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The MIT bag model for hadrons is treated in the static cavity approximation in three dimensions with a
definite quark number. The energy of the system is computed to second order in the gluon coupling. A
constrained variational method is described which permits the calculation of the energy as a function of a
collective variable. The bag cavity is permitted to assume whatever shape of a general class is necessary in
order to minimize the energy for a given expectation value of the collective variable. The method is well
suited for the study of the two-nucleon interaction at short range. By way of introducing the computational
procedure the method is here applied to a bag containing one quark and one antiquark and the energy as a
function of a measure of the separation of the quarks is evaluated.

I. INTRODUCTION

The MIT bag model of hadrons® in the static
cavity approximation accounts remarkably well
for the static properties of the light hadrons?® (the
octets of pseudoscalar and vector mesons and
the lowest baryon octet and decuplet). The con-
struction of the model is appealing simple.® Its
ingredients are the currently fashionable com-
bination of quarks of three colors and three or
four flavors and an octet of colored vector gluons,
confined to a finite volume by a uniform pressure,
the key innovation of the model. Nonstrange quarks
are massless, the hadronic mass scale being set by
the confining pressure.

Calculations of the static properties of hadrons
composed of the light quarks have, to date, made
use of a spherical cavity, since the noninter-
acting fermion and gluon eigenfunctions are known
for this geometry. Moreover it was expected that
any deviations from a spherical shape required to
balance the field pressure against the uniform con-
fining pressure would not alter the results sig-
nificantly. Rebbi? has studeid the effects of small
fluctuations from spherical shapes. Hasenfratz,
Kuti, and Szalay® have reported calculations for
a deformed static cavity containing a massive-
charmed-quark-antiquark pair treated as classical
point sources of the gluon electric fields. They
obtain the spin-independent part of an effective po-
tential for charmonium which exhibits a linear in-
crease at large quark separation.

The present investigation of deformations of the
hadrons has been motivated by an interest in under-
standing properties of the interactions of hadrons
composed of the light quarks. The first step in this
direction involves studying adiabatic deformations
of the cavity in which the light degrees of free-
dom—quarks and gluons—adjust instantaneously to
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the changing cavity shape. Such an approach should
be applicable to the study of hadronic interactions
which involve low velocities for the hadrons. In
particular the two-nucleon interaction near thres-
hold seems particularly well suited to this ap-
proach.

By way of introducing the computational techniques
to be used in the study of interaction of the two-
nucleon system we present here results of an in-
vestigation of the simpler problem of the de-
formation energy of a hadron composed of a light
quark and antiquark as a function of their separa-
tion. In particular we consider cavity shapes with
axial symmetry and a reflection symmetry in the
equatorial plane and restrict our attention to the
state corresponding to the p meson with spin pro-
jection |m, |=1 on the axis of deformation. The
results are in agreement with what is expected
from other arguments®® and provide support for
the reliability of the computational method. The
application to the two-nucleon problem is left to
the following paper.”

In the static cavity approximation® the quark
fields are expressed in terms of the fermion crea-
tion and annihilation operators for the cavity eigen-
modes

q®,8)=)_[g,®en b, +3,®e'ntdl], (1.1)
n

where ¢, satisfies the Dirac equation for energy
w, inside the cavity

(—1'.& -V + Bm)qn&) = wn qn &) ’ (12)

with g, the corresponding antiparticle wave func-
tion. The linear boundary condition on the surface
of the cavity

i& 'ﬁqn(;() = -Yoq,. (i) y (1'3)

where # is the unit outward normal to the surface
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ensures that the baryonic current does not pen-
etrate the surface, i.e., # -q:?!qm= 0 on the sur-
face. The quark wave functions are normalized so
that

[440dV=5,,  falinav=o. (1.4)

They must also satisfy a quadratic boundary con-
dition which is discussed below.

We describe in Sec. II approximations leading
to an effective Hamiltonian to second order in the
gluon coupling for a cavity containing only quarks.
It is of the form

H= [{:q"ia- 7+ gmg:s [(E+ BF)

- Je. Ko+ B}dV+E(V). (1.5)

The effective Hamiltonian is constructed so that
its expectation value on a cavity state gives the
cavity energy to second order in the gluon cou-
pling. The gluons behave like Maxwell fields to
this order and are produced by the fermion color
current:

J=g:q\y,q:. (1.6)
In the static limit they satisfy

V.E=% vxB=FinvV, (1.7)

7+.E%=0, 2Ax B°=0o0nS. (1.8)

In the usual notation, g is the gluon coupling cons-
tant, \? are the 3 X 3 matrix generators of color
SU(3) normalized so that (A° )’=%. (Summation
over the color index a is always understood.) Be-
cause of the linear boundary condition on f“, only
color-singlet states can exist. The constant B is
the term which provides the confining pressure
and is renormalized by the zero-point energy of
the fields.? The finite part of the gluon and ferm-
ion zero-point energy is given by E,, which de-
pends on the shape of the cavity. The fermion
energy term is accordingly normal-ordered. The
order of magnitude of E (V) is known from studies
of the light hadrons, and its effect can be esti-
mated qualitatively as discussed in Sec. IIIE.

The shape of the cavity in the absence of ex-
ternal constraints is determined by requiring that
the expectation value of the Hamiltonian be min-
imized with respect to variations in its shape.
This procedure results in imposing a nonlinear
surface boundary condition on the fields, which can
be interpreted as balancing the field pressure
against B; but for computational purposes it is
more useful to impose this boundary condition
variationally. Thus for a given cavity state and
energy

I. QUARK-ANTIQUARK... 303

| 9(V)y and E(V)=(3(V) |H |9(V)) ,

the conditions

2

6 6
57 EM=0, = E(V)>0 (1.9

determine the shape of the hadron.®

In general the conditions (1.9) require knowing
the cavity energy for arbitrary shapes for which
one faces the difficult task of solving the Dirac and
Maxwell equations in a cavity of arbitrary shape
subject to the various linear boundary conditions—
a task which is impossible analytically. Even
elliptically shaped cavities pose what are probably
insurmountable problems for the fermion eigen-
states.® Various numerical and approximate tech-
niques are available, however. One could set up
a coordinate mesh and solve the equations numer-
ically. A variational approach was taken instead,
since it was readily adaptable to the problem of
fixing a chosen collective variable. Trail fermion
wave functions g, and trial gluon vector potentials
AS, are constructed for the ground state. For a
given fixed shape the parameters characterizing
q, and A are varied and the stationary point

6

o
an <H>=0; ——(H>=0

5A,

(1.10)

is located. Actually the precise form of the ef-
fective Hamiltonian (1.5) cannot be used for this
procedure because it is not positive definite, but
if some care is taken, the stationary point of the
proper variational expression provides an ap-
proximation to the solution of the Dirac and Max-
well equations and the linear boundary conditions.
The method is discussed in Sec. III.

Thus the problem can be regarded as being en-
tirely variational with respect to the parameters
characterizing the cavity shape and wave functions.
To find the energy as a function of the expectation
value of an operator O,

=¥V | o [y , (1.11)

one simply adds the usual Lagrange constraint to
the Hamiltonian,

H=H-co0, 1.12)

and from the stationary point, obtains E(cg) and
O(co).

When the constrained Hamiltonian (1.12) is min-
imized, the equations of motion and the boundary
conditions are altered by the constraint. Since
the new form of the equations of motion and bound-
ary conditions can be rather complex, depending
on the nature of the constraint, the variational ap-
proach is a convenient vehicle for the formulation
of the constraint.
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FIG. 1. (a) Lowesteigenenergies (units of BV“) for massless fermions in a unit sphere (i.e., of radius 1 xB~1/4 in terms
of the bag constant B). The spectroscopic notation refers to the angular momentum content of the upper two components
of the Dirac spinor [A. Chodos and C. B. Thorn, Nucl. Phys. B104, 21 (1976)]. (b) Lowest eigenenergies (units of B‘“)
for gluons in a unit sphere. The notations nMj and nEj refer to the radial (z) and total angular momentum (j) quantum
numbers for magnetic and electric multipoles. (c) Lowest eigenenergies (units of B/ 4) for gluons in an infinite cylin-
der of unit radius. The notations TM,, and TE,, refer to the absolute value () of the magnetic quantum number for the
transverse-magnetic and transverse-electric modes. (Only the lowest radial mode appears in each case.) The corres-
pondence between gluon levels for cylinder and sphere is shown in Table I.

