amplitude in product
form; the amplitude for elastic scattering in the isobar
channel is multiplied by an isobar factor amplitude. (c)
Subenergy discontinuity of an isobar factor, expressed
in terms of the isobar factors in the other two isobar
channels.
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problem. ''0 The formalism appropriate when a
particle has spin has also been developed"' " and
the sub energy discontinuities for such proc esses
have been derived. It is the purpose of the pres-
ent work to undertake the next formal step for the
latter problem, specifically, to show how the re-
sults of Ref. 11 are to be employed in order to
express the constraints which follow from uni-
tarity and analyticity in the form of integraf. equa-
tions in a single variable. To explain the empha-
sis here it should be recalled (see, e.g. , Ref. 11)
that the discontinuities themselves are integrals
in a single variable ranging across the Dalitz
plot and adjacent kinematic regions. Therefore,
when these discontinuities are inserted into dis-
persion rel. ations, integral equations in two varia-
bles are obtained directly. The passage to single-'
variable integral equations (which are, of course,
more tractable for solution) is effected by first
inverting the order of double integration, This
step is carried out by means of a very clever
procedure due to Pasquier and Pasquier. " The
inversion produces explicit kinematic integrals
which can be evaluated to form part of the kernel
of the resulting single-variable integral. equations.
While the procedure is relatively straightforward
for equal-mass spinless particles, both spin and
unequal-mais kinematics lead to nontrivial com-

plicationss.

In Sec. II the problem is laid out, preparatory
to performing the inversion of the orders of i.n-
tegrations. The kinematical details are developed
here for handling the combinations of half-angle
functions which arise for spin-& particles. In
Sec. III the Pasquier inversion' is described, for
the unequal mass case. In Sec. IV the kernel. s
of the single-variable integral equations are
identified explicitly, and the method of solution
is indicated.

The treatment given in Ref. 11, which this work
follows, contains an error which should be noted.
The necessary corrections associated with this
error, an overlooked phase factor, are given in
an Appendix. In particular, the corrected version
for Eqs. (B5)-(B7) of Ref. 11 is to be found there.

FIG. 2. Invariants for the process KN —K7(N.

S1+S2+S3=S +M +PRE. + P

where M, m, and p, are the%, K, -and n' masses.
Each isobar amplitude having definite angular mo-
mentum and parity J~, and definite isobar spin
and parity is expressed as in Fig. 1(b): For iso-
bar channels '1 and 2

and

M ' ~(W, co,) =M'(zo, )li ' ~()i', w, }

(2)

for isobar channel 3. The extra index in each case,
z and g, refers to the j +-, and 2l+1 independent
amplitudes of definite J", The amplitudes also
have definite total isospin and isobar isospin', the
corresponding indices have been suppressed.
When these expressions are inserted in Eqs.
(Al)-(AS), the subenergy discontinuities of the
9g's, the isobar factors, are obtained in the form
suggested by Fig. 1(c). The coupled system of
ampl. itudes is obviously quite complex when many
isobar contributions are taken into account.

In order to focus upon the procedure for ob--
taining single-variable integral equations, it is
sufficient to assume circumstances im which only
s-wave systems need to be considered. If each
isobar is in an s state with the third particl. e, and
if there occur only the j~ =

& mN and KN isobars,
and the i=OK@ isobar, then only 4 = &' is needed.
There are then only three coupled isobar factors
(apart from the muitiplicity due to isospin), one
for each isobar channel. . The subenergy dis-
continuities are

II. THE DISCONTINUITIES

The process KN-KwÃ was selected for illus-
tration in Ref. 11; the notation of that paper is
adopted here with little exception. As summarized
in Fig. 2, the invariant mass variables are
s = W s 1 F1 s2 %2 d s3 =M)3', corresponding
to total energy W, and isobar subenergies m„m„
and A@3 for the final state rN, KX, and Am isobars,
respectively. (s, was called x i.n Ref. 11.) These
invariants satisfy

d&sc,%, =2@op, dcos3, p cos ' ' M,, ~

secs~(M, SIi,) ),
E1+C~

disc2Sg2 = 2((E p~ dcos822 cos (MgSR g)c2

secs —'(M, l'C, ( ),
(4)
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disc3%3 2+~ p3 dcos832 cos ~/It'
72

+cos—'(M,K, ) )

p, =MQ, /16m'cu, ,

p, =MQ, /16m'ge,

(7)

(8)

s fixed
2 2 2

s, +s~+s~= s+M +m +p

sp

in which the angles &, and &, are given by

(6}
l

in terms of angles described in Ref. 11 and below.
The quantities JR, and M; denote the 5)I (W, se, ) and

M(so&) of Eqs. (2) with all superscripts suppressed.
The notation disc& means discontinuity in the sub-
energy s&. These results are essentially the same
as Eqs. (85)-(8'I) of Ref, 11. The main difference
(apart from the corrections noted in Appendix A)
is that the spin rotation angles w, and (o, have not
been ignored here; it will become evident that
there is good reason to retain them. The sub-
script C on the right-hand side of Eqs. (3)-(5) re-
fers to the suppressed isospin dependence and
serves as a reminder of the presence of an iso-
spin crossing matrix (see Ref. 11). The phas'e-
space factors are

/

p, = k, /32m'~, .

