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Photoproduction of charmonium in a gluon-exchange model
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A model describing photoproduction of a heavy-fermion pair which interacts by the exchange of gluons

with the target is considered in the framework of the Cheng-Wu picture. Its characteristics are presented

and it is applied to Q, and q, photoproduction where the heavy quarks are assuined to be produced in the
target's gluon potential. The angular distribution of orthocharmonium reveals a characteristic zero point at

Q —t = 2m, whereas the angular distribution of paracharmonium is flat. Arguments and estimates are given

for the neglect of the gluon tree diagrams. The model applied to electromagnetic production of (7+7 ) shows

that the inclusion of multiphoton exchanges enhances the cross sections by a factor 2-3.

I. INTRODUCTION

Photoproduction of a pair of bound heavy quarks
("charmonium") presents the attractive opportun-
ity of studying several theoretical assumptions in
strong-interaction dynamics. The interaction be-
tween the quarks, described by a non-Abelian
gauge theory, "is at present subject to extensive
phenomenological investigations. ' '

The binding of the quarks, attributed to the con-
finement mechanism, ' allows the quarks to appear
as quasifree objects at short distances. The large
mass of the charmed quarks, ' taken as a pheno-
menological fact, permits further study of the
present understanding of strong-interaction dy-
namics. Apart from these conceptual theoretical
questions one wonders why g photoproduction is
suppressed in comparison to photoproduction of
the light-quark vector mesons (p, &d, Q) and why
its angular distribution is less peaked in the for-
ward direction. '

Assuming a non-Abelian gauge-theory pi.cture
of strong-interaction dynamics, ' we study the
photoproduction of a heavy-quark. pair which sub-
sequently undergoes interaction with the conven-
tional quarks via gluon exchange and eventually
forms the bound state ( (cc). Measurable con-
sequences of such a point of view have been found
in an analysis of the spin dependence of g photo-
production. " Here, rather, we will concentrate
on the angular distribution of this process and its
parastate analog. " In the framework of quantum
electrodynamics, such a picture has been studied
extensively in the past by a number of authors. 2'~

The main question we ask in this work is, "%hat
implications has gluon exchange for the angular
distribution?" The paper is organized as follows:
In Sec. II we state our assumptions in the quantum-
chromodynamics (QCD) framework" and introduce
the basics of the infinite-momentum-frame cal-
culus. The general form of the scattering ampli-

tude with the (fluctuation) wave functions of the

photon and the quark bound state is discussed in
Sec. III. Its structure is analyzed in Sec. IV, and
it is cast into an easily calculable form which is
used for the evaluation of our numerical results;
these are presented and discussed in Sec. V. We
have determined the cross sections for photo-
production of g, and q, as well as photoproduction
of an unbound heavy-lepton-pair 7'7 ." The ap-
plication of this model to photoproduction of quark
pairs involves the neglect of gluon tree diagrams
which, as we are able to show in Sec. VI, is v, ell
justified. Our results and conclusions are sum-
marized in Sec. VII.

II. ASSUMPTIONS AND CALCULATION METHOD

Before going into the details of our work, we
assemble the most important assumptions which
stand behind our calculations. We first concen-
trate on QCD and then briefly introduce the in-
finite-momentum-frame technique as our calcula-
tion method.

The successes of non-Abelian gauge theories in
unifying weak and electromagnetic interactions
and the continuing attempts at a more general
framework unifying weak, electromagnetic and
strong interations' lead us to pursue the dynami-
cal consequences of a field theory of the non-
Abe]. ian type in strong-interaction dynamic s. It
is generally agreed that this type of theory as-
semble s the following ingredients: renormali z-
ability, conservation of isospin, parity, etc. ,
asymptotic freedom, no strongly interacting scalar
fields, and color. confinement. Explicit examples
of such theories exist, but solid proof of color
confinement is still missing. As a way out, one
can argue that a perturbative treatment of such
theories is justified in regions where the running
coupling constant is small. " In the following, we
will adopt such a viewpoint by assuming that a
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FIG. 1. Quark interaction in gluon theories. FIG. 2. Three-step picture of g (cc) photoproduction
in the gluon potential of the nucleon.