The remainder of the paper is organized as
follows. In Sec. II we describe the orbital con-
figuration of the quarks and construct the effective
second-order Hamiltonian for the cavity state
containing no free gluons. In Sec. III the mechan-
ics of the variational computation are discussed,
treating the variational procedure for computing
the fermion and gluon energies, the handling of
the zero-point and self-energies of the fields,
and finally the method of assembling the compo-
nent calculations as one variational scheme. In
Sec. IV the results of the computation are pre-
sented and discussed.

II. THE EFFECTIVE HAMILTONIAN

In the present calculation the separation of the
quarks is achieved by constraining the orbitals to
separate into a left orbital and right orbital while
preserving the spatial symmetry of quark occupa-
tion, which is present in the undistorted configura-
tions of the low-lying mesons. Thus the spatial
part of the wave function is

9(1,2)= g5 (1) x(2)+ q5(1)7,(2). (2.1)

Let the deformation axis be the z axis. Express-
ing the left and right orbitals in terms of orthogon-
al orbitals symmetric and antisymmetric in z - -2,
we have (apart from normalization factors)

4.=ads=VB ds, qr=4qs+V 1 4y,
(2.2)
q(1,2)=g45(1)q45(2) — ng,(1)g,(2).

Thus we are led to consider a mixture of two or-
bital configurations S? and A? with the mixing pa-
rameter p ranging from 0 to 1 for maximal to
minimal overlap between the associated left and
right orbitals. The mixing parameter u is to be
determined variationally by minimizing the con-
strained Hamiltonian.

It is convenient to use the “free” cavity eigen-
modes as a basis for the description of the fermion
wave functions (i.e., the eigenmodes in the ab-
sence of gluon interactions). The symmetric and
antisymmetric states in (2.2) are therefore to be
identified with the lowest-energy free cavity eigen-
modes of the same type. For the sphere [see Fig.
1(a)], these are, respectively, the 1S,,, and 2P,,,
orbitals in the usual nonrelativistic terminology
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FIG. 2. Lowest fermion eigenenergies determined
variationally for ellipsoidal cavity shapes with unit
equatorial radius, plotted as a function of the polar
radius d. For the sphere, d=1. (Units are given in
terms of the bag constant B.)

for the upper components of the Dirac spinors.
The fermion kinetic energy for the state (2.2) in
the absence of gluon interactions is then given by

2
=gWsth Wy (2.3)

Ep= 1+p2

F
where wg and w, are the eigenenergies for the
lowest symmetric and antisymmetric orbitals.

If we want to calculate the lowest-order shift in
the fermion energy due to gluon interactions, we
must work to second order in the interaction Ham-
iltonian

J #eAsdv, (2.4)

since we are considering only states with quarks
present. To the extent that the lowest gluon eigen-
energies w, are considerably higher than the en-
ergy difference wg ~ w, between the antisymmetric
and symmetric orbitals, we may regard these
orbitals as essentially degenerate in computing
the second-order level shift.'®

To what extent is the approximation justified ?
In Fig. 2 we show a plot of the free cavity eigen-
energies w, and wg for cavities of a range of
ellipsoidal shapes. (In the process of fission w,
- wg goes rapidly to zero.) Although we have not
computed the gluon eigenfrequencies directly, the
values for the sphere are shown in Fig. 1(b), and
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TABLE I. Correspondence of some of the lowest gluon
eigenmodes of the sphere and the cylinder produced by
an adiabatic deformation, as suggested by a comparison
of the field configurations and spectra. The index p is
the longitudinal quantum number in the notation of Jack-
son (Ref. 14).

TM modes TE modes
m p=1 p=2 m p=0 p=1
0 Ey,0 Ej,0 0 My,0 My,0
1 My, 41 My, 1 1 Ey,41
2 My, sy 2 Mj, 42

the values for the cylinder are shown in Fig. 1(c).
The correspondence between spherical and cylin-
drical eigenmodes produced by an adiabatic defor-
mation may be guessed by comparing the field con-
figurations, and is shown in Table I. R is ap-
parent that (w, — wg)/w, for the lowest gluon

mode is of the order of 1 or less. Improvements
to this approximation would need at least to in-
clude explicitly the ¢gG state (state with one extra
gluon) in the diagonalization of the Hamiltonian.

Of course, although the second-order shift is com-
puted as though w,~wg, we do not intend to ignore
the level separation in treating the unperturbed
fermion energy (2.3), since this difference as-
sociates an increased kinetic energy with a local-
ization of the quarks—an effect which cannot be
disregarded. Therefore our use of degenerate sec-
ond-order perturbation theory requires the dia-
gonalization of the Hamiltonian matrix

Hyp={a|H,|B)+ AH g, (2.5a)

NP D LN i ALaviny @l fibe Az avip)

We = Q.'),‘
(2.5b)

where H, is the diagonal free-quark Hamiltonian,
a and B refer to the configurations SS and AA,
and the intermediate state » contains one gluon.
Only in computing AH,g is the approximation w,
=wg used.

Let us now express the Hamiltonian (2.5) in terms
of the quark creation and annihilation operators.
With only two cavity eigenmodes present, the ex-
pression for the field operator for a given cavity
is effectively

q(f) = Z [chfm(i)bScfme-ws‘ + chfm(i)dgcfm e'vsts chfm(.i)bAcfme-iwA‘ + ‘-I.Acfm(i)dkcfmew‘q ’ (2.6)

cfim

where the indices c, f, and m refer to color, flavor, and spin. The c-number Dirac spinors satisfy (1.2)
and (1.3) for zero quark mass. Suppressing the internal-symmetry indices now, the effective color cur-

rent operator may be written schematically as
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§% = jh (bIA%g —d INd ) + 3K (0 [A%b , —dIAd ) + 5% (BT A% s+ BIND , ~dTNd g —d ), (2.7)

where the ¢ -number currents are given by
iov=gTgr"ay. (2.8)

Let us consider the explicit dependence on inter-
nal-symmetry quantum numbers. The spin depen-
dence can be displayed by using the Pauli-spinor
basis. For example, the contribution to the charge
density and current density in the first term of
(2.7) may be written as

[p%]ss= Z

coc'sfomem

[-j “Iss= Z
icsctyfomym’
The other terms have similar expansions. The c-
number coefficients depend only on the cavity geo-
metry, all of the configuration dependence having
been absorbed in the bilinear combination of fer-
mion operators.

We now consider the second-order shift in the
Hamiltonian (2.5b). Since the currents are taken
to be static, the sum over intermediate states re-
produces the static cavity gluon propagator. Using
the identities

, gpssb ts::'.fm’ A::"o:ém'mb Scfms
(2.9)

5 t i
gJSSib Sc 'fm'hg'com'mb Scfm*

Jv (Boyzav = L Jeo Ry, (2.10a)

j (Edv= j p® pay, (2.10b)
v \ 4

which follow from (1.7) and (1.8) we may recast
(2.5b) into the form

AHyp=(a] f (:(BY+ 3(E%)? - Fo- K]V | B),

(2.11)

where, K“, -15“, and E°® are operators bilinear in
the quark creation and annihilation operators,
satisfying Maxwell’s equations for the operator
current (2.6). The ground-state energy may then
be found variationally by minimizing the expecta-
tion value of the effective Hamiltonian (1.5) on the
state

A+p®) /2pLat - ublal))o) (2.12)

with respect to variations in p. [In (2.12) it is
understood that the internal-symmetry indices are
combined so as to construct a color-singlet state
with the desired total spin and isospin. ]

The expectation value of the gluon terms in the
effective Hamiltonian are depicted graphically in
Fig. 3. It is useful to observe that the effective

-
Hamiltonian may be expressed as a sum of terms
which contain configuration-dependent operators
and c-number, configuration-independent energies.
For example, the unperturbed quark energy con-
tribution is

wsblbgrdldg) +w, (Y, +dld,), (2.13)

where wg and w, depend only on the cavity shape.
The same is true for the gluon energies, as we
now demonstrate. The contribution to the electric
and magnetic field operators produced by the term
(2.8) may be written in the same form as the term
itself, namely,

[E®] ss= —E.ssbts A%,
(2.14)

—_

3
[B%ss= Z Bsstbfsxaaib s
i=1

where internal-symmetry labels have been sup-
pressed. Again, the c-number coefficients Egg
and B ssi are configuration independent and result
from solving (1.7) and (1.8) for the c-number coef-
ficients pgg; and Jgg;.'' Because of the symmetry
of the cavity with respect to rotations about its
axis, the integration over the azimuthal angle ¢
in (2.11) results in a slight simplification for the
spin-dependent terms in that only two degrees of
freedom occur corresponding to spin flip and non-
flip. Thus the term in the effective Hamiltonian
depicted in Fig. 3(a), which results from substi-
tuting (2.14) into (2.11) and using (2.10a), has the
form

[—ﬁ]ssss =2(W gsb P‘ab sde'Nlds
+Wys0IA 0% gdineo%d g
+Wys 65T b gd NG dg), (2.15)

(d)
A

FIG. 3. Diagrams for the gluon coupling to second
order in perturbation theory.
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where!!