The momenta and angles are as in Ref. .l&. Brief-
ly, Q, (Q, } is the N momentum in the wN (KiV) iso-
bar rest frame and k, is the K momentum in the
Kr isobar rest frame; 8» 3» and 3, are the polar
angles of the momenta Q„Q„and k, . In the over-
all center-of-mass frame the momenta of the N,
the mX isobar, and the KN isobar are, respective-
ly, Q, Q„and Q, . The angie }t, (}i~) is the one
between Q. and Q, (Q~).

The kinematic regions" associated with Fig. 2

are shown in Fig. 3. The Dalitz plot, or decay
region, occupies the central portion, and the
integrations in Eqs. (3)-(5) are indicated as
traversals of this region. Some familiarity with
Fig. 3 will prove to be invaluable for the proced-
ures to follow. The procedures are to eliminate
the angles in terms of the invariants and, once
dispersion relations have been written, to invert
the integration over the invariants.

Compared with the case of spinless particles,
a problem with half-integral. spin is evidently
more complicated. One can see from Eqs. (3)-(5)
that to confront even the simplest example is to
encounter half-angle trigonometric functions of
combinations of the angles (8„u&„x,) and

(8„&s„g,). Because of this it would appear that
grotesque square-root factors might afflict the
equations. Fortunately this is not the case, and it
is rather instructive to observe why these features
are not so complicated as that.

B suffices to consider a term such as, say,
sin p8y sin'p coy cos z y, , and to show that it is ex-
pected, a priori, to be the square root of a perfect
square. Of course this term is one of the four
ingredients of the quantity cos&&„which appears
with others like it in Eqs. (3)-(5). For the mo-
mentum and energy variables Q and Q„Q,' and

Q„, and Q, and Q» the following dimensionless
variables are notationally convenient:

P = Q/M, Po = Qo/M,

P, =Q,/sv, , P, =Q, /w, ,

P, = Q,/M, P, = Q„/M;

these satisfy

(io)

(1i)

(i2)

FIG. 3. Kinematic regions in the variables sg, s2,
and s3 with s fixed. The vertical lines from left to right
denote the s~ values: (M —p), (M+ p, )', (W -m), and
(TV+~)2. The horizontal lines from bottom to top denote
the s2 values: (M —m), (M+m)2, (TV —p), and (TV
+ p)2. The diagonal lines from upper right to lower left
denote the s3 values: (m —p), (nz+ p), (S'-M), and
(W+M) . , The traversals of the Dalitz plot in the center
refer to the integrations in Eqs. (3)—(5). The ith one
indicates «s&; ranging from -1 to 1 with s; fixed.

Expressions for the cosines of 3„+„and X, can
be written in terms of these"

costi = (Po PaoPM)/PaPx i

cost@, = (P+M —P,o)/PP, ,

(i3)

(14)

cosX.= (PoP.o- P o)/P. P (15)

Figure 4(a) shows the Dalitz plot and the lines
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touching it along which P, P„and I', vanish, It
i.s apparent that cos8, =1 along the upper are
from A to C, that cos~, =1 along the longer arc
from A to 8, and that cosy, = —1 along the shorter
arc from B to C. Therefore the factors sin2~„
sin&v„and cos~g, vanish with square-root be-

havior along these respective arcs. However, as
shown in Fig. 4(b), these arcs overlap in such a
way as to indicate that the product of the three
factors vanishes like (1 —cos&,) over the longer
arc from A to B. The desired result can in fact
be obtained in two steps by showing first that

1 —cos48
a

and then that

(PP P +PP P +P P P +P P, P —1)= [(P +P)(P +P )(P +P ) —1] /2(P +P)(P +P )(P +P ) .

The final result contains only simple kinematic root factors:

~8' . ~(o y, 1 (PP, —POP, O+P o) [(Po+P)(P~O+P, )(P,o+P,) —1]

All the required triple products of half-angle func-
tions behave in this way; as in Fig. 4(b), a com-
plete overlap of three arcs occurs in each case
corresponding to a coalescence of all offending
square roots. At this point it is clear why the
&o dependence should not be ignored (as one might
be tempted to do in a low energy approximation):
without the &-dependent factor in the triple prod-
uct the remaining two arcs, as in Fig. 4(b), fail
to have a complete overlap so that the square
roots do not completely coalesce.