multigluon exchange lead to Pomeron-like char-
acteristics. We consider the scattering process
of a pair of charmed quarks in a scalar 1jx (long-
range) potential. The bound-state nature of the
quark pair is retained in the forrnal presentation
of the model; however, it is ignored in the numer-
ical evaluations since we are mostly concerned
here with the consequences of gluon exchange. We
first present the form of the scattering amplitude
as give~ by Cheng and Wu. " Subsequently, we
give the angu1. ar distribution of the ortho and para
cc states; and, finally, we numerically determine
the dependence of the scattering amplitude on the
quark mass and study the influence and behavior '

of the multigluon-exchange contributions.
However, before embarking upon this program,

and before deriving the form of the scattering
amplitude, let us briefly introduce the basics of
the infinite-momentum-frame calculus and with
it our notation.

Ov ing to covariance and Lorentz invariance of
the 5 matrix, the scattering processes ean be
viewed and described in any Lorentz frame. In
particular, a Lorentz frame may be. chosen where
the form of the scattering amplitude reduces to a
simpler expression and thus allows greater the-
oretical intuition, namely the infinite-momentum
fr arne.

The infinite-momentum-frame variables are
defined by

++P E-P
(»D. 0, 0.)-(n ~ P. D. &

(2.1)

HI. THE SCATTERING AMPLITUDE

Following the approach presented in Sec. II, the
scattering process as described in Fig. 2 occurs
in three steps: First, the incoming physical
photon fluctuates into a system of freely moving
constituents (c quarks), the partons in the DLY
approach. Second, each individual constituent
undergoes instantaneous, elastic multiscattering
processes in the gluon potential of the nucleon.
There is no interaction between the quarks during
thi. s process. Finally, they interact to form the
observed bound state. Within the gluon-exchange
framework, this three-step picture is expected

to be valid at high energies where the fluctuation
lifetime is much larger than the time needed for
the interaction with the external gluon potential.

This picture has been elegantly formulated by
Bjorken, Kogut, and Soper, ' using the infinite-
momentum-frame calculus. The determination of
the scattering amplitude requires consideration
of the fluctuation wave functions due to the photon,
the quark-pair bound state, and the amplitude
describing the actual gluon-scattering process.

A. The photon fluctuation wave function

In the spirit of the parton approach, we assume
that the initial photon state is expanded in a com-
plete set of "bare" states, &=the bare photon and
the partons —and wiite

I»= I r&+ . «,.~,', I
l& I

2&+" ~, (3.1)

where

dl dg dl, dq,
(2n)' 2r), (2v)' 2q,

x (2m)'5(g —q, —g, )6'(C —1, —1,) v'2q, 2g,

(3 2)
stands for the phase-space integration over the
intermediate parton states which are character-
ized by their transverse momenta 1,-, longitudinal-
momentum fractions g, , spin s& and all other
quantum numbers. Since we are working on low-
est-order electromagnetic interactions, only the
two-parton intermediate state is relevant here.
The photon fluctuation wave function is in principle

'I

a function of the total momentum L = 1, + l„q = q,
+ q„and also depends on the momentum compo-
nents of the two intermediate partons; but it can
easily be shown to depend only on the variable
combinations

p =lg P2 —12 Px ~ P = 2 (Pi &2)— (3.3)

because of Galilean invariance. Thus, to perform
a Lorentz transformation is to change the vari-
able p and P. The explicit form of the fluctuation
wave functions in lowest-order QED have been
determined in Ref. 14 using standard rules of the
old-fashioned perturbation theory for time-ordered
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Feynman diagrams with

42gi2rl2 M". = —e
1 2

(3.4)

~i qq(P, P)=e 2 2 W2,
m +p

M,', „(p, , P) = ~e(-. + P) m +p

(3.5)

(3.6)

JI and H, , are the Hamiltonians of the bare photon
and parton states in the infinite-momentum fram'e,
and u, and v2 represent the spinors of the fer-
mions. For explicit spin combinations we have

-(-)- ""'
~a P (1+ 2-2)2 u 0-

u

where a, is the radius of the bound state and n,
—=g2/4m is the strong-coupling constant.