WEs=§ S —ﬁss'_ﬁssdv’

Wyse= -3 J- Bgss* BsssdV,

Wusl=-%'[ Ess;'ﬁssldv, (2.16)
Tt=2,0'+28,0%,
Bgsi®Bgsi=Bss, " Bssy + Bssz* Bsse:

Similarly, the remaining configuration-indepen-
dent factors are as follows:

WEA=%f EAA.EAAdVy

Wqu="%J- EAAS.EAASdV’

WMAL=_% f EAAL.EAA.LdV’

WEX=%_[ -E.:AS.ESAdV9

WEX,=-‘2—f Eaos® FsasdV, @.17)
WEx1=%f EASL .ESAldVy

W.ux=-%f EAs 'Es,«dvy

Wux,=—%f EASs'ESAst,

Wyxi= =2 f Bysi*BspdV.

The expectation value of the effective Hamiltonian
on the state (2.12) may now be written

E=ngws+nyw s+ Wys,Cs,+ WysiCs1)
+ (Wyaet WyaiCad+ Wyyy = Wex)Cxy
+ Wyxe+ WexJCxp+ (Wpy+Wyx)Cy
+Egere+ Eo+BV, 2.17a)

where the contribution to the self-energy from the
S and A orbitals is

Eqo10=n5 Wys o+ 1S Wy, +15 Wyae
+ng Wy a+ 05 +n3) Wy y
+ 05 +15,) Wy, + Wiy,
+ 05, +n5) Wyx - Wiy . (2.17)

The configuration-dependent coefficients in (2.17)
are
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ng=®Lbs+dlds), n,=0b,+did,),
Cs,=2(Lonbdlody),

Cg. =215\ dLE N ds) ,

C 4, =20, dio®r%d,),

C L. =205 2% ,d'T 2d,),

C =20 bdhoNdg + (S—A)),
C 4 =2 T\ d TN + (S—A)),
Cy=20I\bdiNdg + (S—A)),
ng=GL)Pbg +di(A)dg),

ng= 0L ()b, +d; (9%d,),

1= OL(A0%)2%bg +di (\0%)%ds),
nS,= bl (%032, +d}(\°0%d,),
ng,= GLMT)2bg +dL (AT )ds),

1S, = GL(EY)%b , +d (AT, ) .

The terms in (2.17) and (2.18) with subscript X
correspond to the exchange graphs in Figs. 3(c)
and 3(d). The first two terms in parentheses in
(2.17a) correspond to the graphs in Figs. 3(a) and
3(e), respectively. Details concerning the contri-
butions of the exchange graphs, the self-energy

E ..+, and zero-point energy E, are given in Secs.
OIE and IIIF. In writing (2.17) we have made use
of the property? that the operators

biXbg +diNdg and bYiA% , +diNd, (2.19)

(2.18)

annihilate the quark-antiquark color singlet state
2.12). A fortiori

GINbDIND )+ diNdgdind )+ 2 N gdiNd)=0,
(2.20)

and similarly for the antisymmetric orbital. Thus
the electric part of the self-energy graphs S-S-S
and A-A-A in Figs. 3(b) and 3(f) cancel the color-
electric contributions from the gluon-exchange
graphs Figs. 3(a) and 3(e), and the terms W, and
Wgs do not enter in (2.17).

Finally we write the values of the configuration-
dependent operators on the state (2.12) correspond-
ing to a p meson with spin projection Ims |=1on
the deformation axis:

n,=2/N, my=2-ng, N=l+p?,
Cs,=2/N(-19), Car=1"Cs,,
Cxe=4u/N(-¥), Cy=4u/N@),
CSJ.=CAJ.=CXJ.=01

(2.21)
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The expressions for other spins and isospins are
also easily obtained.

III. THE VARIATIONAL APPROACH TO THE QUARK
AND GLUON ENERGIES

In this section we discuss the way the variational
principle is put into practice by considering the
component parts of the computation in the order in
which the calculation was carried out. The effect
of combining them is discussed in subsection G
of this section.

A. The bag geometry

In the present study a three-parameter azimuth-
ally symmetric surface has been considered, de-
fined in cylindrical coordinates by

p?=ps’ ) =n*(1 —2%/d®)(1 +az?/d?) , (3.1)
where n is the cylindrical radius atz =0, d is the
length of extension inz, and

a=0 ellipse,

-1<a<0 distorted ellipse—bulge in middle,

0<a<1 distorted ellipse—flattened in middle,

1<a peanut shape, 3.2)

a—=->  n—-0 fission,

~o0<g< -1 two bags.

A considerable variety of shapes can be studied
with such a parametrization, although it has a
distinct limitation in that at the point of fission the
two bag components have a teardrop configuration.
This leads to a ~10% overestimate of the two-bag
energy at this point which could be remedied by
adding terms cubic in 22 and higher.

B. Unperturbed fermion wave function

The variational approach to finding the ground-
state wave function for the Dirac equation is com-
plicated by the fact that the Hamiltonian is not
positive definite or negative definite. Thus we
have chosen to minimize the expectation value of
the square of the Dirac Hamiltonian

w”2=qu,(ia"\5+ﬁm)(—ia -€+3m)q,,dv/fq,',q,,dv.

(3.3)

Since the linear boundary condition is not repro-
duced by an unconstrained variation of this ex-
pression with respect to ¢, it is imposed explicitly
in the construction of the trial expression for gq:

idng,® = -7%,&) on S. (3.4)

Variation of w? with ¢ so constrained leads to the
boundary condition

@ o0 (=i V+Bm)g,==y°(-ia *V+Bm)g,, (3.5)

which is compatible with (3.4) when g, satisfies
the Dirac equation.'?

Although minimization of (3.3) leads to an upper
bound on the true value of the square of the ground-
state energy, it does not determine the eigenfunc-
tion uniquely, since particle and antiparticle
wave functions give the same value for w?. Thus
given any trial function g, which minimizes w?,
there is a one-parameter family

q,= €xp (%7\7’075)‘10 =(cosz Mg o+ (Sinék)'yo'ysqo , (3.6)

which has the same value of w?. To select the
function which most nearly represents a state of
positive energy, it suffices to maximize

wl=fq{(—ia°-v.+8m)q,‘dV/f q'qdv (3.7)

with respect to A. Our choice of trial function has
the feature that it maximizes w, automatically, so
this step is unnecessary.

The trial functions are constructed with the aid
of the vector $ and contour function R?(p,z) de-
fined as follows:

R*(p,2) =Ry’ +p’ -p /),
Ry*=max p’(e), (3.8)
§=VR/v, v=|VR|

p:ps(z) .

Because (3.1) defines the surface, R%(p,z)=R,?
also defines the surface. Thus the gradient of R
defines the surface normal and 3 is the unit nor-
mal to the surface. For the sphere of radius R,
=n=d, R*=7? and §=T/R,. If p; were sufficiently
general, we would have for a cylinder R*=p? and
$=p/R, and for two equal spheres, $=¥,/R, and
T,/R, for the respective spherical radius vectors.

The trial expressions for the fermion spinors
are constructed in terms of four scalar wave func-
tions ¢,, ¢g, x4, and xg as follows:

qu= ( ¢S Um ) ’ (393-)

i+ SxgU,
. ( $42Un )_ K<6-§a.¢AUm>, (3.9b)
iG-Sy 42U, is20, X4 Up
where
bs=Bs+as[o®~pl@)],
Xs=Bs+vs[p° - p )],

da=Ba+ay[p?-pl@)],
Xa=Bat+val0®- 0],

(3.10)
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and U,, is a two-component Pauli spinor. Only the
m =1} states are considered so that U,= () or ().
The constant « is fixed by requiring that ¢ ,,, be
orthogonal to the trial antiparticle version of g,
(a state of the same parity). Thus

.[qLM'QSde= 0, (3.11)
where
Gom=[ % XsUn\ . (3.12)
o idg U,

Since, by construction, ¢=xs and ¢ ,=x, on the
surface, the trial functions satisfy the linear
boundary condition (1.3) explicitly.