The problem of dealing with the half-angle func-
tions is entir ely r esolved by the for cgoing d is-
cussion. It is then a matter of further algebra
to obtain expressions for all the angle-dependent

coefficients in Eqs. (3)-(5). In terms of the
factor

(P, +P —1)(P„+P,—l)(P„+P,—1)
4PP, P,(P +P)'~'(P, +P )'~'(P +P,)'/2

it can be shown that

cos—' = U, (P, +P„+P„+1) (16)

and

sin~= U, Q'~'/2', M . (17)

To obtain the corresponding functions of &„ the
replacements 1-2 and a- b are made. The factor

in Eq, (17) is

Q, =O

.(s„,s„)

Q =4ss, M (2POP„P„—P,' —P,o' —P„+1)
=4ss2M (2POP2OP~O —Po —P20 —Pqo + 1) .

It then follows immediately that

—+-S
I

(s«s~
cos ' = U, U2[(PO+PM+P, 0+1)(PO+P20+P~o+I)

—P/4sco, m, M'] . (19)

(a) (b) (,)
FIG. 4. (a) Dalitz plot and the lines along which the

momenta Q, Q, , and q& vanish. (b) Arcs along which
sin&&&, sin2~&, and cos—'. y, vanish with square root
behavior, respectively: arc &C, arc AB, and arc SC.
Complete overlap of the arcs implies coalescence of the
square roots in the triple product sin~& sin~ ~icos& x, .
(c) Integration in cos&& with s& fixed. The end points
lie on the boundary curve where the function Q of Eq.
{20) vanishes. Shown in the figure are the limits of
integration appearing in Eq. (27).

y =s,s~, —s, (M'p. '+sm') —s, (M'm'+sg')

—s, (m'p' +sM')

+2(M m2p2+sM m +sM P, +sm P, ) . (20)

Note that P„P„,P„arid P„are defi. ned i.n

analogy with (11) and (12). The quantity Q is
recognized as the Kibble cubic boundary func-
tion"; the boundary of the kinematic regions in

Fig 3is given . by the equation Q = 0. In terms of
the invariants it is written as
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The angles in Eqs. (3)-(5) are eliminated alto-
gether by recal. linga' finally that

dcos81 . dcos81 w 1 ( f. d) (21)
ds, ds3 ' 2WQ, Q,

cos32 dcos32 w2
( )ds, ds, 2WQ, Q,

When Eqs. (7)-(9), (16), (19}, (21)-(23), and
(24)-(26) are incorporated into Eqs. (3)-(5), the
discontinuity relations take the form

s 2&(s&)—.disc ds, C„(M,G, )
s2&(sg)

dcos33 dcos6, w,
(23)

s3&(s &)

d, ~„(M,G,)„
,&( s,)

(27)

P~p+P~ + 1 Pgp+Pg+ 1

(P +P,)'/' (P.,+P.)'/'

P +P +1 Pq +P~+1
(P„+P,)'/' (P„+P,)'/'

(24)

(25)

The kinematic square roots in V, and V, which
show up in Eqs. (16) and (19) may be systematical-
ly absorbed in the definition of new amplitudes.
The isobar factors SK~ and the new amplitudes G;
may be related as follows:

1
. disc, G, —

s&&(s 2)

3&(s2)
ds3@23(M3 G3}c ~

s,&(s,)—.dlsc3G3 = ds1C'31(M1G1)c2t s,&(,)

(28)

P, +P+1
3 (P +p)l /2 3' +

& 2& (&3)

dS2 432 (M2 G2) c '

2 & (&3)

The kinematic factors above have the property
that they have no discontinuities on the two-body
cuts; for example,

1 P +P )1/2 1 10 1

=0

The end points of the traversals of the Dalitz plot
shown in Fig. 3 correspond to the limits of in-
tegration above. For example the points s2&'(s, )
and s,&'(s, ) are as indicated in Fig. 4(c). The C's
in Eqs. (27)-(29) contain all the accumulated kine-
matic factors

M (p, +p„+p„+1)(P,+ P20+P30+ 1) —Q/4sw, wpS'
128m2WQ, (P0+1)(P„+1}(P30+1) (3O)

M Pp +Pyp +Pgp + 1
» 64~2WQ. P, ~1

M (P0+P,0+P,0+1)(P0+P2 +P3 +1) —g/4sw, w M2

128v2WQ3 (P,+l)(P, +1)(P, +1)

(31)

(32)

M P +P +P +1
64m'WQ P, + 1

1 P+P, +P +1
2563'WQ (P„+1)(P„+1)

1 P +P2p+P~p+1
2562'WQ (P„+1)(P„+1)'

(33}

(34}

(35)

These quantities may be expressed in terms of the
invariants by means of Eqs. (65)-(72) of Ref. 11;
the function 4qz depends on the invariants s ~, s;,
and s.

Dispersion relations may now be written in the
isobar subenergy variable for each of the ampli-
tudes:

1 dz; 1
G —G = — ' —.disc G.

n z,. -s,. 2s
thres f

in which the 6 s are functions of s, independent
of s;.

The construction of the G amplitudes at this
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point follows from the solution of coupled integral
equations in two variables. The crucial inver-
sion" of the orders of double integration is the
next step.