(3.12)

(

C. Scattering amphtude

We are now in a position to specify the scat-
tering amplitude. We sandwich the scattering
operator R (defined in 8= 1+iR) between the wave
functions l(|)& and ly& and obtain for the 7 matrix
the well known result

M)', „(p,P) =~ e(-,'~P)
m +p

M„„(p,P) =0,
where p, =P, zip, .

(3.7)

(3.8)

u„(u)=j ,", ()" (uu4));(u-t()
27r

'

—(2w )'6'(u + $)6'(u —q) ]Ji, ~(u, q),
(3.13)

8. Quark. fluctuation

In a completely analogous manner, the final
state lg& is expanded in parton-antiparton states
(where here, however, no bare lg& state is al-
lowed since g is a bound state of a pair of quarks).

lq&= I +dr„M„ll&l f &+ ~ ~ ~, (3.9)

M~ (p ', P ') =
tv 2 Ms (t) s (p', Ms/ ')C(p, A|, g, A.,; s', A') .

(3.10)

~~ is the mass of the bound- state system, s and
A.

' are its spin and helicity, and Aj X2 are the
helicities of the partons. C( ~ ~ ~, ~ ~ ~ ) stands for
the Clebseh-Gordan eoeffieient. The Schrodinger
wave function is normalized as usual:

d'p
(2 ). Its(p)l -1 (3.11)

The above ansatz (3.10) is well justified as long as
the quark masses are heavy and the binding energy
is small. The factorization of the spin part from
the space part in 3f is a good approximation if
the internal motion of the partons ean be neglected,
and thus the appropriate signer rotation for spin
projections onto the z axis may be neglected. If,
for example, a 1/r potential between the quarks
is assumed, the bound-state wave function reads"

with the g fluctuation wave function M~»(p', P') being
dependent on the momenta of the parton states
l i & and the total momentum L' =1,'+1,', 71' = q,'+ g,'

as defined in Eq. (2.2). Following Cheng and
Wu, "we relate the bound-state fluctuation wave
function M~ (p, P') to the ordinary Schrodinger
bound-state wave function $3(p) and describe the
bound quark pair by

&~ ~(u, 4)=
r+ &/2

t

+'~

dP J (2 )2 Q M f,*(1 + m, p)
& -Z/2

xIM", (1-m, P),
(3.14)

where m =-', g —Pu and the sum extends over the
fermion helicities which we have omitted. The
differential cross section is

do

p ~l vtlu (3.15)

The 5-matrix amplitude describing the interaction
of each constituent with the gluon potential is
parametrized by the eikonal form

r +~
-q'4 wgy(b)uue

~CO

(3.16)

such that each constituent acquires an eikonal
phase shift whereas their longitudinal momenta
and helicities remain unchanged.

Let us for later purposes assume a Coulomb-
type gluon potential

y( )
gs

4wr (3.17)

where g, stands for the "strong charge". The
phase shift X(b) appearing in Eq. (3.16) is related
to the potential V(r) by

X(b) = i ding, V(b, z), (3.18)

where (p, —pz) =- 2u, p, (pz) represents the trans-
verse momentum of the initial y state (final (I)

state), and t = -(p, —pz)'. The "impact factor" Jt u),

contains all the information about the creation
process and final-state binding of the constituent
system through the fluctuation wave functions in-
troduced above
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with the vector b=- (b„, b,.) in impact-parameter
space. The integration is easily performed once
an auxiliary nonzero photon mass is introduced
through a factor e ""to prevent divergence of the
integration. Then

(b) =-, '
X b = R's

(2 )2 q2 2

p. b
2o),-FCo(il b) -„-~—2 z, ln + y, (3.19)

and inserting this into Eq. (3.16) immediately
gives the result

I; (q) +i s. e+ (((())n~)4m a.