It is interesting to compare the trial expressions
with the exact expressions known for the unit
sphere (i.e., a sphere of radius 1x B/%). Apart
from overall normalization factors, the replace-
ments

bs=do(ws?), xs=i(ws7)/7, (3.13)
G 4=dy (W77, xa =]'2(“’.4")/”2 , K=3%,

where the j, are spherical Bessel functions, yield
the exact solution. Thus the trial expressions for
the sphere amount to a polynomial approximation
to the low-order spherical Bessel functions. In
Fig. 4 we present a comparison of the exact and
variationally determined wave functions ¢5, ¢,,

X s> and x , for the sphere. The agreement is ex-
cellent. The eigenenergies so determined in units
of B¢

wg=2.045
w,=3.214,

(3.14)

differ by a fraction of one percent from the known
exact values (wg=2.043, w,=3.204). It is neces-
sary to take care in constructing the quark wave
functions since errors in these wave functions
propagate into the determination of the gluon en-
ergies where errors of a few percent are en-
countered.

C. Gluon fields

In the approximation of Sec. II the gluon fields
are to be calculated as though the currents de-
rived from the free cavity fermion orbitals were
static. Of course the diagonal currents (i.e., those
not involving a change of orbital) are exactly
static. However, for the transition current it
was helpful to construct solutions to the time-de-
pendent Maxwell equations since the solutions can
then be compared with exact ones available for the
sphere; moreover, with the time dependence taken
into account, the currents are conserved, to the

0.7
| ] (a)

X

0.6

0.5

0.4

0.3

0.2 wg = 2.045 Trial -

2.043 Exact
O.l .
0.0 '
0 0.5 1.0
r2
3.0 T

(b)

wp = 3.214 Trial
3.204 Exact

1
o'OO 0.5 10

re
FIG. 4. Comparison of normalized exact and best
trial eigenfunctions defining the 15,/, (a) and 2 P3/, (b)
fermion orbitals for the unit sphere. The solid lines
give the trial valuebased on the expressions (3.10) and the
crosses show the exact values based on (3.13).

extent that the fermion wave functions satisfy the
Dirac equation. This procedure, in any case,
does not affect the accuracy of the results any more
than the original approximation of degeneracy,
since the gluon energies are altered by the square
of the ratio of the current frequency to the lowest
gluon frequency, or about 10% at worst. (Taking
the time dependence into account here does not
restore any precision lost in making the approxi-
mation of degenerate perturbation theory in Sec.
II; the proper way to do so involves including ex-
plicitly in the calculation states with gluons.)

The gluon fields and energies are found by a
variational procedure described below for the
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static color magnetic, static color electric, and
transition fields.

1. Static color-magnetic field

The expression

W,=%f-l§-i§dV—f3-KdV (3.15)
with B=V X A is a minimum with respect to varia-
tions in A when

VxB=JinV, (3.16)
AixB=0onS.

Thus both the equation of motion and the linear
boundary condition arise from a variation principle.
The linear boundary condition arises from per-
mitting A to vary without restriction on the surface
when seeking the minimum. If the current is con-
served and 7 - J =0 on the surface, then a gauge
transformation on A produces no change in W,,.
Since the currents in the present application are to
be constructed from trial solutions to the Dirac
equation, they are not exactly conserved. This
property can cause problems with the variational
calculation, since an appropriate gauge transfor-
mation can make W, arbitrarily negative. To
remedy this problem the gauge may be fixed varia-

tionally. It is convenient to use the gauge
§-A=0, (3.17)

where § is defined in (3.8). The modified varia-
tional expression

-

W‘,=f[é1§2_3-i+ & -3)%|av (3.18)

is bounded below. Minimizing the above expression

yields the equations
A.5=AK.7=0, #xB=0onS§S,
VxB=J-8&-.5) in V. (3.19)

Thus the nonconserved part of J determines A -8
through

V.J=V.[5(&-3)] inV. (3.20)
At the minimum
W,:-%fﬁzdv_éf(K <8)%av. (3.21)

The latter term must be removed from W, to ob-
tain a correct estimate of the energy. When the
current is conserved it vanishes. Since the cur-
rents are nearly conserved in the present cal-
culation, its contribution is quite small. In practice,
therefore, the gauge has simply been fixed ex-
plicitly in the construction of the trial vector po-
tentials in accordance with (3.17).

The currents for the S-S and A-A diagonal tran-
sition based on the trial spinors (3.9) take the form

355=2g¢s x35x§

EM=2g¢A XA[3x§(zz_2Kzs‘) (3.22)

+(0X5-20,2 XxS)k®s?+ 27 - 52 x Skz].

In the notation of (2.9)

T s ) mme =Z Tesiot.. (3.23)
For the unit sphere $~T and x—~ 7 and, as ex-
pected, the currents have the angular momentum
content appropriate for exciting magnetic dipole
and octupole gluon terms,

:fss=F>< V[j,s@T)], (3.24)

T g =% V[js,(G-F22 - 220,72 -5 G-Tr7)
+J,4(0,2-2G-7)],

where

J1s=-28bsXxs s jm:% ¢AXA72» j3A=_§g¢AXA
(3.25)

are the two dipole and octupole coefficients, re-
spectively.

The corresponding vector potentials were chosen
to imitate the form of the current. For the sphere
and cylinder this procedure is appropriate for
finding the exact soution. Thus

Kgs=agd x 8,
(3.26)

KAA=aA5 X8+d,2%0 X5+b,28X2G +S+c,Z xS0, ,
where the scalar functions a,, ag, b,, c,, and
d, are simple polynomials in R? (3.8).

As a check of this parameterization, the varia-
tionally determined coefficients for the vector po-
tentials based on the trial fermion currents are
compared in the Appendix, Table II, and Fig. 5
with the exact solutions known for the unit sphere.

The agreement is quite satisfactory and shows
that the contributions to the energies are deter-
mined correctly to within a couple percent.

2. Static electric field

In the state (2.12) under consideration the ferm-
ions never appear in both the S and A oerbitals
simultaneously. Hence the relation (2.20) holds and
the static electric fields produced by the diagonal
currents S-S and A-A in the gluon-exchange dia-
grams are completely canceled by the self-energy
contributions. However, when more general orb-
ital configurations occur in which fermions appear
simultaneously in different orbitals, there is a
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net contribution. We discuss it here for the sake
of completeness.
The expression
We=-% [Eav+ [ ppav, (3.27)
with E=-V¢ is maximized with respect tovariations
in ¢ when

v.E=pinV, #-E=0o0nsS. (3.28)

The surface boundary condition is obtained when
variations of ¢ on the surface are unrestricted.
No problems with gauge dependence and incom-
patibility with the boundary condition arise since
the charge densities p to be considered all have
the property that the condition

fpdV=o

is met exactly.

Because the effective Hamiltonian is evaluated
on a color singlet state, only the difference be-
tween the diagonal charge densities in the two
orbitals ever appears, and likewise only the dif-
ference between the fields which they produce.

With the trial parameterization (3.9a), the dif-
ference in charge densities is

(3.29)

Pp=Pgs— Paa
=g[o sz‘*' stsz
— (9,2 +s%x )@+ %%~ 225 k)] . (3.30)

For the sphere s*~7%,s,~2z, k=3, electric mono-

TABLE II. A comparison of exact and trial energies
for the massless quarks and for various components of
the color magnetic and electric fields in the unit sphere
(i.e., R=B"1/%). The normalization is discussed in the
Appendix. The EO field is based on the difference in
charge densities between the S;;, and P3/, orbitals.

Term Trial Exact Error (%)
Fermions
ws1/2 2.045 2,043 0.1
wPa/z 3.214 3.204 0.3
sl/z—st/z fields
M1 -0.181«x -0.176a 3
P3/2-P3/2
M1 —0.348a -0.335¢ 4
M3 —~0.068a -0.067x 1
E2 0.108c
EO 0.011c
1E2+E0 0.040c 0.038a 5
S1/2-P3/2
El 0.218a 0.213a 2
M2 —~0.094« -0.093cx 1
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FIG. 5. Comparison of exact and best trial reduced
current (left scale) and vector potential (right scale)
coefficients for the unit sphere. The solid lines give
the best trial value based on the trial fermion wave
functions. The crosses show the exact values based
on the exact currents. The normalization is described
in the Appendix.