Ci

(W-m)' (e+mP

z, plane

III. THE PASQUIER INVERSION

It suffices to show how the method of Ref. 13
is used to invert one of the double integral. s aris-
ing from Eq. (36), The one selected is

d&
1 1

( ~+ )2 g1 Sl

s2& (g1)
Xl gg2@12 M2 G

S2&(g1)

G, —G, = — ' d&2@,2 M2G2 C
C1 1 1 T'2( 2}

. + . dz, e, (M G) ).
r3(E3)

S2&
when 2
z, =(W-m)

when

z, -(

)2

62m

when

z, =(M.I)'

z2 plane

FIG. 5. Paths followed by the limits of integration
s2&(z1) and s» (z&) in Kq. (37), asz1 increases from
(~+ p) to ~. For z~ between (W-m)~ and (W+m),
s2& and s2& are complex.

in which the variables in the integrands are &„~„
and &3; s, is assigned a value below threshold.
The limits of integration, as in Fig. 4(c), must be
continued analytical. ly as s, increases to values
outside the Dalitz plot. For z, in the range (W
—m)' to (W+m)', these limits are complex con-
jugate points in the ~2 and &3 planes; for &,
~ (W+m)' the limits return to the real axis. The
paths followed by s,& and s» as ~, increases from
(~+ u. )' to~ are shown in Fig. 5; the motion of
these 2 points is readily obtained by examining
the boundary curve in Fig. 3.

The procedure begins by recognizing, with
Pasquier and Pasquier, " that (37) can be re-ex-
pressed in terms of contour integrals in two com-
plex planes:

FIG. 6. Integration paths for Eq. (38). For each z&
in the integrationoverC &, the z

&
and z& integrations

run over contours from 0 to the point s™2on 12 and gs on
I'3, respectively. In the text these contours are de-
noted as I'2(s2) and I'3(s3). The locations of s2 and s3
are shown for a value of z1 on C~ above the real axis
between (W-m) and (W+m) . As z1 runs the length
of Cg, s2 and s3 sweep out all of I'~ and I'3. Note how the
right-most point in the z2 and the z3 plane is encircled,
due to the fixed s+ jO stipulation.

To see this, consider the double integral over &,
and z, in (37) and start with the simple observa-
tion that (suppressing the integrands)

fs2&(a1)
dg2-

S2&(~,)

S &(C} s2&(g1)
dg—

0

For each &2 on I'„ the &, integration follows the
portion of C, which begins at the corresponding

I

Then, given s+i0, introduce the contour C, in the
&, plane as shown in Fig. 6 and make the following
correspondence. For each real. z, in. (37) assign
the limit s» (z, ) [s,& (z,)] to z, +i0 (z, —i0) on the
portion of C, above (below) the real z, axis. The
point in the z, plane, call it s, (z,), assigned in
this way, follows the path I'2 in Fig. 6; for each

on C1 the ~2 integration runs along F2 from 0
to s, . The notation I', (s, ) in (38) refers to this
contour of integration. The end point s, sweeps
out all of I', as z, runs over the length of C, . The
double integral over a, and ~, is treated in similar
fashion; I', (s~) in the z, plane is analogous to
I', (s, ) in the z, plane.

The procedure continues by reversing the order
of integratiori while observing the correspondence
that has been set up between the variables:

d81'2 — '2~1S1P(3)g

erg�(S)81S1

1' ' 22 2 1 1
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The contours associated with the kernel. s in
Eqs. (39) and (40) are more easily visualized in
terms of the Dalitz plot and the adjacent kine-
matic regions. Figure &3 shows a map of all such
contours for all the kernels in the probl. em, each
one represented as a traversal of the relevant
kinematic region. In each case the traversal is
shown for a given val. ue of the other fixed variable
near its upper limit. As this fixed variable sweeps

down its range, the evaluated kernels can then be
obtained by analytic continuation. A11 roots oc-
curring in the 4 functions are specified to have
positive values when the variables lie inside the
decay region', outside, the branches are deter-
mined by analytic continuation.

The Pasquier inversion appl. ied to each double
integral arising from Eq. (36) leads to the follow-
ing results:

0 {W-2
dz, K„(M, G,),+f ,dzd(, MG), + dz, z), (M, G,),

oo oo (

{~-u~ 0
+ dz3&, 3 M3 G3 g — dz3$.„M3G3 (41)

{~-~P 0

G, G= , dz( )), M)G,fz,dz, d„(M, G,),Z

&'- NP 0
d.,n„(M, G,).+f dz, d)„(M. G.)., (42)

{~-m)' {Af-pP 0

G, —G, = dz, ZZ„(M, G,),+ f d ,zZZ( M, ,G), —f dz, Z. , (M, G,),

dz, &„(m, G,),+
0

2 32(~2 2)C d 2~22(~2 2)C '

In Eqs. (41)—(43) the kernel S;;(s;z~) corresponds to the contour D;;; it is

Zi
C.. . z; fixed;z ~ —s ~

the other kernels correspond to the other contours: '4&& to Ui;, Z i; to L&;, and 4, ;& to 8;;. Figure 13 shows
all of the necessary contours.