2(&~ ~ f,)
(3.20)

with the phase factor

A(il, o.,) =2[o., (lnp, +y)+ argr(1+in, )], (3.21)

depending logarithmically on the small photon
mass p, . The formalism presented above [Eqs.

(3.13)-(3.15)] has been derived in many differ-
ent ways: for example, by summing the leading
asymptotic behavior of Feynman diagrams, by
the use of nonrelativistic multiparticle wave func-
tions, by the use of relativistic eikonalization
methods, and by the application of infinite-mo-
mentum-frame techniques. " " We therefore do
not consider it worthwhile to go into more details
here. Instead, we are more concerned with the
explicit evaluation of the scattering amplitude and
the extraction of its dependence on the momentum
transfer.

IV. EVALUATION OF THE AMPLITUDE

In the preceding section we have assembled all
the necessary ingredients for the scattering am-
plitude and now are concerned with its explicit
dependence on the momentum transfer t = —(p; —pz)'.

We start by considering the impact factor Eq.
(3.14); its explicit form is

dp 2,2 QMl(l —m, )6) ~&M~ (I)(1+m, Map)C( ~; s', X'),
277)

(4.1)

with nl'given in Eq. (3.14). A and X' are the spin
of the photon and the final quark-antiquark bound
state, and Q stands for the sum over the spins of
the intermediate partons. One immediately re-
alizes that the evaluation of the T matrix is very
difficult in general and inelegant. We therefore
ignore the influence of the bound state here and
replace the bound-state wave function by a 5 func-
tion which permits determination of J~& in a
simpler form:

0 0T~ =&o,.j. =re (4 7)

with

(4.8)

we have to determine the t dependence of the func-
tions

y r rZ„,=y, —— — M, C(" s', X') .72ra
L)~ l) I8

By the explicit insertion of M ~ and of the
Clebsch-Gordan coefficient, (4.2) leads to

Q'+
~o,.l = -Ao2)Te —

2
f12 + q

(4 3)
I('(t) = I (ii(ii,((, il) (

i—i—,'. ;),
(4 9)

I ]
(('(&)= i)i(((ii, li, ).&.ii—

— . =.),

m 2
ll, ll 402ve 2 ~2

tÃ + q gpss

(4 4)
I

h(u, q, n, ) =, „„;,&& —,=-=-„„„.„,—
p4o=

(2 )s P(p) (4.5)

is the bound-state wave function at the origin.
We are now in a position to specify the T-matrix

elements by inserting Eqs. (4.3) and (4.4) into Eq.
(3.13). By defining the amplitudes for ortho-
charmonium and paracharmonium production

(4.11)

is due to the product of form factors. In deriving
Eq. (4.9) we have used the "regularized impact
factor" and introduced the additional term 1/
(I +q') in order to weaken the divergence of the
integrand at q = yu; this is allowed since the iden-
tity
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' &q[F (q+u)F, (q-u)

—(2w)46'(u+ q) 5'(u —@]J(u, u) = 0 (4.12)

holds. In order to extract the t dependence of Eqs.
(4.9) and (4.10) we use the generalized Feynman-
parameter integ rais,

monium. Since color conservation forbids single-
gluon exchange, the first contribution to L, in Eq.
(4.19) has to be dropped. It represents the Born
approximation and would be analogous to Primakoff
photoproduction of g, . L' and L can be expressed
in closed form as derived in Ref. 21 and also re-
cently discussed in Ref. 22:

1 1 sinhwn, i n «(1 —o, )«
1 T $1+/ g+ g y 2

I

(4.13)

and integrate in Eqs. (4.9) and (4.10) over dq,
with the result"

0 V(e) i iW(e) e'
Vl '

V(1) ln(1 —e )
'

where

(4.21)

R, (t)=;v, L v, (4;14)
a,nd

(4.22)

R'(t) =-, eL,'o,m'

where

(4.15) V(e'}=,F,( y-, y, 1-;e'), W(e)=—,F,(1 —y, 1+y, 2;e').
(4.23)

0
}

sinhwa, I
' " a «(1 —a}«(1—2e)P'