312 CARLETON DETAR 17

AT T T T T T T T T 04
(a) Electric Quadrupole
Terms in P3/-Pa/
3r —0.3_
3 x/x o
% X/x/§/§ x\)'( §
2 2 X/ /X _{ 0.200.
o D x~ —= -~
bt o
Q X / -6
£ X 9
© )
[ x/ X — 0.1
/ Reduced Energy
X Exact .l08 o<
x/
X
oLl 1 v 1 L o o g
0 0.5 1.0
r2
T T T T T T T 1
—x (b) Electric Monopole for dos
10 P3/-Ps/, minus S, ,, -S,,, e
x—=—
S 05 - — 0.2 5
° [OXO 2 o — 0.1 C:
g S
g [
5 X 00 &
-05 Reduced Energy X :
Exact .0Oll x X x _x
gqob—t v 1o Lo l
o] 0.5 1.0
r2

FIG. 6. Comparison of exact and best trial reduced
charge density (left scale) and scalar potential (right
scale) coefficients for the unit sphere. The crosses
show the exact values; the solid lines, the trial values.

pole and quadrupole densities are obtained. (The
static electric fields do not flip spins.)

The scalar potential difference is parameterized
so that it imitates the form of p,:

¢D=eD22+fD, (331)

where e, and f, are simple polynomials in R?.

Computations for the unit sphere are compared
in Fig. 6 with exact results based on the exact
charge densities. The normalization of the “re-
duced coefficients” is analogous to that of the static
color-magnetic fields (see the Appendix). The
agreement is equally satisfactory.

3. Time-dependent fields

The expression
Wx=f[‘§-(]-l§ |- |E|?)+Re(p*¢ - T+ -K)]av,

(3.23)

with

E=-V¢+iwA, B=VxA, V.-J=iwp (3.33)

is stationary with respect to variations in ¢ and
A when

- -

VxB=J-iwE inV,

- (3.34)

v.-E=p.
i-E=0, AixB=0onS.

The stationary point is a maximum with respect
to variations in ¢ and is a minimum with respect
to variations in K, provided that the lowest free-
gluon frequencies are higher than w, which is al-
ways the case in the present calculation. If the
current is not exactly conserved, then the same
problems with gauge dependence arise here as
did in the static case, and they are dealt with in
the same manner by fixing the gauge according to
(3.17).

The variational expression (3.32) at the station-
ary point gives the contribution to the second-
order energy shift due to an energy-conserving
orbital transition SA - AS. At the stationary
point it has the value

wo=-3% Ref(p*qb-ff* -R)dv. (3.35)
For thediagrams of Fig. 3 we want to consider
the off-diagonal transition SS —AA. It was con-
venient in computation to evaluate these off-dia-
gonal contributions to the energy by simply re-
versing one line of the energy-conserving diagram.
Thus, after finding the stationary point of W, ,
the resulting fields were then resubstituted into the
expression

Wy=-1 Re [ (09— T-K)av (3.36)
to give the contribution which appears in (2.17)."

The transition current and charge densities based
on (3.9) have the form

ps,q=g(¢s¢A+szx SXA)(Z - KO,O"E) ,
:fSA=g [(pspa— Xs‘PA)izg*'z"X s¢Ai3§‘7:° -8
—k(PsX o+ X sPA)S%20,G

+(¢SXA+XS¢A)ZOX§] . (3.37)

For the unit sphere, they produce electric dipole
and magnetic quadrupole fields with both spin-flip
and spin-nonflip transitions.

The trial scalar and vector potentials were
selected to have the form
Ko =h, 0 -52x38+d,26 x5+ik, (5% —s,35),
$g,=ib. 8- 2x0+j, 2 +c,23. (3-38)

The choice was motivated by the form which yields
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FIG. 7. Comparison of exact and trial expressions for the magnetic quadrupole and electric dipole coeffi-
cients for the §, /2~P3/, transition in the sphere, as discussed in the Appendix. The crosses show the exact

values. The solid lines show the trial values.

the exact solution for the sphere and by some ex-
perimentation. The coefficients &, d, k2, b, and

j are simple polynomials in R? and ¢ is a constant.
The last-mentioned electric octupole term was
found to improve considerably the ability of the
electric field to meet the linear boundary con-
dition for nonspherical geometries.

As a test of the trail parameterization, the re-
sults of computations for the unit sphere are com-
pared with the exact solution (also derived) in the
Appendix and in Fig. 7. The agreement is quite
satisfactory, and the error in determining the con-
tribution to the energies is found to be a couple
percent.

As a further check, the integrated electric flux
across the equatorial plane was compared with an

estimate of the integrated charge density for ellip-
soidal shapes. It was found that to within the 15%
accuracy of the method nearly all (i.e., 85% or
more) of the flux remained confined to the hadron.
Of all the contributions to the energy from the
transition fields, the most important is due to the
spin-nonflip electric field characterized by the
coefficients j, and c, in (3.38). Let us see what
this term signifies. The transition charge density
is constructed from a product of wave functions
symmetric and antisymmetric under z - -z. Thus
as the cavity lengthens, the transition charge
density describes the separation of opposite
charges—basically positive for z>0 and negative
for z< 0. In the bag the associated color-electric
flux lines are confined and so run along the de-
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FIG. 8. Energy of the spin-independent transition
field (W gy+ W), )/« for two classes of cavity shapes
plotted for increasing polar radius at fixed unit equa-
torial radius, as discussed in Sec. IIIC. Units are de-
fined in terms of the bag constant B.

formation axis. This field is produced by terms
with coefficients j, and ¢, in (3.38). As the cavity
lengthens, the flux lines lengthen, and the con-
tribution to the energy from the field grows. This
effect is shown explicitly in Fig. 8, where the full
spin-independent contribution (with the color fine-
structure constant @ removed) is plotted for cavit-
ies of ellipsoidal shape (a=0) and shapes defined
by putting a=1 in (3.1), in both cases with unit
equatorial radius, i.e., with surface defined by

(3.39)

The increase in energy is remarkably linear. For
a discussion of the effect of this term upon the cal-
culation, the reader is referred to Sec. IV.

p?=1-2%/d% and p*=1-2%/d".

D. Constraint

In the present calculation the constraint is im-
posed directly on the quark wave function. We
suppose that left and right orbitals can be dis-
tinguished artifically by the operators z, and z
which have the property

zRqR(zl);iL(zz) =ZlqR(Zl)(;L(22) )

- - .40
¢ 8@ )T 2 =20 52T 1(2) (3.40)
Then, using (2.2),

2V (L+p)

60=(2p-2,) = T+ 2

[ i@, @zav. (3.41)
Thus 6 measures the average separation of left and
right orbitals. It is naturally linear at small Vi 5
and for two bags at large distance with u=1 it gives
the classical separation distance.

The constraint is implemented by adding to the

variational Hamiltonian the term
H-H-cgb. (3.42)

At the expense of adding another orbital configura-
tion, namely SA, the separation of a quark and

antiquark into a spatially unsymmetrized wave
function could be studied. In this case the con-
straint could take the form of an applied external
(true Maxwellian) static electric field, instead of
the rather artificial one used here. The intuitive
pictures are identical, however, provided one
imagines in the present calculation that half of the
time the quark is on the right, and half on the time
on the left. The conclusions should differ only in
minor details. The spatially symmetric configura-
tion is probably more appropriate to the study of
rotationally induced deformations, and the spatially
unsymmetrized configuration to the study of
electromagnetic excitations.

The reader may be curious why we have not
simply used the parameters defining the cavity
geometry in order to impose the constraint, there-
by sparing us the necessity of adjusting them
against an internal constraint such as (3.42). In
fact this procedure was attempted in the earliest
stages of this study. With only the unperturbed
fermion energies contributing to the energy, the
length parameter d in (3.1) was fixed and a mini-
mum was soughtinthe energy, varying the other two
parameters. As soon as the length became sub-
stantial, the parameter a took on the value -1,
corresponding to a cavity with nipples at the poles.
This shape represents a tendency to reproduce the
compact sphere that minimizes the energy in the
absence of constraints as best as possible in keep-
ing with the constraint. Had the parameterization
allowed a wider range of shapes, the constraint
would presumably have been satisfied by making
a very thin projection from the poles of a sphere.
It became clear that a sensible calculation was
needed to make the surface respond to the con-
strained fields rather than vice versa.