IV. THE INTEGRAL EQUATIONS AND THEIR SOLUTION

In order to examine the full structure of Eqs. (41)—(43), the isospin dependence should be recalled. "
According to the notation T =total isospin, and t; =isospin of isobar i, the integral equations in a single
variable are

l'- p) {w-
G, '& (ss, ) = G, '~ (s ) +Q dz, K„'~'2 (ss,z, )G, '2 (s z, ) +Q dz, EC „"'2(ss,z, )G, '2 (s z,),

t2 t3
(45)

{~-m)
G, '2 (sg, ) = G, .'2 (s ) + g dz, K„'2'& (ss 2z, )G, ') (s z, ) + g

j ~eo t3

G2r'2 (ss, ) =G222 (s)+Q ~ ' dz, A'r, '2'~(ss, z, )G, '2(sz, )+ Q
t~ j2

w- g'
(fz2A22'2'2 (ss2z2)G2 t2 (s z2),

" (fz, K ' ' (ss z )G '2(sz ).

(46)

(47)

The kernels are composed of three types of fac-
tors:

(48)

The H factors contain appropriately the terms
&, M, Z, and (it of Eqs. (41)-(43), as described
below. The C's are the isospin crossing matrices
of Ref. 11, Table I. The kernels also contain the

two-body elastic amplitudes which satisfy the
unitarity relations, Eqs. (45) and (56) of Ref. 11.
For use in the isobar model the simplest form
to adopt is the effective-range approximation'.

M, '= (d4q& —g~) ', (49)

where P&(z&) is analytic, having only the right-hand
cut in z~ on which Imp~ =))'p~. In (49}, A.P is a
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S]—Sgp

(h ho@

1
&—.disc ] ) ~2i (51)

A convenient choice to make is in fact sfp
=threshold&. All of Sec. III goes through, down
to Eqs. (41)-(43), with'the replacement

s d8$@((-(s( —s (0} 4]).8) —Sg (« s(}(«-s(.}-
This amounts to the formal replacement

~('(s«1}= ~(((s«() - R~(s(oz»

and similarly for 'I&&, 2 &&, and N, ~z, wherever
these functions occur in (41)—(43). The factor
H(1 in (48) can now be identified, observing in-
junction (53). Because it is an integration in the
variable z~ with ~; fixed, factors in it which de-
pend only on s and ~; may be extracted. With the
use of Eqs. (30)-(35), together with (52), Ho
takes the form

H(1 (ss (z() = [l(1(ss (z1) —I(g(ss (Ozg)] Zg(s zg) (54)
l

in which

Z, (sz, ) =M/[64z2(P„+1)(P. ,+1)],
Z, (s z2) =M/[64((2 (P20+ I ) (P»+ I )),
Z2(sz, ) = M[/3 2z(2P +0)I].

The remaining quantity Iq& contains the basic
residual integrals, of two types, with certain

(55)

polynomial in which there occur the constants
which parametrize the two-body elastic scattering
amplitud es.

It would appear, on inspection of Eqs. (41)-(43),
that the II& s are as follows:

H12 12 + 8( 2)~12 i

H „=u„+ e((m —i1)' —z,}'u„- 8(- z, )$ „,
etc.

A minor problem, which has not yet been made
apparent, causes II&& to be modified. The inte-
grals 4;; and @.&, do not converge in their present
form. The cure is readily found by reconsidering
Eq, (36) and the role of ( „ introduced there. It
is clear that t"& serves as a subtraction constant
insofar as the variable s; is concerned, with sub-
traction point at s& =. This procedure fail. s if
the integral over z& is not convergent. The remedy
then is to choose the subtraction point in the finite
plane at s, =s&p, such that

G; = (G().. ., . (50)

Then (36) is replaced by

rather lengthy kinematical factors:

I,2
~ (I+P20+P2o+ [~s,P,o(s, ) + v z2P20 M-]/W} &12

+(~s, [P, (s,)+P, (s,)]+(W+M)(P, +P

+ ~Z2( [VS1P(o(s1)+~Z2P20 —M]/W

—2P„P,O
—1}}I"„, (56)

I 2= (1+Pa)612+~S, [P(o(S,) +P, (OS,}]P 12,

I„=(1/2M)[1+P (s, ) +P, +P, ]+ (58)

«2'y «2j &
and «» are obtained from «» I «», and «»,

respectively, with the substitution of subscripts
1 2 and a b. The basic integrals themselves
are the factors X„and I'(& in (56)-(58). These are
identified in Appendix B where the details of their
explicit evaluation do not interfere with the flow
of the text. A distressing feature of these results
should be noted here, however. It turns out (see
Appendix B) that I'(& is an elliptic integral of the
third kind. Its appearance, which will considera-
bly complicate the numerical treatment of the
integral equations, may be traced directly to the
~z( factors which occur inevitably due to the
unequal-mass kinematics.