[Po 'F+1 —P]'

sinhwo. , i' " o. «(1 —o. )«P(1 —P)I (o) = dA 4p
[p 2F 1 p]2

(4.17)

and the functions

The above derivation is based upon the fa,ct that
the hindi:tlg effect of the produced parton pair may
be ignored, and thus essentially we determined the
production of two free c quarks which move with
the same momentum. Before going to the numeri-
cal evaluation and phenomenological discussion of
this model we indicate a possible extension of this

' formalism which accounts for the binding effects.
We return to Eq. (3.13}and write it in the form

F= 1 —(1 —2n)'P, T«.„=, „-$(Q, u}Z~„,(Q, u}, (4.24

'M„+ ZZC~
0'~ =

m
y=-in, , (4.18}

have been introduced. Straightforward appli'cation
of the Mellin-transformation techniques permits
evaluation of the a behavior for small values. The
result, after a lengthy but straightforward cal-
culation, is'

where g(q, u) is defined in Eq. (3.13) and J. z for
specific helicities may be given by

(t,}
(q, -.)=- dp („). —.,'~.

x $(L,Map)IL=k+ q 2gu (4.25)

Using the Fourier-transformed bound-state wave
function

4 (L) = ""e(r)
(2w)

(4.26)

+4y [He((1+y) —g(1) + —,
' ln4]+ ~ ~ ~, (4.19) we may rewrite Eq. (4.24) in the faetorized form

L'=—,ln + ~ ~ ~ . (4.20)

p+ OO

T = ~ „I,(r, u)I, (r)I,(r, u),
w J

(4.27

in evaluating Eqs. (4.16) and (4.17) we have, lim-
ited ourselves to the most singular terms which
correspond to 1, 3, . . .gluon exchange for L and
to 2, 4, . . .gluon exchange for L'. This is con-
sistent with C invariance, which requires that an-
even number of gluons be exchanged for ortho-
charmonium and an odd number for parachar- I,(r, u) -=, dge"'&(q, u), (4.28)

I

where I, stands for the interaction between the
quarks and the exchanged gluons, I, describes
the quark-creation process, and I, parametrizes
the bound-state nature of the quark-antiquark sys-
tem. The explicit forms. are
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+~ d +x/2
I ( )

— +3
t

dP
-'8(2 r N' -) y(r)

(2v)

(4.30)

Further simplification of these expressions is in-
volved. Since our main interest in this paper is in
the effects due to gluons, we leave the nature of
bound-state corrections for a later investigation.

The numerical evaluation of this model is
straightforward. Before presenting the results
let us first make a few observations about the
formulas.

We first consider cc photoproduction in an ortho
state like p, co, . . . , t]t, . . . . The amplitude R'(t) has
a universal zero at 0. = I corresponding to v' —t
= 21' due to the logal lthmlc term ln L (c'). (This
apparent divergence cancels out the zero in q. )
This zero is already present in the two-gluon-
exchange term. Its position in the momentum-
transfer variable depends upon the mass of the
constituents m; thus, if a heavy-quark system is
I;roduced, the minimum lies far out in -t, where-
as a light-quark system has the minimum at lower
t values.

Plotting t/4m, ' s-hould then reveal a constant
and fixed minimum point at +1. We now consider
photoproduction of the para cc state. Keeping only
the first term in L,', we find the Born amplitude
of single-gluon exchange, which, however, is for-

bidden by color conservation. It shows an angular
distribution with a sharp spike in the forward di-
rection, like 1/f, which then falls to zero. Both
amplitudes g and g' depend only on the varia. ble
o, and therefore scale in the quark mass if a
change in the overall size of the cross section is
ignored. Since we are working in the infinite-mo-
mentum frame, the dependence on the initial en-
ergy E, has completely dropped out; our for-
malism is therefore not valid in the threshold
region and is preferentially applied ih the asymp-
totic region where the diffraction phenomena, seem
to dominate. The bound-state wave function
&j&,(o.„m,) most likely depends on the mass of the
quarks as well as the strong-coupling constant.
This dependence is undefined unless a, specific
choice of the bound-state wave function is made.
As an attempt we assume the form resulting from
a Coulomb potential

Ignoring the mass dependence of the bound-state
wave function P„both amplitudes A' and R' are
proportional to m, ' '. Note that the above re-
sults show no dependence on the target (nucleon)
size since we have used an infinitely extended 1/x
gluon potential.