E. Zero-point energy

We do not attempt to find the zero-point energy
of the fermion and gluon fields as a function of
cavity shape. Our only knowledge of this term
comes from calculations of the masses of the light
hadrons where including it is important. We have
made a plausible guess about its shape dependence
based on the following argument: The zero-point
energy should scale linearly with the energy eigen-
values, and should double in value if the energy
levels become pairwise degenerate. We have at
our disposal only two energies—those of the two
lowest fermion orbitals wgand w,. If the value
of the zero-point energy is Z$/R for the sphere
of radius R, then it becomes 2Z$/R, should the
sphere divide into two spheres of the same radius.
In the same limit wg and w, are degenerate with
the single sphere energy. Thus
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E0=_Zg<__2_wi u&) (3.43)

2.043 ~ 1.161
is a simple choice with all of the desired
properties. (For the sphere wg=2.043/R, w,
- wg=1.161/R.) For ellipsoidal cavities of unit
equatorial radius, E, increases by 10% when
the major axis is doubled in length. Thus our
guess has negligible effect upon the present quark-
antiquark calculation, but it becomes important
when the cavity undergoes fission.

F. Quark self-energy

These contributions are represented by the dia-
grams Figs. 3(b) and 3(f) in our two-orbital ap-
proach. In the calculation of the masses of the
light hadrons of Ref. 2 only one orbital was con-
sidered and only the electric part of the diagonal
S-S-S term was included, since it was required in
order to satisfy the linear boundary condition for
the electric field. For various reasons we cannot
ignore the off-diagonal S-A-S and A-S-A contribu-
tions. For one reason, if we follow the approach
of Ref. 2 strictly and use their parameters, the p
meson is not stable (see Sec. IV) in the static
cavity approximation. Although this result might
be dismissed as a defect of the whole approach,
there is another reason. We expect that when the
quark and antiquark are widely separated, the field
energy should correspond to the energy of two op-
posite classical charges. A careful examination
of the normalizations of the various terms shows
that the term W, gives the electrostatic energy of
the separation of two color charges of half
strength. Thus, to get the energy of separation of
two opposite color charges of full strength, the
term should be multiplied by a factor of four when
u—1. A factor of two comes from the diagram in
which a gluon is exchanged. The other term with
a factor of two comes from the self-energy. To
see this result, note that in (2.17) Wy, is multi-
plied by (C,+n%+n5), which, from (2.21), is
(4p/N+2)4; also note that N~2 when p—~1.

Therefore, if we are to make contact on the one
hand with Ref. 2 when the quark and antiquark are
unseparated and on the other hand with our class-
ical expectations when they are widely separated,
the off-diagonal self-energy terms must somehow
be canceled for a nearly spherical configuration
and grow in importance for long bags. Since the
full self-energy contribution involving a summa-
tion over all intermediate states has not been per-
formed, it must be estimated. The details of the
estimate are presented in the following paper’ be-
cause its effects upon the two-nucleon interaction
are more profound. The estimate obtained in Ref.
7 is based on the observation that for the sphere
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the negative magnetic terms represented in (2.17b)
by Wyses Wyse» Wyae» and Wy, nearly cancel the
full electric dipole contribution represented by
Wgx- [The other terms in (2.17b) are small and
are dropped.] As the cavity lengthens, the mag-
netic terms fall off and the electric term grows.
Thus there is a natural tendency in these terms to
recover the result described above. (Of course
contributions from higher orbitals not considered
here may alter the result.)

The self-energy is written as

Egery =ngbwg+n, bw,, (3.44)

in terms of the self-energies of the separate
orbitals. The approximation takes the explicit
form

dwg = ‘7" [Wex+ W yx+Cn/@Ro+ (Wyge +2W,s, )5C,]

bw, = '1;6' [(Wex+ Wyx+ (Wyye +2Wy,, )3C4] (3.45)

x=1-(1-n/d?, ¢,=0.081, c,=1.34, ¢,=0.93

G. Computational procedure

The order of computation is as follows:

(i) Choose a cavity shape.

(ii) Find the best trial fermion orbital wave func-
tions and energies in the absence of gluon cou-
plings.

(iii) Construct the two diagonal and one off-dia-
gonal four-current densities from the wave func-
tions.

(iv) Find the best trial expressions for the color-
electric and -magnetic fields based on the current
densities so obtained. Construct from the fields
the configuration-independent coefficients W, ,
etc., appearing in (2.17).

(v) Evaluate the configuration-dependent energy
and constraint terms (2.17) and (3.41) and find the
minimum as a function of yu for a given value of
the Lagrange multiplier c,.

Steps (i)-(v) are repeated as the shape is varied
and the overall minimum is sought for each value
of ¢s. This leads to the determination of the en-
ergy as a function of the “expectation value” of
the separation parameter.

The procedure outlined above gives a particular
order of computation. Others may be contem-
plated. Let us consider its effect in aggregate upon
the results. Because the component fermion orb-
itals are constructed independently of the gluon
fields, distortions of these orbitals due to the
presence of the fields is not taken into account.
However the grossmodification of the orbitals due
to the gluon couplings and the constraint is taken
into account in the sense that new orbitals called
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“left” and “right” emerge as a result of configura-
tion mixing. Because the constraint enters the
computation in step (v) only after the field energies
are obtained, its effect upon, for example, the
component fermion wave functions is not taken into
account. However, its important effect upon the
left-right separation is, of course, taken into ac-
count. None of these secondary effects were judged
to be of any consequence. However, if one wanted
to take them into account, one could combine steps
(ii)- (v) into one grand variational scheme in which
all parameters are varied simultaneously. The
advantage of the approach we have adopted is that
it makes each step clearcut and more readily
checked computationally (as we have done in the
Appendix), and it requires less computer time.
Related to the latter advantage is the useful feature
that the contributions to the field energies ob-
tained in steps (ii) and (iii) are configuration and
constraint independent. They depend only on the
cavity shape. Thus once they have been computed,
they may be substituted into algebraic expressions
of the type (2.17) for any desired color-singlet con-
figuration involving the two orbitals without the
need to repeat the time-consuming steps (ii)- (iii).

Calculations were carried out with a high-speed
digital computer. Integrations over the cylindrical
coordinate p were carried out exactly, in some
instances making use of Gaussian quadrature, and
over the coordinate z, numerically, using an eight-
point Gaussian quadrature. A total of four param-
eters (and two normalization constants and the
configuration-mixing parameter u) for the fermion
wave function and the twelve parameters (and four
normalization constants) for the gluon vector po-
tentials were adjusted.

Rather than having the computer automatically
adjust shapes for the minimum energy, this was
done by hand. This procedure was more effective
since the energy was rather insensitive to some
of the geometrical parameters, enough so that
minor fluctuations in the energy due to the adjust-
ment of field parameters prevented a precise de-
termination of the shape. The procedure adopted
was to take advantage of the dimensional scaling
properties of the field energies, constraint, and
volume term for zero-mass fields. The computa-
tion was carried out at a fixed cavity proportion
n/d and fixed a [see (3.1)], the overall scale being
found by solving the quartic equation

77 B/ £ + By - 04 8°€) =0, (3.46)
where the quantities with superscript 0 are the
scale-independent energies for the total field
energy, bag volume energy, and separation, re-
spectively. It was a simple matter to display

the results for various choices of the Lagrange
multiplier ¢; and the parameters n/d and a, and
select the overall minimum for each c¢;. Because
of the relative insensitivity of the calculation to
the choice of n/d and a, it was not necessary to
consider more than about fifty pairs of values. In
some cases the variation in the minimum value

for different selected cavity proportions was less
than the error in the minimum value itself. An un-
ambiguous result was obtained by drawing curves
of E,, vs 0 for each of the various cavity pro-
portions in question. The envelope of the curves
was clearly defined, and points lying closest to the
envelope were chosen.

IV. RESULTS AND CONCLUSIONS

We present and discuss the results of computa-
tions for a state with quantum numbers of the p
meson (2.12) with spin projection |mg | =1 on the
deformation axis. We use throughout essentially
the parameters of Ref. 2 for massless quarks,
namely a, =0.54, B/ %=145 MeV, and E, for the
sphere given by (3.43).

A. Ground states without constraint

If all self-energy contributions (3.45) are omitted
except for those required to satisfy the boundary
condition for the electric field, as in Ref. 2, the
p meson (2.12) is found to be unstable even without
the production of an additional quark-antiquark
pair. The energy of the cavity is lowered by an
elongation of the bag relative to the equatorial
radius with both the quark and the antiquark kept
inthe symmetric orbital (i.e, p=0 always). This
effect persists while a neck is formed and, al-
though it was not actually followed to its conclu-
sion, it presumably ends with the fissioning of the
bag into two peculiar bags of mass ~200 MeV, each
containing a quark and an antiquark with the wrong
normalization for a single cavity, namely with

fngst=%. @.1)

Unit normalization is obtained only when both
cavities are included in V.