In the equal-mass case, it has been found' that
the +&& parts of the kernels are equal to, or re-
lated to, partial wave projections (in the three-
body system) of one-particle-exchange (OPE)
graphs, in which the common particle is exchanged
between the two isobar pairs having invariant
masses ~s( and Wz&. In the present case, it is
clear that such projections will lead, as usual, to
logarithmic functions and not to elliptic integrals.
The reason for the discrepancy lies precisely in
the factors vs; and ~z~. The OPE partial waves
necessarily have singularities at s; =0 and &; =0
associated with these factors; however, the
treatment which follows froin (36} and (51) pro-
vides for isobar amplitudes having only the normal
threshold branch points. It is shown in Appendix
C that the physical. region discontinuities of the
@&~ kernels are related to the corresponding dis-
continuities of the QPE partial waves. This
correspondence suggests an approximation to the
S(& part of the elliptic integral I'„(denoted by
I'(( in Appendix B) which may be useful in prac-D)g
tical applications: Qne simply replaces the factor
1 z( inside the integral by 1(s( outside. This ma-
neuver preserves the physical region disconti. nuity
but replaces ~s(I'(1 by the logarithmic functionBgy
4&'& identified in Appendix B, the latter involving
just the form of logarithm which arises in the
corresponding QPE partial wave.

It has also been found, '' in the equal-mass case,
that the remaining parts of the kernels, analogous
to the pieces identified here as &&, 2 &J, and 8 &&,
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disc, G; = 2mipG;M (59)

are related to certain internal mass discontinuities
of the triangle graph in perturbation theory, In
the present case, the substitution ~z, - ~s,
throughout (i.e. , I';~- b,„./~s, ) enables the inte-
grals ;;, 8;;, and S.&; to be evaluated in terms
of elementary functions which are just those oc-
curring in the analysis" of the unequal-mass tri-
angle graph. These integrals are also identified
in Appendix B.

It is clear that the simplifying substitution, pro-
posed above, will alter the analytic structure of
the isobar amplitudes constructed according to
(36) and (51); in particular, singularities at s(=0
will be introduced. It is unlikely that this will be
a serious liability as far as results in the physical
region are concerned. In any case, elimination
of the elliptic integrals by some such simplifying
step would seem to be necessary in any practical
application of the formalism.

In Ref. 11 a further unitarity constraint was
cited, namely, that associated with the two-body
discontinuity in the total energy variable s. This
takes the following form when applied to the G&

amplitudes (isospin suppressed):

combined, absorbing the unknown c& into F& to
write

G, =M(s)f; . (65)

sP f dzd"(s, z,lf, (z, , ,'
t3

(66)

sQ f dz, lC,';"(z,z,)f,"(z,),
t3

(67)

The functions f; must be determined such that the
integral equations (45)-(47) are satisfied. In order
to satisfy (64) a simple effective range form may
be used for M, similar to (49) but with P-w'ave
threshold behavior.

The foregoing construction may be folded into
Eqs. (45)-(47) for the determination of the re-
sidual isobar functions f, '(s, ) (reinstating isobar
variables but suppressing total energy s and iso-
spin T); the integral equations are

f~"(s, ) = c,"++ «2Ki2 "(s.&.)f22(~.)
t2

p =MP/16m'W, (60)

a result which follows directly from Eqs. (B4) of
Ref. 11. ' In (59) Sl denotes the 2' P-wave KN
-KÃ amplitude (isospin T), a function of s, con-
tinued to s —iO. The phase-space factor- is

I

f,"(s,)=z,' +g fdz, d,')' (z,z, )f,"(z,)
tg

s g f dzd"(s, z.,)fl', ', (z,).
t2

(68)

where P refers to the nucleon momentum in the
EN s channel.

A convenient multiplicative procedure' may be
used to incorporate the two-body cut in s. A

product form for G, (ss, ) is adopted:

(61)

where G, (s) contains the s cut of Eq. (59) and E,
remains to be determined. It follows from (59)
that

f =c+Kf, (69)

in which the matrix structure spans the three
isobar channels as well as the isobar isospin and

subenergy within each channel. The solution to
(66)-(68) can be indicated in those terms as

f = (1-K) 'c =c+K(1-K) 'c;

This system of linear equations may 'be expressed
in a generalized relatrix form as

discsGg = 2'1TzpGg~ (62)
that is,

Because G& depends only on s it is suitable to
satisfy (62) by

G, (s) =c,M(s), (63)

in which c; is an unknown constant; clearly (63)
is consistent with the unitarity relation for M: '

discM =2mip3f3f . (64)

It is, of course, not surprising that Gq should
contain an unknown constant factor in view of the
role of G& as a sort of subtraction constant in
Eq. (51). Equations (61) and (63) may now be

K adj(1 -K)
det(1 -K) (70)

Result (70) is rather schematic. It can be put into
standard Fredholm form, and it can be applied
directly to a numerical procedure over a selected
grid of discrete subenergy points. Such quad-
rature methods have been employed for the less
complex 3m problem, '