We have numerically evaluated the shape of the
differential cross section for g, photoproduction,
adjusting the bound-state wave function at the
origin P, in Eq. (5.1) by a multiplicative factor
such that its size agrees with the data at E,
-120 GeV. In Fig. 3(a) we show its shape for rg,
=1.5 GeV and n, = Q.5; the analogous curves in
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FIG. 3. jCA. ) and (b) Photoproduction of orthocharmonium (g ). The solid line represents 2, 4, 6. . . gluon exchange,
the dashed line indicates the importance of 2-gluon exchange alone, whereas the dashed-dotted line shows the cross-
section size of 4, 6...gluon exchange. The parameters are ~c = 1.5 GeV and ~ = 0.5, and 0.~ = 0.8; (c) Photoproduction
of an ortho qq state (g~). The solid line, dashed line and dashed-dotted line represent 2, 4, 6, ... gluon exchange. The
parameters are m, = 0.3 GeV and e, = 0.5.
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0.2 0.4 0.6 0.8 I.O l.2
-t [(Gev/c) ]

l.4
I- I i I I I I I I I I I I
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FIQ. 4. (a) and (b) photoproduction of paracharmonium (qc). The solid line represents 3, 5, 7, . . . gluon exchange,
the dashed line indicates single-gluon exchange (which is forbidden by color conservation), and the dotted line indicates
the size of the 3-gluon exchange near the forward direction. The parameters are m, =1.5 GeV, e, = 0.5, and e, =0.8.
(c) Photoproduction of a para qq state (q ). The solid line, dashed line, and dotted line represent 3, 5, 7, . . . gluon
exchange, single-gluon exchange and 3-gluon exchange. The parameters are m = 0.3 GeV and e, = 0.5.

Fig. 3(c) are for m, =0.3 GeV. The dashed lines
(2-gluon exchange) represent the lowest-order
contribution. The solid lines (2, 4, 6, . . .gluon ex-
changes) take multigluon corrections into account,
and the dashed-dotted lines (4, 6, . . .gluon ex-
changes) have the 2 gluon exchange subtracted.
One notices that the 2-gluon-exchange approxima-
tion is damped down by the higher-order multi-
gluon exchanges, which, however, interfere such
that their contribution is about one order of magni-
tude smaller. An exponential fit in the region 0.1
& —t &0.6 (GeV/c)' gives a slope parameter. b

"2-4 GeV ', it is less for 4, 6, . . .gluon exchange.
Mass extrapolation to m, =0.3 GeV [Fig. 3(c)]
brings the zero point in the amplitude Et' [see Eq.
(4.10)] to t = 0.36 (GeV/c—) . This diffraction mini-
mum is not observed in p photoproduction, '

a,nd it
might disappear if the relativistic bound-state
nature of the p meson is taken into account.

In Figs. 4(a) and 4(c) we show the analogous
curves for photoproduction of the para states g,
and q,. For illustrative purpose we have drawn
the Born approximation (which, however, is for-
bidden by color conservation); it is strongly
peaked for small Itl values. 3, 5, . . .gluon ex-
change is flat over a long t range and bends off
towards zero in the extreme forward direction.
The same calculation with ni, =0.3 GeV shows a
rising curve towards sfnaller [ti values with b
-5 GeV ' and a. decrease to.zero in the extreme
forward direction.