The origin of this instability may be sought by
examining the behavior of the fermion kinetic en-
ergy wg as the bag lengthens at a fixed equatorial
radius. It decreases (see Fig. 2). So does the
energy of the magnetic field, W, , Wys . When
the negative zero-point energy E, (3.43) is in-
cluded, the result is a term which falls quite
rapidly. Thus the cavity may shrink so as to
actually reduce the total volume as the ratio of
polar to equatorial radius grows. When the cavity
shrinks, the field energy is increased again, but
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not enough to compensate for the loss of volume
energy. The actual amount by which the energy

is reduced depends sensitively on the handling

of the zero-point energy E,. Consider the energy
at the onset of neck formation when d/n=1.5 and
a=1in (3.1). With the expression (3.43) the en-
ergy of the “p meson” has fallen to 680 MeV.

If we set instead E,=-Z3 /n, the energy is reduced
to 740 MeV.

Nothing within the confines of the static cavity
treatment prevents such a configuration from ap-
pearing, since the quantization condition of unit
normalization is only semiclassical. The only
fully quantized bag theory presently available is
restricted to one spatial dimension.’ Inthistheory,
only two boundary points are ever associated with
a single quantum, not four as in two bags. Thus
we may regard this instability as indicating a
breakdown of the static cavity approximation; per-
haps it is a reflection of the normal decay into
lighter mesons in a properly quantized theory.

Since we believe the self-energy term (3.45)
should be included, we find that the p meson is
stable with respect to small deformations from a
roughly spherical shape. In effect the self-energy
term introduces a barrier against the collapse
discussed above. Nevertheless, deformations from
a spherical shape do not cost much in energy. For
example, if we restrict our attention to ellipsoidal
shapes, even with the spherical stability pro-
vided by the self- energy, a variation of +10% in the
ratio of polar to equatorial radius from the sphere
produces a variation of 2-3% in the energy of the
state. When the parameter a is permitted to vary,
the energy is reduced by 3% at the minimum, which
occurs at a=-0.5. This effect is very likely an
artifact of the self-energy approximation (3.45)
since it is associated with a decrease in the value
of E . In any event we do not claim accuracy to
this level; so we prefer to fix a=0, thereby start-
ing the calculation off with a spherical shape at
the lowest energy—namely, 780 MeV with a cavity
radius of 0.932 fm.

B. Deformed states with constraint

In Fig. 9 the main result of the computation is
shown. The bag energy is seen to rise rapidly as
a function of the separation parameter. In Fig. 10
we present the shapes of the cavity at the points
with the corresponding labels A, B, and C in
Fig. 9. The equatorial radius is seen to approach
a constant value quite rapidly. The parameter a
in (3.1) takes on the value 1 at =1.75 fm. This
is the value which makes the cavity most like a
cylinder in the middle, since the surface then is
given by

I. QUARK-ANTIQUARK... 317
c
2.0+
S
315+
w
1.0}—
B
A
3
0.75 n | | |
o} | 2
$ (fm)

FIG. 9. Energy of the deformed cavity state (GeV)
as a function of the measure of quark separation (fm).
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FIG. 10. (a) Shapes of the cavity at selected points 4,
B, and C in Fig. 9. Scale markings are in fermis. (b)
Parameters defining cavity shape [cf. (3.1)] as a func-
tion of separation.
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pP=n?(1-z%/d"). (4.2)

Values of a > 1 correspond to the onset of the for-
mation of a neck. These values were never pre-
ferred in the variational calculation, which con-
firms the expectation that the bag will not undergo
fission into two bags of one quark and antiquark—
this fission being prevented by the pressure ex-
erted by the color electric field linking the quark
and antiquark. Calculations (not shown) at large
values of a give extremely large values for the
color-electrostatic energy Wg,.

Let us see whether we can account for the slope
and cylindrical radius of the long bag with a crude
model which takes into account the color-electro-
static field produced by the color separation. Im-
agine the electrostatics problem of a cylindrical
cavity of length 2/ and cross-sectional area A,
filled uniformly with a charge of —¢ for z2>0 and
uniformly with a charge of +g for z <0. With the
surface boundary condition # - E=0, the field has
the form

E:% (1-|z/1 )2, (4.3)
and the total electrostatic energy is
=2 14°
W8x=%fE av=g—1. (4.9)

In the present calculation what should we take for
¢*? If the symmetric and antisymmetric wave
functions were identical except for the sign in each
half of the cavity, as they would be if the cavity
were fissioning, the total charge in half of the
cavity (z<0) would be gA®. Actually it is less than
this because the wave functions do differ in mag-
nitude for nonfissioning shapes. Using our crude
model for the cavity and computing the separation
parameter (3.41) for u=1 and comparing the re-
sult with computed results, we obtain the estimate
06=0.8/ and a charge of 0.8 X gX\° for half of the bag,
for the shapes relevant to the present discussion.
Therefore

q°=0.64g°(3). (4.5)

If the color-electric energy gives the most im-
portant contribution to the field pressure along the
sides near the equator, then the cavity radius at
equilibrium can be found from minimizing the
energy

E(@)=BAl + 3q%1 /A, (4.6)

with respect to variations in A. Hence

2

1/2
A=np==(3B> , p=0.94B"1/4 4.7)

to be compared with the calculated value of
0.91B"'/%, The slope of the curve of energy vs

separation may be found by substituting (4.7) into
(4.6) and dividing by the estimate for 6 given
above (4.5). The result is independent of the fac-
tor 0.8 used to correct the charge normalization
and is

E/6=7B"?, (4.8)

to be compared with 8.6B'/2 found at the greatest
values of 6 in Fig. 9. Considering the approximate
nature of the estimate (4.8) we can say that our
qualitative expectations are confirmed.

Returning to the computed results, let us con-
sider the various contributions to the total energy
displayed in Figs. 11 and 12 and Table III as a
function of quark separation. The combined field
energy (excluding the zero-point energy) and bag
volume energies both rise rapidly as shown in Fig.
11. The presence of a substantial fermion com-
ponent is indicated at the greatest separation con-
sidered here, since in our crude asymptotic model
above, we would expect that the field and volume
energies would approach each other asymptotically.
Our suspicion is confirmed in Fig. 12 where it
is seen that the rapidly rising gluon terms labeled
(c) and (d) have not yet overwhelmed the slowly
falling fermion energy (a) at large separations.
The contribution labeled (d) is the self-energy. It
is nearly equal to the large off-diagonal gluon-
exchange term (c); and it is negligible at small

-0.2
-0.3
< Zero Point
>
Soshk ~04
w
0.6

Volume

0.4

8 (fm)

FIG. 11. Contribution to the cavity energy from total
field energy, volume energy, and zero-point energy
(scale on right) as a function of the quark separation.
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FIG. 12. Contribution to the field energy from (a)
fermion kinetic energy, (b) diagonal gluon exchange,
(c) off-diagonal gluon exchange, and (d) self-energy as
a function of separation.

separations, because these separations occur for
nearly spherical shapes. Both of these criteria
were specified in the discussion of Sec. IIl F. The
diagonal gluon exchange is purely magnetic and

its energy contribution (b) decreases slowly at
large separation. The configuration-mixing param-
eter plotted in Fig. 13 rises rapidly to u=1 cor-
responding to nearly orthogonal left and right
orbitals.

C. Conclusions

Aside from errors associated with the choice of
the model—i.e., the static cavity approximation,
the neglect of states with extra gluons, the trunca-
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tion of the perturbation series at second order in
gluon exchange, etc.—there are a variety of other
sources of possible error. Probably the most
important of these is in the approximation used to
calculate the self-energy. Although the criteria
discussed in Sec. III F above and in Ref. 7 impose
bounds on the form of (3.45) there is still con-
siderable latitude allowed. It is not inconceivable
that for the configuration (2.12) considered here,
the self-energy term was in error by 30%, thereby
introducing a 10% error in the total energy at the
largest separations. This error does not affect
the calculation for small separations in the same
way, since we are then inthe nearly spherical
regime where the phenomenological values of the
constants of Ref. 2 apply. Of the errors associated
with the variational calculation itself, the least
serious comes from the determination of the
fermion kinetic energy, which is probably good to
1% over the range of shapes in question. As for
the gluon contribution, from our comparison with
exact calculations in the sphere and from experi-
mentation with the trial parametrization, it is
estimated that errors of 10% in the determination
of these energies might be expected at large sepa-
rations, i.e., an error comparable to that esti-
mated to be introduced by the approximation of
using degenerate second-order perturbation theory
for the gluon contribution, leading to an error of
about 5% in the total energy at large separation.
Although it may be of some use to learn that
it costs about 250 MeV to separate a quark from
an antiquark by a distance of 3 fm when their spins
are parallel along the line of separation, the meth-
ods we have developed could have a much wider

TABLE III. Energy contributions, geometrical and configuration parameters for the p-me-
son-like bag with spin projection 1 on the deformation axis at various separations (5) of the
quark and antiquark. All energies are given in MeV, lengths are given in fm. E,y is the total
energy; Ey is the total fermion energy; E gy, is the contribution from orbital-preserving
gluon exchange; E'y4 is the contribution from orbital-changing gluon exchange; E,q; is the
self-energy contribution; E, is the zero-point energy; and E,,, is the bag volume energy. The
geometrical and configuration parameters are defined in Sec. I A.