.The problem of providing a unitary analytic
description for the production amplitude has been
addressed. The situation considered includes the
complications of isospin and spin, and is restricted
to s-wave systems in the three-body state, al-,
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though the removal of this restriction is straight-
forward, Unitarity is satisfied in each of the
isobar subenergy variables, and two-body unitar-
ity is satisfied in the total energy as well. The
steps leading to the formal solution of the problem
can be outlined as follows:

expansion into isobars, Eqs. (13) and (27)-(29) of
Ref. 11;
identification of isobar factors, Eqs. (2), and their
subenergy discontinuities (Al)-(A3);
identification of kinematic factors, Eqs. (24)-(26);
expression of analyticity in terms of dispersion .

relations, Eqs. (36) and (51);
Pasquier inversion of the double integrations, Sec.
DI, 1eading to the single-variable integral equa-
tions (45)-(47);
incorporation of the two-body cut in s, Eq. (65);
formal solution (70) to the final linear equations
(66)—(68).

The parametrization of the so1ution includes two
collections of constants, those which parametrize
the relevant two-body problems [as in (49}], and
the c's which appear in (63) and in the final so-
lution (70). Only the formal development of the
problem has been treated in this paper. The

practical application of this work to phenomenology
will be taken up in the near future.
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APPENDIX A: THE GENERAL DISCONTINUITY FORMULAS

An important error has been spotted in Ref. 11.
It occurs at the point of insertion of the isobar
expansion into the discontinuity relation [Eq. (30)
of that paper]. A phase factor has been overlooked
in the matchup of angular coordinates necessary
to unravel certain of the recoupling terms. In
Eq. (30) the factor e"" should accompany the
isobar amplitude (m, (u ~Mc~'~X). The net effect
of this correction is that in all the results of Ref.
11, Sec. IV and Sec. V, the phase factor e ™2
should be replaced by e ' 2 '. The correction
propagates into the formulas of Appendix B, Eqs.
(B5)-(87), the corrected version of which is as
follows:

disc, ll '&'~ = 2))ip, dcos8, [f'„",„',(6A)d ..., l(X. +Xb)
$27f K 2

( 1)
d +fd/bf/2 ((@ @ )d /

( + X )]8 s )(()xb 1 /2)(/if dpsJfi /b )x b)

+Q [f",,'g (&i&b)d. , x/. -b(X.)
l g

ZPl g+s (- ll' '~'/", ,( (s,s, )d. , —,g..g(x.)I(M sx (A1)

discs'( ~ " s ' ~" '&s=xsxs, ;( dssss, IP (f (s,s,)d„,„,„'(,x', +x,)

7) Kg

+ 2 [f 5 (~A}d / -b, (Xb)
l g

2

gPl )—S (-))' '&'X/", (S,S,)d'„, ., (X,)1(M'I).. (A2)

dlecbSR = 2)T&Pb dCOSs3b Q [f)x
X

K (~lx)b)d(x~~, l /b-b(Xa)
~ sI$7f K

7r(-sx S"))(X( ) S S, „d;( i ( X')SXM, ""')cI

+ Q [f'2'+ (&2@b)d~/2 ) (Xb}—pd, '%(-1) +"f' „'+)(&2&b)dx»-b, -g2 b ]
$2%' K2

X &
~)( 2 & (~/2 sJ)i~ d2 2)C (A3)
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APPENDIX 8: THE KERNEL INTEGRALS

Equations (56)-(58) contain the basic integrals
involved in the explicit determination of the ker-
nels. As one can see by relating Eqs. (41)-(43)
to the assembled results of Eqs. (45)-(47), (48),
and (54), the &,, integrals are

+ 8(-z,)S
12 12

~»=~n +8((m —»' —Z2)~v —e(-Z2)~s
13 13 13

+ (&&(-z,)h~
21

+ 8(-z,)S„
n.„=n., +e((M i() z, g, e( z,)~, ,

+ 8((M - m)'- z, }S —8(-z,)S,
To define the right-hand sides in (Bl),' let

K, = [(W+m)2- zl]'/2[(W —m) —z,] /,
[(W+ ~)2 z ]1/2[(W I/)2 z ]1/2

K, = [(W+M)'- z,]'/'[(W -M)'- z, ]'/2,

(Bl)

(B2)

taking the positive branch of these and all other
roots when z,. is in the decay region. Then, de-
fine

Equation (B8) of Ref. 11 should be altered to read

f„„' (M') =2r(N~N~ [e'„,(3)e'„',(8') —e„(8)e'„. ( ')] ~

All the other notation of Ref. 11 remains intact.
The discontinuity relations have been expressed

above in terms of the isobar factors defined in
Eq. (2). For the application to the isobar system
described in the text, Eqs. (Al)-(A3) lead directly
to Eqs. (3)-(5), the corrected version of Eqs.
(85)—(87) of Ref. 11. ~. . =~('.&+e( z.)(n, (2. &+~(2. &)ij ij j ij ij

for 4„, 4„, and 4„:
(B5)