In Figs. 3(b) and 4(b) the value of the strong-
coupling constant is changed to o, =0.8, but the

quark mass is kept at m, =1.5 GeV. Comparing
Figs. 3(a) and 3(b) one notices that the curves
rise by a fa,ctor of 5 —10 in going from +, =0.5 to
0.8. Furthermore, the sum of terms describing

' 4, 6, . . .gluon exchange is much more influential
relative to the 2-gluon-'exchange term. The fact
that at larger, (-t) values the 4, 6, . . . gluon ex-
change and the 2, 4,. 6, . . .gluon exchange contribu-
tions are of simila, r size is a consequence of the
interference pattern between the amplitudes T, and
T4,...', however, the qualitative shape of the curves
changes little. Similar conclusions ea,n be drawn
by comparing the diagrams in Figs. 4(a) and 4(b).
Again one finds that the relative size of the various
contributions becomes narrower. Note in particu-
la,r that the 3-gluon exchange is of almost equal
size as the cross section due to 3, 5, . . .gluon ex-
change. The trend we see here is that the

influe-

'

ncee of the multigluon exchange terms is more
strongly felt as we increase the coupling strength
of the gluonie interaction. It is in agreement with
the intuitive expectation that higher-order terms
become more strongly felt.

So far we have not mentioned the application of
the above formalism to the production of a par-
ticle system which interacts predominantly by
electromagnetic force. Primakoff photoproduction
of an unbound r'v system (r' and v produced
with equal momenta) in the multiple charged field
of nuclei is an example. The replacement of the
excha, nged-gluon coupling constant a, —Zol
(n =—e'/4v, Z —= nucleus charge) and explicit cal-
culation show that the higher-order corrections
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Flo. 5. (a) and (b) Photoproduction of a r'r pair in an (a) ortho and (b) para state. The solid line in (a,) (in (b)}
represents 2, 4, 6, . . . (1, 3, 5, . . .) photon exchange, whereas the dashed line indicates the size of 2 photon (1 photon)
exchange, The nucleus charge is chosen to be Z= 82 and m, = 1.8 GeV.

are nonnegligible and in fact enhance the cross
section by a factor of 2-3.

The production of the unbound T'7 para state in
the single-photon approximation leads to the
famllial form

tromagnetic binding forces. Since these 'are, very
weak, the resulting t-dependent form factor is
exponentially damped with a large slope value, so
that the integrated cross sections are orders of
magnitude below the ones given in Fig. 5.

. =Bm(y (yZ '
- —

' —,, 5.2

which gives the integrated cross section

The differential distribution and integrated cross
section for production of the analogous v'v orth@
state are not as suppressed as they might seem by
considering the extra factor n' (due to the exchange
of the additional photon), since the electromagnetic
field of the nucleus contributes an additional factor
Z. In Fig. 5 we show the shapes and sizes of the
differential cross sections. We emphasize that
these results may not be applied to."leptonium"
photoproduction" since we have ignored the elec-.

VI. OTHER DIAGRAMS

In the above analysis we have considered a
specific class of gluon-exchange diagrams for the
description of the interactions between the photo-
produced heavy-quark pair and the nucleon. Quan-
tum chromodynamics, however, does permit a
much larger class of diagrams which has been
ignored so far. In this section we attempt an
estimate of the importance and influence of these
diagrams. Primarily we wish to know whether
the class of diagrams with multigluon couplings
as shown in Fig. 6 can be neglected.

To simplify the discussion we ignore any inter-
action among the two heavy quarks and draw the
diagrams with the two quarks leaving in opposite
direction (Fig. 7}. The class of diagrams con-

Y'
(b)

FIQ. 6. Qluon tree diagrams which have 'been ignored
in the model.

(a) ' (b)
FIQ. 7. Cutting and opening of the fermion loop.
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FIG. 8. Ladder-type diagrams of order g~4 considered
by the model.

tributing to this process is subject to the two con-
straints:

(i) The number of gluons attached to the c-quark
lines must be even (odd) for (, (q, } photoproduction
owing to Furry's theorem (C-parity conservation).