(4

K Etot Er Egeg Etrms Esent Ey Eva d n a
0.00 0.000 779 866 111 0 -2 -389 193 0.93 0.93 0.0
0.05 0.008 783 862 110 3 -2 -388 198 0.94 0.94 0.0
0.12 0.032 794 852 109 13 -2 =383 205 0.95 0.95 0.0
0.22 0.085 818 834 106 33 -2 -374 221 0.97 0.97 0.0
0.34 0.180 867 808 100 65 -2 -357 253 1.02 1.02 0.0
0.52 0.331 952 787 91 104 -2 -335 306 1.08 1.08 0.0
0.65 0.478 1035 778 82 128 -2 =317 364 1.15 1.15 0.0
0.86 0.629 1171 758 72 170 24 -306 452 1.31 1.19 0.0
1.13 0.747 1388 721 61 228 94 -304 587 1.61 1.23 0.0
1.47 0.836 1692 684 55 308 210 =318 751 1.86 1.24 0.4
2.00 0.915 2169 641 45 445 384 -348 1000 2.22 1.24 1.2
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FIG. 13. Configuration-mixing parameter pas a
function of separation.

application inthe study of rotational excitations of
the mesons. Theoretical studies in the bag model
to date® have obtained quite reasonable values for
the slopes of various Regge trajectories, as-
suming the rotationally excited state takes on the
form of a long, rotationg cylinder with the quarks
at the ends. It would be of considerable interest

to carry out a calculation of the type presented here
using as a constraint, instead of the quark separa-
tion, the term

w,J, (4.9)

yoy 2

where J is the total angular momentum of the
fields. It is not immediately obvious that axially
elongated shapes would necessarily occur for small
rotational velocitiesw,. Nor is it obvious in what
way, if at all, the quarks would be thrown out to-
ward the ends at larger w,.

The calculation presented here represents the
first effort at treating the deformation properties
of bags containing massless quarks. Many things
have of necessity been omitted from the calcula-
tion in the interest of simplicity, including the full
self-energy of the fields, the center-of-mass mo-
tion, surface fluctuations, the projection onto
states of definite total angular momentum, terms
of higher order in the gluon coupling, states con-
taining gluons and extra quark-antiquark pairs.
With time these improvements may be incorpor-
ated. That the results correspond favorably to
naive theoretical expectations supports our
optimism that the computational techniques pre-
sented here are sound and may be applied with
some confidence to the more difficult problems of
resonance decay and the two-nucleon interaction.
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APPENDIX: COMPARISON WITH EXACT CALCULATION
FOR THE SPHERE

The unperturbed quark wave functions for the
sphere are well known"? and are compared in Sec.
III B and Fig. 4 with our best trial wave functions.
From the trial wave functions (3.9) the trial cur-
rents for the transitions S-S, A-A, and A-S are
constructed and the gluon fields are computed
variationally as discussed in Sec. IIIC. The re-
sulting field components and energies may be com-
pared in the sphere with the equivalent compo-
nents and energies calculated from the exact wave
functions. We take the gluon fields in order.

A. Static color-magnetic and -electric fields

The exact expression for the magnetic field for
the diagonal S-S transition has been given in Ref.
2. We have repeated the calculation and also ob-
tained the exact field components for the A-A
transition by a direct numerical integration of the
field equations.

In the unit sphere the vector potentials A ss and
. a4 (both exact and trial) can be written in such a
way that the magnetic dipole and octupole terms
are evident,

KSS=F>< V[a,s@-D],

A,,=TxV[a,(0,z-20-T)

(A1)

+a,,(0-T2° - 2z0,7” - 50.T7%)] .

In this special case the coefficient functions in
(3.26) are

b,=-2d,=2a,,
a,=2a,, +3a,,r" (A2)
Ca=—=ay, +5a,,7°.

Exact and trial values for the magnetic dipole
(a,5,4a,,) and octupole (a,,) coefficients are com-
pared in Fig. 5. The coefficient functions shown
have been normalized so as to emphasize the way
in which they contribute to the energy in the follow-
ing manner: In a spherical geometry the contribu-
tions of the multipole fields to the spin-flip and
spin-nonflip terms in the energy are related by
Clebsch-Gordan coefficients. We define a set of
“reduced energies” U,¢, U,,, and U,, in which
these spin-dependent factors are removed. In
addition the color-dependent factor A{ - A} is re-
moved. Thus for example the spin-flip transi-
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tion within the P,,, level mediated by the octupole
field contributes, in the notation of (2.17),

WHA.L=|<%%’%%I31>I2USA‘ (A3)

The other contributions may be obtained in a sim-
ilar fashion. The reduced energies for the various
multipole terms may be obtained by integrating
the product of a current coefficient in (3.24) with
the corresponding vector potential coefficient in
(A1) multiplied by a kernel of the form c»". The
square root of this kernel is assigned to each co-
efficient, thereby defining the reduced current
and multipole coefficients, so that

o

[71s='_2'

- = - o - T
ay5i1s@, Uip==— | 471497

2
(A4)

U =- %_[aufu dr.
These are the coefficients plotted in Fig. 5. The
agreement is quite satisfactory, considering that
only three parameters and three normalization
factors were used. The errors in the calculated
reduced energies are a few percent or less and
are summarized in Table II.

The comparison in Fig. 6 and Table II of the
electric monopole and quadrupole terms in the
static color electric field (3.31) follows the same
normalization procedure.

B. The transition fields

Rather than carrying out a direct integration of
the field equations to produce these terms, we
used an expansion in terms of vector spherical
harmonics.'* The exact solution for the sphere
has the form

- . i ] X
BSA=Zn;']1(w1n7)X1 o E BV X J2(Wan r)xz ’
n n
‘ , (a5)
. i X - w . S
B SR S R,
] n

i

-5 Jsa>
where
X, =3T(e/r- 3T -2x0/7)
X,=1 L3o-72/7r-0,) (A6)

. d . -
]1(0)1"):0, -(_1_7—' [rJZ(wan)] ,r=1=0’ L=
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The electric dipole and magnetic quadrupole co-
efficients 17 and B} are projected from the current
and charge densities (3.37) through

LB L
M="3 N (@i -w,))

1 d
%4 forzdr{(¢s¢A+xsxAr"’)d—r [7i(@,7)]

2

- w(:," 7(PsX - Xs‘PA)jl(wln”)} ,

1 t ;
& =-o sy |, T s,
Nit= [ Parliy @, (A7)
0

Contact with the notation of (3.38) is made through
the following expressions which hold for the
sphere:

1 .
h+d= (4)—1'2 Zﬁ’z’]z(wzy,r) )

1 .
3k+k'y=— 7;,,;]1(0;1,,7), (A8a)
k=h-d,
W(j+57) =2k +k7)=2(dsx 41— Xs D)7}
j=2b, (A8b)
c=0.

Thus all quantitites are determined from the two
series in the expressions (A8a) above. The ex-
act fields were obtained by carrying out the pro-
jection (A7) numerically for the lowest four radial
modes, using the exact expressions (3.13) for the
fermion wave functions. The series (A8a) con-
verged very rapidly and gave the values plotted
with crosses in Fig. 7. These are compared with
trial values for h+d, 3k+k'r, and 3(k - d)
+(h-d)'v. The centrifugal barrier factors have
not been included in the coefficients plotted here,
as they were in the previous figures. Thus the
disagreement is not as serious as it would appear
for small . The reduced energies, defined by
dividing out the appropriate Clebsch-Gordan co-
efficients as before agree with the variationally
determined values to within a couple percent as
indicated in Table II.
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