/

in which s,, refers to the pseudothreshold points
s„=(M —»', s» = (M —rn)', and s„=(m —//, )2. It
can then be shown" that

(, )
1 E(/ —K (s;)K/(z;)

K,.(s,.) E,, +K,.(s,.)K,.(z,. )

„)( )
1 E';, —K;(s;) II, (z, ) I

K,.(s,.) E,', +K,.(s,.) Il,.(z/) I

g(2)(s z ) = l (/(l )+ /(2 ))

1 E; +K;(s;)
2K,.(s,.) E,; —K,(s,.)

(B7)

(B8)

(B9)

in which E1=9+fQ -si, E2=s+ p, —s2, and E3=s
+M s3 The quantities l . are given by

I, = [z, —(M + p) '] '/ '[z, —(M -' p)']
[z (M p m )2]l /2[z (M m)2]l/2 (B10)

I, = [z, —(m+»']'/'[z, —(m - »']'/'
in the decay region, and have been continued for
use in (B8). The functions E,,(s, z,.) and E,', (s, z,.).. .
are as follows:

I D2& (82 z/) is similar, with 1 -'2 and m —Il. The
notation z', j and z,j refers to the greater and less-
er values of z,. at the end points of the contour D,,
for fixed zj

Function (B3) is of greater practical significance
and should be itemized in full detail. To begin,
Eqs. (Bl) should be rewritten in terms of more
convenient notation. " For 412 &21 and &23.

dpi""*"=f
( — '&»

ij
where C,j refers to each of the contours shown in
Fig. 13 and referred to in (Bl). The I', , integrals
are specified similarly to (Bl), with

(B3)

(B4)

1 D (s, z,.) = — [II(g;, , Y„y,)
2

1

in which
—11(4,/, I'„y,)]

I"c (s,.z,.) =

Function (B4) is an elliptic integral of the third
kind. To identify it as such" it suffices to consid-
er only the case of the contour D,.j:

E» =-s'+s(s, +z, +m'+ i(2)

+ (s

E13= &12

21 12

&23 =&21

&31 =&13

, —m') (z, —p.
2

(with z, -z„
(with s, -s„
(with z, -z„
(with s, -s„

) —2sM',
M —i/, ),
z2 zl, m~//, ),

M-m),

z, -zl, M m),

832 =&31 (with z, -z„m &((),

E,', =E„. (with s m.', M —Il),

E,', =E„(with s p,2. , M —. m),

E,', E„(with s M'., m . p).

(Bl1)

(B12)

sin(t&;,. = ~z'„./(W —. m),

y, = (W- m)/(W+m),

F, =-(W- m)'/s„

APPENDIX C: THE OPE PROJECTIONS
AND THE h,(i) KERNELS

The integrals 4,.'j' and I',j of Appendix B develop
an imaginary part in those regions of the kinematic
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(b}

(c}

Ws, (e}
I

... ....... v s, (~}

kinematical factors in (56)-(58); for example,
& =1+P,(z,)+P20(s,)+P,o(s, )

Consider now the peynmM&-graphs for the pos-
sible OPE processes between s-wave isobars,
shown in Fig. 14. The isobars are denoted by:
%=(wN), 8=(KN), and m =(Km). Because these
are s-wave pairs their coupling vertices are sim-
ply QNm, SNX, and a*Km. As shown in the figure

'

the isobar legs have masses»s, . and v~z, . The J'~
= ~" projections of these graphs can be computed,
following the technique for partial-wave analysis
of Gell-Mann et al." If these projections are
called 11,, , the results (omitting common kine-
matic factors) are

(a) Il„=-s~[(s,z, )j'~'X~&»/K, +-,'(M+ g + ~s, +gz, ),

(b) II„=-sM~s,ay&,'&/K, ——,',

FIG. 14. One-particle-exchange processes.

(s, , z,.) plot (analogous to Fig. 8) which correspond
to possible physical processes. In the physical
region, call it S, for the three-body production
process one finds

Imch, ,'.,". = m/K, and Iml", , = »' /K,.Ws,.

for s, , z~ c S. Thus in K), Eqs. (56)-(58) imply
that

Imf, , = &&'A/K„

Imf» = mB/K„

ImI„= &&'C/K~,

where A, 8, and C are obtained from the lengthy

(c) 11„=-s M~z, C~&,' &/K, ——,',
corresponding to Figs. 14(a)-14(c). It follows
that the imaginary part of II,, in S is proportional
to that of the kernel I,.~.

Further, if the substitution I',, - b, ,,/~s, . is made,
then only 4,J occurs in I„.; one finds from Eqs.
(56)-(58) that

12 12&

I23 B2-

Thus the 4,'.,". part of I,-,. is very simply related to
the corresponding II, , , so that, for those parts
of the kernels which cover the physical region
9), a physical interpretation in terms of one-par-
ticle- exchange has been established.
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