(ii) The number of gluons which are exchangedbe-
tween the gluon source and the cc pair must be
~2 owing to color conservation.
Let us first consider photoproduction of an ortho
bound state. The diagrams contributing in lowest
order g,' (the gluon-coupling constant), with the
gluon lines attached iri all possible way. s on the
quark lines, are indicated in Fig. 8. In next order
g, ' tree diagrams such as those shown in Fig. 9(a}
are excluded, since an uneven number of gluons is
attached to the quark lines violating constraint (i).
In order g,' the tree diagram which might spoil
our earlier results is of the type shown in Fig.
9(b). That these diagrams give contributions
which are unimportant is ensured by the following
two points:

(a) Since we have carried out all our analysis
assuming that perturbation theory is applicable,
the gluon coupling has to be smaller than 1; as
a consequence, contributions to order g,' a,re
suppressed wjth respect to order g,'.

(b) We have carried out a numerical analysis of
the influence of the triangle-loop diagram by com-
paring the size of the diagrams in Fig. 10.
Our findings are that the amplitude of diagram (b)
in Fig. 10 is suPPressedby tnro orders ofmagnitude
with respect to the amplitude of diagram (a) in
'Fig. 10 (we have here not included the additional
suppression due to the gluon coupling constant).
The influence of the third fype of diagrams, also
much smaller than diagram (a) in Fig. 10, is ab-

(a) ( b) (c)
FIG. 10. Estimate of the size of the single-gluon-ex-

change diagram (a) versus the size of the simplest
gluon tree diagram (b), (c).

sorbed in the gluon vertex renormalization and
therefore does not concern us. Adding extra gluon
exchanges does not substantially change this pic-
ture. As a result we come to the conclusion that,
in low orders of g„ tree diagrams are suppressed
with respect to ladder-type diagrams.

We now consider photoproduction of the pa, ra
state. The class of diagrams we have to compare
is shown in Fig. 11. The importance of these dia-
grams is estimated by the following chain of
ar'gum ents:

(a) Both diagrams are cut along the dashed lines
and the size of the remaining amplitudes on the
left-hand side will be estimated and compared. '

(b} We have mentioned earlier that the size of
the triangle-loop diagram [Fig. 10(b)] has been
estimated with respect of the single-gluon-exchange
diagram [Fig. 10(a)]; it is suppressed by two
orders of magnitude in amplitude.

(c} The differential cross section resulting from
the diagram in Fig. 10(b) is four orders of magni-
tude below the single-gluon exchange in Fig. 10(a)
which means: (do/dt) ~~& = 10 ' nb/GeV'. The
corresponding value for the diagram of Fig. 11(a)
(left of dashed line) is determined using Fig. 3(a):
(do/dt) t„,~~„,„=1-10 nb/GeV'. We thus conclude
that the contribution of diagram (a) is substantially
more important than diagram (b) (Fig. 11).
Our findings are that tree diagrams contribute in

g, photoproduction in the same order of g, as l.ad-
der-type diagrams. However, their contribution
is orders of magnitude below the ladder diagrams
considered above. Note that this result does not
substantially change if cy, grows or the qua, rk mass
is changed.

((1) (b)
FIG. 9. Gluon tree diagrams of order g 6 (a) and order

g 8(b) s

FIG. 11.Estimate of the size of the ladder-type dia-
grams (a) versus the size of the tree-like gluon exchange
diagrams @), (c).
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VII. CONCLUSION

In this paper we have presented an analysis of
photoproduction of a heavy-fermion pair, as-
suming that it interacts via a long-range gluon
potential with the target nucleon. Within the
framework of the Cheng-Wu picture, a theory has
been developed for para and ortho quark-pair pro-
duction assuming that gluons are responsible for
the interaction with the target. The characteristics
of the resulting angular distributions have been
determined; in particular, the sizes and shapes
of 3 and 3, 5, . . .gluon exchanges for para pro-
duction, and 2 and 2, 4, . . .gluon exchanges for
ortho production were found. The angular dis-
tribution for g, production is predicted to be flat,
and the cross section to be in the nanobarn range,
whereas it exponentially decreases in the case of

g, photoproduction. We also were able to show

that diagrams with three or more gluons attached
to each other (gluon trees)' ~ay safelybe neglected.
The theory also has been applied to photoproduc-
tion of an unbound 7'7. pair where multiphoton
exchanges were found to enhance the cross sec-
tions by a factor of 2-3.
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